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SKAND THEORY AND ITS APPLICATIONS.
(A NEW LOOK AT NON-WELL-FOUNDED SETS)
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Abstract. A new mathematical object called a skand is introduced,

which turns out in general to be a non-well-founded set. Skands of
finite lengths are ordinary well-founded sets, and skands of very long

length (like the hyper-skand of all ordinals) are hyper-classes.
Self-similar skands are also considered, and they clarify the reflex-

ivity of sets, i.e., the meaning of the relation X ∈ X ; in particular,

self-similar skands considered as non-well-founded sets are always re-
flexive, but not vice versa. The existence of self-similar skands shows

at once that all the well-known set-theoretical paradoxes are not para-
doxes at all, and hence are not necessarily fatal for any set theory. E.g.,

the inconsistency of Russell’s “set” R = {X | X �∈ X} is proved here not
with the help of Russell’s paradox (as it is traditionally given, which is

incorrect), but via a simple method of the maximality (universality) of

R which goes back to Cantor and is also applied to other set-theoretical
paradoxes.

Generalized skands are also defined and a new look at the general-
ized skand-class of all ordinals is demonstrated. In particular, the last

(class) ordinal called the eschaton is defined.

The next application of skand theory is a description of all epsilon-
numbers in the sense of Cantor. Another application is a generalized

theory of one-dimensional continua of arbitrary powers and the con-
struction of generalized real numbers as a non-Archimedean straight

line of arbitrary power, and the introduction of the absolute continuum
and the absolute straight line as the hyper-classes nearest to the class

of sets.
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0. Epigraphs
A parson had a hound-dog,
One he loved a lot.
It ate a piece of mutton,
For which he had it shot.
He buried the hound,
Then wrote on its mound,
That
A parson had a hound-dog, etc.
(ad infinitum and ad imum).
[Free translation of a Russian children’s

ditty.]

Once a four-year-old son returned home from kindergarten,
where he had been told that his father was a mathemati-

cian.
When the son saw his father again, he asked him:
“Is it true, Daddy, that you are a mathematician?”
“Yes, sonny, it is,” was the answer.
“Well,” responded the son, “can you count to the last
number?”
“Ummm...ummmm,” mumbled the father, stumped.
[Dialogue with a child which is in fact a problem of
mathematical eschatology:
“What is the ’έσχατoν or ad imum?”]

“A soul is only a skand, i.e., an accidental aggregation of
being”.

[From Buddhist doctrine.]

“The content of a concept diminishes as its extension
increases; if its extension becomes all-embracing, its
content must vanish altogether”.
[Gottlob Frege, “The Foundations of Arithmetic”.]

0. Introduction
We are going to clarify the notion of reflexivity in Set Theory, i.e., the

meaning of a binary relation X ∈ Y in the case when Y = X , that is X ∈ X .
As to Russell himself, the relation X ∈ X “must be always meaningless”
[58], p. 81, since he was seriously frightened by this paradox, which was
later on named after him: “Thus X ∈ X was held to be meaningless,
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because ∈ requires that the relatum should be a class composed of objects
which are of the type of the referent” ([54], Chap. X, p. 107). Moreover,
he went further and concluded that X �∈ X “must be always meaningless”,
too. ([58], p. 81). He wrote: “If α is a class, the statement ‘α is not a
member of α’ is always meaningless, and there is therefore no sense in the
phrase ‘the class of those classes which are not members of themselves’ ”
([58], p. 66). In particular, Russell wrote: “A class consisting of only
one member must not be identical with that one member”. And he added
immediately “X = {X} must be absolutely meaningless, not simply false”
([58], p. 81). In this paper we shall see when Russell was right and when
was he not.

In particular, we shall show that in many well-known formal systems
(set theories) Russell’s paradox is not a paradox at all, and hence the proof
of the Proposition that Russell’s collection R = {X |X /∈ X} is a proper
class, not a set, via Russell’s paradox, is not correct (it was a logical mistake
in the propositional calculus, at least within set theories with the axiom of
regularity). We prove this Proposition by the following

Maximality Principle. If there exists a maximal (universal) collection
X (sets, classes, hyper-classes), given by some property, predicate, etc.,
then any assertion which implies the existence of a new element x with the
same property and x /∈ X is false.

2. Premises, notations, some history, and purpose of paper
At the beginning we start out within a von Neumann-Bernays-Gödel-

type set theory (NBG for short), i.e., the theory of first-order logic with
equality (i.e., with respect to the given definition of equality A2

1(X, Y )) with
a syntactic or proof-theoretic side and a semantic or model-theoretic side
(see [10], p. 7) with only the predicate letter A2

2(X, Y ), which is the binary
relation X ∈ Y , for short. The proper axioms of NBG consist of general
axioms, class-formation axioms and set-formation axioms together with the
axiom of choice AC and the axiom of foundation FA (see, e.g., in [41], p.
225-286; we have changed only notation: NBG+(AC)+(Reg) on NBG).
The basic set theory NBG can be considered with individuals (e.g., [41], p.
297-304) called sometimes atoms or urelements, i.e., mathematical objects
which are neither sets nor classes and which have no members, or NBG
can be considered without them; it does not matter. In the latter case the
only individual is just the empty set {} = ∅ and Set Theory in this case is
often called the theory of “pure” sets.

To be more precise and definite we denote by NBG[U ] the set theory
with of individuals (atoms, urelements), the class of all sets of NBG[U ] by
V[U ], and the set or class of individuals (atoms, urelements) by U ; V is
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the class of all sets in the theory NBG of “pure” sets, i.e., when U = ∅. In
NBG[U ] because of FA the class V[U ] of all sets turns out to be the class
WF of all well-founded sets. The universal class of elements U[U ] is the
union V[U ] ∪ U of V[U ] and U . Note that V[U ] ∩ U = ∅.

We also denote the class of all ordinals by On and the class of all car-
dinals by Card.

Then we shall consider NBG[U ]−, i.e., NBG[U ] without the axiom of
foundation FA, and instead of the axiom of choice we use the axiom N of
von Neumann, V[U ]− ≈ On; i.e., these classes are bijective, which in the
absence of foundation is stronger than choice.

There is an important distinction in NBG[U ] as well as in NBG[U ]− Set
Theories between three kinds of objects: individuals, sets (usually called
“small” classes), and classes (usually called “large” classes or more often
proper classes). Individuals do not contain any elements but can be ele-
ments of non-empty sets and classes; non-empty sets can contain individuals
and sets as elements but do not contain classes as elements, and sets can be
elements of non-empty sets and clases; classes can obtain individuals and
sets as elements but can not be elements of individuals, sets or classes. The
only indivinual ∅ is called a set; others are not sets or classes.

