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(4,2)-HOMOLOGY GROUPS

Donco Dimovski, Ajet Ahmeti

A bstract: In this paper we generalize the well-known notion
of chain complexes of abelian groups to the notions of weak and
strong (4,2)-chain complexes of commutative (4,2)-groups. We
also define several homology groups for these (4,2)-chain complexes.
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§.1. PRELIMINARIES

The (n,m)-groups were introduced in [1]. Here we will define them and
focus our attention only on commutative (4,2)-groups. Some of results about
(n,m)-groups can be found for example in: [1], [2], [3], [4], [6], [7], [8], [9],
[10], [11], [12].

Let G be a nonempty set and let n,m be positive integers, such that
n-m=k>0.

A map [ ]: G" — G" is said to be an (n,m)-operation on G, and the pair
(G,[ 1) is said to be an (n,m)-groupoid. An (n,m)-groupoid (G,[ 1) is said to be an
(n,m)-semigroup, if for each x,u € G",y € G, ve G, we G, where r > 0,
s20, r +s =k and Xy = vuw in G"*, the following associativity condition
[[x]y] = [v[u]w] is satisfied. An (n,m)-semigroup is said to be an (n,m)-group if
for each a € G*, b € G”, there exist x,y € G”, satisfying [ax] = b = [ya].

- Tt follows directly from the definition that the notion of a (2,1)-group is
the usual notion of a group.

Next, let n = 4, and m = 2 = k. For a better clarification we will restate
the definition of (4,2)-groups. A (4,2)-group is a pair (G,[ ]), where [ ] : GG
is a map satisfying the following two coditions:
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