There are two ways to distinguish sets and classes (i.e., proper classes)
in addition to axioms for sets. The first of them is the following: a subclass
X ⊂ U[U ] of U[U ] is a set if and only if there exists a one-element object
(singleton) {X} ∈ V[U ]; the second one: a subclass X ⊂ U[U ] of U[U ] is
a set if and only if there is no bijection X on U[U ]. Otherwise, X ⊆ U[U ]
is not a set but a subclass (i.e., proper subclass) of U[U ] (further, in short,
a class). Moreover, all subclasses (which are not sets) of U[U ] are bijective
to each other. Notice also that when we deal with classes (i.e., proper
classes) we speak in the language of their elements but not of them as
wholes or as units. In other words, sets are arguments (elements of V[U ]),
and classes are extensions of some predicates. In formal systems one uses
the following notations: Cls(X) as “X is a class” , M(X) as “X is a set” ,
i.e., (∃Y )(X ∈ Y ), Pr(X) as “X is a proper class, i.e., Cls(X) ∧ ¬M(X),
Ur(X) as “X is an urelement” and El(X) as “X is an elements” i.e.,
El(X) = M(X) ∨ Ur(X). (See [41], Chap. 4, p. 297.) For simplicity we
avoid here almost these notations.

Proposition 1. If theory NBG− is consistent, then NBG is also con-
sistent.

Proof see in [40] or in [41], Chap. 4, 4. 86.
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Moreover, a model of NBG is built by the following transfinite recursion:

Ψ(0) = ∅
Ψ(α′) = PΨ(α)

lim(λ) =⇒ Ψ(λ) =
⋃

β<λ

Ψ(β)

H′ =
⋃

α∈On

Ψ(α).

(1)

Here and below α′ = α+1, α ∈ On, and P - the functor “set of all subsets”.
Moreover, H′ determies an inner model of NBG− and the axiom of

foundation FA is equivalent to the statement that V = H′ (Ibidem).
Proposition 2. Theory NBG[U ] is consistent if and only if NBG is

consistent.
Proof see in [47] or in [41], Chap. 4, Proposition 4.50, p. 301-302.
A model of NBG[U ] is built by the following transfinite recursion.
If U is a set, then

Ξ(0) = U
Ξ(α′) = PΞ(α)

lim(λ) =⇒ Ξ(λ) =
⋃

β<λ

Ξ(β)

H′[U ] =
⋃

α∈On

Ξ(α).

(2)

Moreover, H′[U ] determines an inner model of NBG[U ]− and the axiom
of foundation FA is equivalent to the statement that V[U ] = H′[U ].(Ibidem.)

If U is a class, then for each subset L ⊂ U and any ordinal γ ∈ On we
define a set Ξγ

L be the following transfinite recursion:

Ξγ
L(0) = L

Ξγ
L(α′) = PΞγ

L(α), α′ < γ,
lim(λ) =⇒ Ξγ

L(λ) =
⋃

β<λ

Ξγ
L(β), λ < γ.

(3)

Let H[U ] be the class of all elements M such that for some set L and
ordinal γ, M is in the range of Ξγ

L. Then H[U ] determines a model of
NBG[U ] and the foundation axiom FA holds if and only if H[U ] = U[U ].
Moreover, H[U ] determines an inner model of NBG[U ]−. (Ibidem.)

Recall that a set X is well-founded (or ordinary) if there is no infinite
∈-descending chains, in other words, if every ∈-descending chain in X is
finite, i.e., for each x0 ∈ X , every ∈-descending chain starting with x0

can be at most the following one: x0 � x1 � x2 � ... � xn, where xn

is some individual or the empty set; otherwise it is non-well-founded or
“extraordinary”, i.e., there exist infinite ∈-descending chains x0 � x1 �
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x2 � ... � xn � .... The distinction between well-founded and non-well-
founded sets was first articulated by Mirimanoff [43] and in his terminology
the distinction was between “ordinary” and “extraordinary” sets. Later on,
von Neumann [50] proposed an axiom of regularity (“Restrictive Axiom”
in [5] and “Axiom der Fundierung” in [60], i.e. the Foundation Axiom FA)
which excluded Mirimanoff’s extraordinary sets, because according to the
axiom any “descending” sequence terminates, i.e., reaches its bottom or
“foundation”. More precisely, the Axiom of Regularity in NBG[U ] is
the following:

(∀X)(X �= ∅) =⇒ (∃u)(u ∈ X ∧ ¬(∃v)(v ∈ X ∧ v ∈ u))) (4)

and together with the Axiom of Choice it is equivalent to the Axiom of
Foundation (see [41], Chap. 4, Proposition 4.44).

The restriction axiom as FA was very important, first of all, for com-
pleteness of the extensionality axiom Ext, because in NBG[U ]− it is im-
possible to prove in general that for different sets X and Y the two-element
set Z = {X, Y }, which always exists by the axiom of pairing, Z = X , or
Z = Y , or Z is different from X and Y . Only by means of FA can one
prove that {X, Y } is different from X and Y . Secondly, FA avoids vicious
circle phenomena, i.e., there is no set X such that X � X1 � ... � Xn � X ;
in particular, the reflexive sets X ∈ X , which appeared to be a source of
paradoxes (which was actually not true), e.g., Russell, with reference to H.
Poincaré wrote: “An analysis of the paradoxes to be avoided shows that
they all result from a certain kind of vicious circle” [58], p. 39. And Russell
had formulated his famous “vicious-circle principle” as follows: “Whatever
involves all of a collection must not be one of the collection” [58], p. 40.
Thus, with the help of the Foundation Axiom, Set Theory has been
succesfully developed and the “vicious-circle principle” has been satisfied.

Nevertheless, many real problems concern circular phenomena in logic
(first of all, Russell’s paradox itself, because it concerns the relation R ∈ R,
and therefore the non-well-founded set R; and also, e.g., the treatment of
Liar-like paradoxes, etc.); linguistics, computer science, graph theory, game
theory, streams, etc., all need circular models which lie beyond the universe
of well-founded sets. At last, there is a lack of investigation of reflexive sets
and Mirimanoff extraordinary sets which are in general many-valued. Even
a real example of a set X which is an element of itself is absent in almost
monographs on Set Theory except those like “set of all sets”, e.g., [27],
p. 5, or in Russell’s paradox R ∈ R in proving that R is not a set; these
examples are fakes. Only later in monographs on “non-well-founded sets”
real examples appeared.
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From the early 20th century, many authors actually proposed their own
anti-foundation axioms (AFA for short) enriching and extending the Well-
Founded Universe by the AFA-Universe, e.g., [25], [7], [50], [55], [26] and
others. All of them proposed theories of possibly non-well-founded sets
which are consistent, assuming that NBG− is consistent. Nevertheless,
the four axiom systems mentioned are non-comparable, and each one differs
from the others in the strengthening of the extensionality criterion for set
equality.

In the present paper we introduce a new object called a skand (San-
skrit: jump, skip). Skands are “definite and separate” objects (“bestimmten
wohlunterschiedenen Objekten” according to Cantor [15], p. 481) and can
be considered as elements of the class V[U ]− of all sets in NBG−, and they
also enrich V[U ]; i.e., they can be well-founded or non-well-founded sets.
Moreover, skands are essential extensions of some (not all) of Mirimanoff’s
extraordinary sets.

The class of all skands generates a class (i.e., proper class) V[U ](1) which
is a subclass of the class V[U ]− by forming objects X whose elements are

ordinary sets or skands such that {X} exists. Clearly, V[U ]
def
= V[U ](0) ⊂

V[U ](1) ⊂ V[U ]−. Moreover, we successively continue such a process of
enrichment for each ordinal number α and obtain the following embed-
dings: V[U ](0) ⊂ V[U ](1) ⊂ ... ⊂ V[U ](ν) ⊂ ... ⊂ V[U ]Ω ⊂ V[U ]−, where
V[U ]Ω =

⋃
ν∈On

V[U ](α). We do not say that this cumulative hierarchy ex-

hausts V[U ]−, i.e., V[U ]Ω = V[U ]− but it makes V[U ]− more structural.
�

2. The notion of a skand
Let (α0, α)

def
= {α′ ∈ On| α0 ≤ α′ < α} be a segment of On; if α0 = 0

and α ≥ 1, then we call (0, α) an initial segment of On.
Definition 1. Consider a system of embedded curly braces or well-

ordered set of embedding pairs of curly braces {α0{α0+1...{α′...α′}...α0+1}α0},
indexed by ordinals α′ ∈ (α0, α). We call it a trivial skand of length
l = α − α0 and denote it by e(α0,α). It can be also called an empty
skand because for each α′ ∈ (α0, α) the set of all elements between two
neighboring opening braces {α′ {α′+1 or possibly between {α′ α′}, if α′ =
α − 1, is empty. In other words, each α′-component eα′ of e(α0,α) is
empty. By a non-trivial skand X(α0,α) of length l = α − α0 we under-
stand a non-trivial system of embedded curly braces, indexed by ordi-
nals α′ ∈ (α0, α); i.e., there is at least one index α′ ∈ (α0, α), and el-

ements x0, x1, x2, ..., xλ, ... of U[U ] such that the α′-component Xα′
def
=
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{α′ x0, x1, x2, ..., xλ, ..., {α′+1 (or {α′ x0, x1, x2, ..., xλ, ... α′}, if α′ = α− 1) of
X(α0,α) is a set, i.e., {x0, x1, x2, ..., xλ, ...} ∈ V[U ] and denoted also as Xα.

For simplicity we shall omit indexes α′ of braces or elements in the cases
when it is clear what they are, e.g., for {α′xα′

0 , xα′
1 , xα′

2 , ..., xα′
λα′, ..., {α′+1 or

possibly {α′xα′
0 , xα′

1 , xα′
2 , ..., xα′

λα′ , ...α′} in the case α′ = α − 1, we write

{xα′
0 , xα′

1 , xα′
2 , ..., xα′

λα′, ..., { and {xα′
0 , xα′

1 , xα′
2 , ..., xα′

λα′, ...} in the case α′ =
α − 1, respectively; or even simplify to {x0, x1, x2, ..., xλ, ..., { and
{x0, x1, x2, ..., xλ, ...}, respectively. All the more indexes α′ of braces are
conditional, e.g., if X(0,α) is a skand, then Y(0,α) = {X(0,α)} whose compo-
nents are Y0 = ∅, Y1 = X0, Y2 = X1, ..., Yn+1 = Xn, ... , and Yα′ = Xα′ ,
for all ω ≤ α′ < α, is a skand, too.

For the purpose of interpreting skands as sets, we write a comma before
the second open brace of non-trivial component Xα′ of X(α0,α), i.e.,
{α′ x0, x1, x2, ..., xλ, ..., α′+1{ or simply {x0, x1, x2, ..., xλ, ..., {. It says that
braces are not only syntactical but also semantic in the definition of skand.

Thus, a general form of an arbitrary skand is the following:

X(α0,α) = {xα0
0 , xα0

1 , ..., xα0
λα0

, ..., {... {xα′
0 , xα′

1 , ..., xα′
λα′ , ..., {...}}...}, (5)

where components Xα′ = {xα′
0 , xα′

1 , ..., xα′
λα′ , ..., { are sets, i.e.,

{xα′
0 , xα′

1 , ..., xα′
λα′, ...} ∈ V[U ]

or empty, i.e., Xα′ = {{; if α is not a limit ordinal, then the last component
Xα−1 is an ordinary set, i.e., {xα′

0 , xα′
1 , ..., xα′

λα′, ...} ∈ V[U ] or empty {}.
If all components Xα′ , α0 ≤ α′ < α, of a skand X(α0,α) are equal to

the same set, e.g., X = {x0, x1, ..., xλ, ...}, we shall denote this skand in a
shorter way by X(α0,α)(X); in particular, when X = {γ}, i.e., a one-element
set X , we simplify the notation to X(α0,α)(γ). If α0 ≤ α1 < α2 ≤ α,
then together with X(α0,α) we shall denote by X(α1,α2) the skand whose
α′-components Xα′ , α1 ≤ α′ < α2, are the same as those of X(α0,α), and
X(α1,α2) is called a restriction of X(α0,α) on (α1, α2).

Definition 2. Two skands X(α0,α) and Y(β0,β) are called equal if the
segments (α0, α) and (β0, β) are isomorphic as well-ordered sets, i.e., their
“similarity” is given by ϕ : (α0, α) → (β0, β), and the corresponding α′-
and β′-components
Xα′ = {α′xα′

1 , xα′
2 , ..., xα′

λ , ..., {α′+1 and Yβ′ = {β′yβ′
1 , yβ′

2 , ..., yβ′
λ , ..., {β′+1

as well as the last components Xα′ = {α′xα′
1 , xα′

2 , ..., xα′
λ , ...α′} and

Yβ′ = {β′yβ′
1 , yβ′

2 , ..., yβ′
λ , ...β′}, if α′ = α−1 and β′ = β−1, are equal as sets

in NBG[U ]; i.e., {xα′
1 , xα′

2 , ..., xα′
λ , ...} = {yβ′

1 , yβ′
2 , ..., yβ′

λ , ...}, α0 ≤ α′ < α
and β0 ≤ β′ < β, respectively, where β′ = ϕ(α′).
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It is clear that the relation of equality is an equivalent relation.
Remark 1. Actually, between each pair of braces {{ or {} of a skand

X(α0,α) there are different elements (sets or individuals), or their lack, which
form a set; notice that the order in which the members of sets are written
does not matter. In our notation we use Xα′ = {x0, x1, ..., xλ, ..., { or Xα′ =
{x0, x1, ..., xλ, ...} only for simplicity of writing, since with the axiom of
choice we can well-order any set X , λ < κ, for some ordinal κ, and obtain
such notation. It is clear that the definition of a skand does not depend
on orderings of elements of Xα′ , α0 ≤ α′ < α, which may be different,
or notations, which may also be alternative. Thus, an arbitrary skand is
“only an accidental aggregation” of well-founded sets or individuals each
of which figuratively “skips” into its own place, {{ or {}, in the system of
well-ordered embedded curly braces; meanwhile there can be empty places
as well as a well-founded set, or an individual, and can “skip” into different
places and even be at all places at once; i.e., elements of each component
are always different and at the same time it may happen that some or even
all elements of different components may be equal.

Remark 2. Now we want to dispose of possible objections from the
side of some logicians who might say that “braces are not objects of Set
Theory and hence, e.g., a trivial skand e(α0,α) is not well-defined if α −
α0 > ω”, or “an expression such as {...{{{∅}}}...} is not definite”, or the
following, which is thoroughly snobbish: “It would be better if set theory
teachers (and books on set theory) said at the outset that it is essential to
view the universe of sets as a container intended to contain boxes intended
for other boxes and one of them is intended to remain empty. Of course
the setbrackets {...} suggest this view of sets, but this notion should be
explained to those students who meet it for the first time” [48], p. 534.

However we say that all “pure, well-founded sets” are systems of embed-
ded curly braces; an expression {...{{{∅}}}...} is not definite, indeed, but
another expression {{{...{∅}...}}} of infinite pairs of braces is definite.

In any case the meaning of pairs of braces in the definition of skand
is similar as in the definition of “pure well-founded sets” arising from the
empty set ∅ = {}:

{}, {{}}, {{}, {{}}}, {{}, {{}}, {{}, {{}}}}, ...

and we use them only from a most possible convnience outward shape of
skand and an attempt to make it visualize.

Actually we can express a skand without any pairs of braces or brackets
using only the binary relation ∈. For this purpose we recall the definition
of parametric family of sets [12]), resume, 2, 14. In our case it is a map
f(α0,α) : (α0, α) → V[U ], 0 ≤ α0 ≤ α, α0, α ∈ On, or more precisely, a
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discrete union
⊔

α′∈(α0,α)

Yα′ , where Yα′ is a singleton whose the only element

is f(α0,α)(α′), i.e., f(α0,α)(α′) ∈ Yα′ , α0 ≤ α′ < α.
In our case (α0, α) is a set of parameters and elements of a parametric

sets are elements of
⊔

α′∈(α0,α)

Yα′ and equal to f(α0,α)(α′) ∈ V[U ], α0 ≤ α′ <

α.

Now for an arbitrary skand X(α0,α) one can definitely associate a map
f(α0,α) : (α0, α) → V[U ] such that for each α′, α0 ≤ α′ < α, f(α0,α)(α′) =
Xα′ = {xα′

1 , xα′
2 , ...} ∈ V[U ]; if a skand e(α0,α) is the empty skand, then the

associated map f(α0,α) is constant and its image is equal to ∅ ∈ V[U .
Conversely, for an arbitrary map f(α0,α) : (α0, α) → V[U ] we can as-

sociate a unique X(α0,α) such that associated map coincides with f(α0,α) :
(α0, α) → V[U ].

Indeed, let f(α0,α) : (α0, α) → V[U ] be a map. We shall construct a
unique skand X(α0,α) such that the associated map as above will coincide
with assumed map f(α0,α) : (α0, α) → V[U ]. The construction will be
done by transfinite induction. Consider the value f(α0,α)(α0) ∈ V[U ] of
f(α0,α) of its first argument α0 ∈ (α0, α) and the restriction f(α0+1,α) =
f(α0,α)|(α0+1,α) of f(α0,α) on the subset (α0 +1, α) of (α0, α). We define now
a set X(0) whose elements are all elements of the set f(α0,α)(α0) ∈ V[U ]
and the map f(α0+1,α). More precisely, X(0) is a discrete sum of the set
f(α0,α)(α0) and the singleton Y(0) � f(α0+1,α), i.e. X(0) = f(α0,α)(α0) � Y(0).
It is clear that a new set X(0) is nothing else than an initial map (function)
f(α0,α) : (α0, α) → V[U ] because it uniquely reconstructs the map f(α0,α)

by putting f(α0,α)(α0) = X(0)\Y(0) and f(α0,α)(α′) = f(α0+1,α)(α′), α0 +1 ≤
α′ < α.

(Note that a map or function is a special “functional relation” which can
be realized, written, denoted by in different ways like “a graph of function”,
“implicit function”, etc., in our case of well-ordered domain (α0, α) it is
denoted by the set with elements of the image of its first argument and an
element which is the restriction of f(α0,α) : (α0, α) → V[U ] on (α0, α)), i.e.
the map f(α0+1,α) : (α0 + 1, α) → V[U ]. In all realizations, representations
or designations of f(α′,α) by a graph of function, an implicit function or as in
our case by a special recursive set X(α′), α0 ≤ α′ < α0 +ω, we speak about
the only mathematical object: a map or function f(α′,α) : (α′, α) → V[U ].)

In the same manner we define a unique set X(1) = Xα+1 � Y(1), where
Y(1) � {f(α+2,α)} which uniquely reconstructs the map f(α0+1,α) and actu-
ally equal to it. We continue the construction for all α′, i.e., change the
map f(α′,α) by the set f(α′,α(α′) � Y(α′), Y(α′) � f(α′+1,α, α0 ≤ α′ < ω ≤ α.
We obtain an extraordinary set X = X(0) � X(1) � X(2) � ... in the sense
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of Mirimanoff:

X = {xα0
1 , xα0

2 , ..., {xα0+1
1 , xα0+1

2 , ..., {...{xα′
1 , xα′

2 , ...}...}}}, (6)

α0 ≤ α′ < ω ≤ α.
If α ≤ α0 + ω, then we stop our construction, and this Mirimanoff

extraordinary set is nothing else than the initial skand X(α0,α). But if α0 +
ω < α, then in formula (6) we see only visible components and parameters
of the initial function f(α0,α) : (α0, α) → V[U ]: f(α0,α)(α′), α′ ∈ (α0, α0+ω)
and (α0, α0 + ω), respectively. And we do not see in (6) other hidden
components and parameters of the initial function: f(α0+ω,α)(α′), α0 +ω ≤
α′ < α, and (α0 + ω, α), respectively.

We remember that each set X(n), 0 ≤ n < ω, is actually a map f(α0+n,α),
and the latter is a pasting map f(α0+n,α) = f(α0+n,α0+ω) ∪ f(α0+ω,α). Thus,
we have to add in (6) our description of f(α0+ω,α) by Mirimanoff sets X(ω) �
X(ω+1) � ... � X(ωn) � ..., 0 ≤ n < ω, and so on ... up to the exhaustion of
all components f(α0,α)(α′), α0 ≤ α′ < α, and all parameters (α0, α). Thus,
we obtain the need skand X(α0,α) in (5) with Xα′ = f(α0,α)(α′), α0 ≤ α′ < α.
�

Remark 3. One can consider a rigid version of skand theory requiring
ϕ in Definition 2 to be an identical isomorphism. This skand theory can
naturally describe the “world of non-well-founded sets” given in [19], Chap.
II, §5, which was “supposed to be of a highly artificial nature”. The formal
symbols x1, x2, ... were considered; and formally it was put that xn+1 ∈ xn

and ¬xi ∈ xj, i �= j + 1. Putting R(0) = {x1, x2, ...}, it was defined by
recursion R(α) as a power-set of the set

⋃
β<α

R(β). For elements of the

set R(α) there was the following ∈-relation: if u is a set, then v ∈ u, if
v is an element of u; if u = xi, then v ∈ u, if v = xi+1. Notice that one
needs in the above construction taken in [19] to identify xi with {xi+1},
i ≥ 1. This abstract and formal construction can be naturally described
via rigid skands as follows: put x1 = X(1,α) with Xα′ = ∅, 1 ≤ α′ < α,
α ≥ ω; then xi = X(i,α) are restrictions of X(1,α) on (i, α), 1 < i < ω.
And then form worlds of non-well-founded sets R(α), α ≥ 1, as above. We
will not consider rigid skands in this paper because they do not allow us to
investigate self-similar and reflexive sets.

Example 1.
X(α0,α) = {{1, {2, {3, {...}}}}}, Y(α0,α) = {1, {{2, {3, {...}}}}}.
Skands X(α0,α) and Y(α0,α) are not equal because the α0-component Xα0

of X(α0,α) is empty and the α0-component Yα0 of Y(α0,α) consists of one
element, which is equal to 1. These skands have the same components, but
in different order.
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Remark 4. We shall postulate below that an arbitrary skand X(α0,α) =
{x0

0, x
0
1, ..., x

0
λ0

, ..., {x1
0, x

1
1, ..., x

1
λ1

, ..., {...}}} is considered as a set in V[U ]−

whose elements are sets or individuals x0
0, x

0
1, ..., x

0
λ, ... of U and the skand

X(α0+1,α) = {x1
0, x

1
1, ..., x

1
λ1

, ..., {...}};
i.e., X(α0,α) = {x0

0, x
0
1, ..., x

0
λ0

, ..., X(α0+1,α)}. In particular, for l ≥ ω a
trivial skand e(α0,α) can be considered as a set whose only element is this set
itself, i.e., e(α0,α) = {e(α0,α)} because, by Definition 2, e(α0,α) = e(α0+1,α).
So, Russell was not right saying that “X = {X} must be absolutely mean-
ingless, not simply false”.

Clearly, if α = α0 + n, where n = 1, 2, ... are natural numbers, then
X(α0,α) = {x0

0, x
0
1, ..., x

0
λ0

, ..., {x1
0, x

1
1, ..., x

1
λ1

, ...

..., {..., {xn−1
0 , xn−1

1 , ..., xn−1
λn−1

, ...}}}}
is an ordinary well-founded set whose elements are sets or individuals
x0

0, x
0
1, ..., x

0
λ0

, ..., X(α0+1,α) of U.
Example 2. X(0,ω) = {a0, {a1, {a2, {...}}}}, where ai, i = 0, 1, 2, ..., are

individuals or sets in U, where ω = ω0 is the first infinite ordinal.
This is a skand of length ω or a two-element set in V−; i.e., X =

{a0, X(1,ω)}, where X(1,ω) = {a1, {a2, {...}}}. It is a typical example of a
non-well-founded set, or an extraordinary set in the sense of Mirimanoff [43],
[44], [45], where ai, i = 0, 1, 2, ..., are individuals; e.g., non-negative integers
0, 1, 2, ...; i.e. X(0,ω) = {0, {1, {2, {...}}}}, or examples of Mirimanoff’s
circular extraordinary sets of period n, where ai = ai+n, i = 0, 1, 2, ..., and
n = 1, 2, ... is a fixed natural number; e.g., X(0,ω) = {0, {1, {0, {1, {...}}}}},
where n = 2, a0 = 0 and a1 = 1.

The following is a more general example of a circular set.
Example 3. Consider

X(0,ω) = {a0, a1, ..., aλ, ..., {b0, b1, ..bμ, ..., {a0, a1, ..aλ, ...

..., {b0, b1, ..., bμ, ..., {...}}}}}, (7)

where aλ and bμ are individuals or sets in U such that {a0, a1, ..., aλ, ...} and
{b0, b1, ..bμ, ...} are elements of V[U ], 0 ≤ λ ≤ κ and 0 ≤ μ ≤ ν, respectively.
In other words, an even component X2n is the set {a0, a1, ..., aλ, ...} and an
odd component X2n+1 is the set {b0, b1, ..., bμ, ...}, 0 ≤ n < ω.

This skand can be considered as circular sets, i.e., X(0,ω) � X(1,ω) �
X(0,ω) and X(1,ω) � X(0,ω) � X(1,ω) because X(0,ω) = {a0, a1, ..aλ, ..., X(1,ω)},
X(1,ω) = {b0, b1, ..bμ, ..., X(2,ω)}, X(2,ω) = {a0, a1, ..aλ, ..., X(3,ω)} and, by
Definition 2, X(0,ω) = X(2,ω) and X(1,ω) = X(3,ω).

Example 4. Consider two skands

X(0,ω2) = {a0, a1, ..., aλ, ..., {b0, b1, ..., bμ, ..., {a0, a1, ..aλ, ...
{a0, a1, ..., aλ, ..., {b0, b1, ..bμ, {...}}}...}}}, (8)
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where aλ and bμ are individuals or sets in U, 0 ≤ λ ≤ κ and 0 ≤ μ ≤
ν, respectively, where even components X2τ are equal to the fixed set
{a0, a1, ..., aλ, ...} and odd components X2τ+1 are equal to the other fixed
set {b0, b1, ..., bμ, ...}, 0 ≤ τ < ω2, and

Y(0,ω2) = {a0, a1, ..., aλ, ..., {b0, b1, ..., bμ, ..., {a0, a1, ..aλ, ...
{b0, b1, ..., bμ, {a0, a1, ..aλ, {...}}}...}}} (9)

which can be obtained from X(0,ω2) by changing 2τ -components X2τ on the
set {b0, b1, ..., bμ, ...} and 2τ+1-components X2τ+1 on the set {a0, a1, ..., aλ, ...},
for all ω ≤ τ < ω2.

They can also be considered as circular sets; i.e., X(0,ω2) � X(1,ω2) �
X(0,ω2) and X(1,ω2) � X(0,ω) � X(1,ω), because
X(0,ω2) = {a0, a1, ..aλ, ..., X(1,ω2)}, X(1,ω2) = {b0, b1, ..bμ, ..., X(2,ω2)},
X(2,ω2) = {a0, a1, ..aλ, ..., X(3,ω2)} and, by Definition 2, X(0,ω2) = X(2,ω2)

and X(1,ω2) = X(3,ω2) as well as Y(0,ω2) � Y(1,ω2) � Y(0,ω2) and Y(1,ω2) �
Y(0,ω2) � Y(1,ω2), because
Y(0,ω2) = {a0, a1, ..aλ, ..., Y(1,ω2)}, Y(1,ω2) = {b0, b1, ..bμ, ..., Y(2,ω2)}, Y(2,ω2) =
{a0, a1, ..aλ, ..., Y(3,ω2)} and, by Definition 2, Y(0,ω2) = Y(2,ω2) and Y(1,ω2) =
Y(3,ω2). Nevertheless, X(0,ω2) �= Y(0,ω2), as well as X(1,ω2) �= Y(1,ω2). It is
also clear that X(0,ω) �= X(0,ω2) and X(0,ω) �= Y(0,ω2). �

Note that every well-founded set X = {x0, x1, ..., xλ, ...} can be consid-
ered not only as a skand X(0,1) of length 1 but also as many other different
skands of different finite lengths in general. Indeed, fix, for example, one
element of X . Let it be x0. Since X is well-founded we choose a de-
scending ∈-chain x0 � x1

0 � x2
0 � ... � xn

0 such that xn
0 is an individual

or the empty set, and fix it. Then X = X(0,n+1) = {x1, x2, ..., xλ, ..., x0},
where x0 = {a1

1, a
1
2, ..., a

1
λ1

, ..., a1
0} and a1

0 = x1
0 = {a2

1, a
2
2, ..., a

2
λ2

, ..., a2
0},

a2
0 = x2

0 = {a3
1, a

3
2, ..., a

3
λ3

, ..., a3
0},..., an−1

0 = xn−1
0 = {an

1 , an
2 , ..., an

λn
, an

0},
an

0 = xn
0 ; i.e.,

X = X(0,n+1) = {x1, x2, ..., xλ, ...

..., {a1
1, a

1
2, ..., a

1
λ1

, ..., {..., {an
1, a

n
2 , ..., an

λn
, ..., an

0}}}}.
If for example, xn

0 = ∅, then there is another skand which gives the same
set X = X(0,n+2) = {x1, x2, ..., xλ, ..., {a1

1, a
1
2, ..., a

1
λ1

, ..., {...
..., {an

1, a
n
2 , ..., an

λn
, ..., {}}}}}.

Example 5. X(0,ω+1) = {a0, {a1, {a2, {...{aω}...}}}, where ai, i =
0, 1, 2, ..., ω, are individuals or sets in U.

This is the simplest example of non-well-founded set whose only two
elements are a0 and skand X(1,ω+1) = {a1, {a2, {...{aω}...}}}. It was not
considered by Mirimanoff because by remaining silent on the issue of an
extraordinary set, i.e., X � X1 � X2 � ..., Mirimanoff seems to suggest
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that it is in our terminology a skand of length ω only. Moreover, all such
skands and others of length ω +β, where β ∈ On, β ≥ 1, are here essential
generalizations and extensions of some of Mirimanoff’s extraordinary sets.
�

3. The formal theory NBG[U ](1) of non-well-founded sets and its
model in the universe of elements U[U ](1)

Recall that we work here inside NBG− and NBG[U ]− set theories,
where the former is the theory of “pure” sets and latter is the theory with
individuals U , and in both theories the Axiom of Foundation FA has been
omitted. As above, by V− and V[U ]− we denote the classes of sets in
these theories, as well as the universes of elements U− = V− and U[U ]− =
V− ∪ U , respectively. Similar notations are for their extensions as the
same set theories plus the Axiom of Foundation FA: NBG and NBG[U ]
set theories, where the former is the theory of “pure” sets and latter is
the theory with individuals U , V and V[U ] are the classes of sets in these
theories, as well as the universes of elements U = V and U[U ] = V ∪ U ,
respectively.

We want to extend NBG− and NBG[U ]− to NBG(1) and NBG[U ](1),
respectively, by less restrictive axioms than FA, which will be based nev-
ertheless on NBG

def
= NBG(0). For transfinite inductive constructions we

also put NBG[U ]
def
= NBG[U ](0), V

def
= V(0), V[U ]

def
= V[U ](0), U

def
= U(0),

U[U ]
def
= U[U ](0), and U def

= U (0), respectively.
Suppose now that U (0) is a set (which can be empty) or class and we

will define a theory NBG[U ](1) which extend in these different cases NBG−
and NBG[U ]−, turning our attention to the latter because the former is
a particular case of NBG[U ]− when U = ∅. For this purpose we add to
NBG(0) a wider class of individuals than U (0) by adding to it a new class
of individuals U (1). Elements u

(1)
λ ∈ U (1), λ ∈ Ord, are arbitrary skands

X(α0,α) of length l = (α − α0) ≥ ω taken with the forgetful operator E
which “forgets” the inner structure (∈ relations) of X(α0,α). More pre-

cisely, u
(1)
λ = EX(α0,α) and no element or object is a member of EX(α0,α).

Moreover, if X(α0,α) = X(β0,β), then EX(α0,α) = EX(β0,β) and they de-

fine the only individual u
(1)
λ ∈ U (1). We will need the inverse operator,

i.e., “remember operator” E−1, i.e., for any individual u
(1)
λ = EX(α0,α),

λ ∈ Ord, E−1u
(1)
λ = X(α0,α).

By NBG[U ](1) we understand the theory NBG[U ]− with the addition
axiom:
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Skand Existence Axiom and Recognition Skand as a Set. For
any map f(α0,α) : (α0, α) → V[U ], α − α0 ≥ ω, there exists a unique skand
X(α0,α) such that for each α′ ∈ (α0, α) one has Xα′ = f(α0,α)(α′). This
skand is considered as a set X ∈ V[U ]− whose elements are elements of
the set f(α0,α)(α0) and one more element X(α0+1,α) which is a restriction of
X(α0,α) on (α0 + 1, α), i.e.,

X = {xα0
0 , xα0

1 , ..., xα0
λ , ..., X(α0+1,α)}. (10)

We will note this very set by the same symbol X(α0,α) but we shall differ
meaning X(α0,α) as a skand (5) and X(α0,α) as a set (10).

Remark 5. One can notice that we ignore here slands X(α0,α) of fi-
nite length, i.e., l = α − α0 < ω, because in this case the set X(α0,α) is
well-founded set and will not enrich V[U ](0). When a skand X(α0,α) has a
length l = α − α0 ≥ ω, then the set X(α0,α) is a non-well-founded set be-
cause by Skand Existence Axiom and Recognition Skand as a Set (shortly
SEA&RSS) in X(α0,α), repeatting ω times, in the set X(α0,α) there is an
infinite ∈-descending chain:

X(α0,α) � X(α0+1,α) � X(α0+2,α) � ... � X(α′,α) � ..., α0 ≤ α′ < α. (11)

Since in NBG[U ](1) we postulate existence of new objects and sets we
have to revise the previous Extensionality Axiom of NBG[U ](0).

Strong Extensionality Axiom. Two sets (resp., classes) X (1) and
Y (1), whose elements are well-founded sets, individuals and skands as non-
well-founded sets are equal if for each element x ∈ X (1) there is an element
y ∈ Y (1) such that x = y and for each element y ∈ Y (1) there is an element
x ∈ X (1) such that y = x, where “=” means the following:

1) the equality of individuals, when x, y ∈ U (0), i.e., (x = y) ⇐⇒
(∀z)(x ∈ z ⇐⇒ y ∈ z);

2) the equality of well-founded sets, when x, y ∈ V[U ](0), i.e., by EA of
NBG[U ];

3) the equality of skands, when x, y ∈ E−1U (1), i.e., by Definition 2;
4) the (iterative) equality of sets in V[U ](1), i.e., by using 1), 2), 3) in

SEA for a complex sets x, y ∈ V[U ](1).
The latter class V[U ](1) is defined by transfinite recursion. Denote by

U ′ the discrete union U (0) � U (1). By formulas (2) and (3) we define a
class H[U ′] which is a class of well-founded sets and determines a model
of NBG[U ′], H[U ′] = U[U ′] and is an inner model of NBG[U ′]−. Now we
apply the remember operator E−1 to all individuals of U (1) which are in
any constituents of sets in V[U ′] = H[U ′] \ U (0) or individuals themselves



20 JU. T. LISICA

in H[U ′] \U (0), in short words, in all objects in X ∈ H[U ′] \ U (0) we change
all individuals of U (1) on the corresponding skands considered as sets, i.e.,
each individual EX(α0.α) turns into a set X(α0.α).

One can see that after such changing V[U ′] turns into a class V[U ](1)

of sets which can be well-founded and not-well-founded. Moreover, by
Propositions 1 and 2, V[U ](1) is a model of NBG[U ](1) and an inner model
of NBG[U ]−.

These definitions and construction of NBG[U ](1) give the following the-
orem.

Theorem 1. The set theory NBG[U ](1) is consistent on the assumption
that NBG− is consistent.

Proof. As we mentioned above, NBG− is consistent iff NBG[U ]− is
consistent. It is well known that if NBG[U ]− is consistent, then NBG[U ] =
NBG[U ](0) is also consistent (see Exercise 4.86 in [41]). But NBG[U ] is
consistent iff NBG is consistent. Again NBG is consistent iff NBG[U ′] is
consistent. But the remember operator E−1 makes from NBG[U ′] a con-
sistent theory NBG[U ](1), too. (See details in [47] or Chap. 4, Proposition
4.50 in [41]).

Remark 6. In our case we have an additional class of individuals U (1)

as “pseudo-individuals” in the above sense, i.e., each ∈-descending chain
is finite or terminates, i.e., reaches its bottom or “foundation” which is an
empty set, or an individual, or a skand. �

Since ∅ ⊂ U it is clear that by the second part of SEA&RSS, i.e., RSS,
we obtain the following embeddings:

V[U ] = V[U ](0) ⊂ V[U ](1) ⊂ V[U ]−. (12)

Examples 3, 4, 5, show that the former embedding is proper; we shall see
that the latter embedding is proper, too. �

4. Self-similar skands
The following skands are of great interest in the study of the relation

X ∈ X in the Set Theory which we are going to clarify in this paper.
Definition 3. A skand X(α0,α) is called self-similar if for each α1,

α0 ≤ α1 < α, there is an equality X(α0,α) = X(α1,α).
It happens iff α = ωκ, where ω = ω0 is the initial countable ordinal,

κ ≥ 1, and each α′-component Xα′ of X(α0,ωκ), α0 ≤ α′ < ωκ, is the same
set {x1, x2, ..., xλ, ..., {.

Indeed, it is well known that each remainder ρ of an ordinal α �= 0 is
equal to α if and only if α = ωκ, κ ≥ 0, ([36], Ch. VII, §7, Theorem 7).
Recall that an ordinal ρ is called a remainder of an ordinal α if ρ �= 0 and
there exists an ordinal σ such that α = σ + ρ.
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Then our assertion when skands are self-similar follows immediately from
Definition 2.

Note that in the case κ = 0 the skands X(0,1) which are ordinary well-
founded sets can be formally considered as “self-similar” skands of length
1.

Recall also that ordinal numbers α of the form ωκ, κ ≥ 0, turn out
to be the prime components or principal numbers of addition, i.e., ordinal
numbers α such that there is no decomposition α = β +γ where β < α and
γ < α ([56], §19, Chap. XIV, Theorem 1, p. 323).

Example 6. X(0,ω) = {a0, {a0, {a0, {...}}}}, where a0 is an individual
or set in U.

This is a self-similar skand of length ω or the simplest example of an
extraordinary circular set of period 1.

More generally, X(0,ω) = {a0, a1, a2, ..., aλ, ...{a0, a1, a2, ..., aλ, ...{...}}},
where aλ, 0 ≤ λ < κ, are individuals or sets in U, e.g., for λ = i, aλ = i,
0 ≤ i < ω = κ, X(0,ω) = {0, 1, 2, 3, ..., {0, 1, 2, 3, ..., {...}}}.

Example 7. X(0,ω2) = {a0, {a0, {a0, {...}}}}, where a0, is an individual
or a set in U.

This is an example of a self-similar skand of length ω2. We picture it in
the following figure:
ω ↑

•{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, ...
ωn ωn + 1 ωn + 2 · · · · · · ωn + m
· · · · · · · · · ·

•{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, ...
· α′ α′ + 1 · · · · · · ·
· · · · · · · · · ·

•{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, ...
ω2 ω2 + 1 ω2 + 2 · · · · · · ω2 + m
•{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, ...
ω ω + 1 ω + 2 · · · · · · ω + m

•{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, •{a0, ... −→
0 1 2 . . . α0 α0 + 1 . m ω

Fig. 1.

and conclude that X(α0,ω2) ≈ X(α′,ω2), for all 0 ≤ α0 < α′ < ω2; i.e.,
we see that X(0,ω2) is really a self-similar skand of length ω2. Notice
also that, by Definition 2, X(0,ω) = {a0, {a0, {a0, {...}}}} �= X(0,ω2) =
{a0, {a0, {a0, {...}}}}.

Definition 4. A set X is called reflexive if X ∈ X .
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It is not clear at once that reflexive sets do exist, in spite of Mirimanoff’s
“ensembles de deuxième sort” [43] and Eklund’s “Mengen, die Elemente
ihrer selbst sind” [22].

Consider now an “indeterminate” object X in V[U ]− of the following
form:

X = {x0, x1, x2, ..., xλ, ..., X}. (13)
It is clear that the equation (13) is a general form of reflexive sets if they

exist.
Proposition 3. Reflexive sets do exist. Moreover, there are a huge

number of different solutions (which form a proper class) of (13) in V[U ]−.
Proof. Indeed, the following self-similar skands:

X(0,ωκ) = {x0, x1, x2, ..., xλ, ..., {x0, x1, x2, ..., xλ, ..., {...}}}, (14)

for each κ ∈ On, κ > 0, are solutions of (13) because, by the Axiom of
Skand Existence, objects in the form (14) do exist and by Definition 2,
X(0,ωκ) = X(1,ωκ), and we obtain

X = X(0,ωκ) = {x0, x1, x2, ..., xλ, ..., X(1,ωκ)} = {x0, x1, x2, ..., xλ, ..., X}.
(15)

�
Remark 7. Proposition 3 shows that the relation X ∈ X is extremely

mulivalued and Russell was more or less right to call it “meaningless” be-
cause without additional description it is undefined. One can say the same
thing about the relations X ∈ Y ∈ X which are also many-valued and,
without additional description, are undefined, as Examples 3 and 4 tell us.

Remark 8. Many years ago the author noticed (better to say perceived)
[38] that there are self-similar skands of length greater than ω and for a
long time has been thinking that only such skands of length ωκ, κ ≥ 2,
are solutions of (13) which differ from each other and from the solution of
length ω, i.e., Mirimanoff’s extraordinary set solution. Now it is clear that
not only, e.g.,

X(0,ω) = {x0, x1, x2, ..., xλ, ..., {x0, x1, x2, ..., xλ, ..., {...}}} (16)

and
X(0,ω2) = {x0, x1, x2, ..., xλ, ..., {x0, x1, x2, ..., xλ, ..., {...}}} (17)

whose components are the same set Xα′ = {x1, x2, ..., xλ, ...}, 0 ≤ α′ < ω
and 0 ≤ α′ < ω2, respectively, are different solutions of (13), but also, e.g.,

X(0,ω+1) = {x0, x1, x2, ..., xλ, ..., {x0, x1, x2, ..., xλ, {...{1}...}}} (18)

and

Y(0,ω+1) = {x0, x1, x2, ..., xλ, ..., {x0, x1, x2, ..., xλ, {...{2}...}}} (19)
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are also different solutions of (13) because X(0,ω+1) = X(1,ω+1) and Y(0,ω+1) =
Y(1,ω+1) and Xω = {1} �= {2} = Yω, although these solutions are not self-
similar skands. So, reflexive sets need not be self-similar skands. On the
other hand, all these different solutions above are isomorphic extraordi-
nary sets in the sense of Mirimanoff [15], p. 40-41, and form a proper
class. Moreover, they are identically isomorphic extraordinary sets in Mi-
rimanoff’s sense and thus must be equal. So, identically isomorphic ex-
traordinary sets, or equal extraordinary sets need not be equal in NBG(1).
In other words, reflexive extraordinary sets in [43] as well as in [22] are
not well-defined, if we do not restrict them to skands of length ω. Judging
by his silence on the issue, it seems that Mirimanoff tacitly supposed that
the length of the skands was equal to ω. Consequently, in Mirimanoff’s
approach we see only ω-phenomena and ignore trans-ω-phenomena. This
is indeed the origin of the following error in logic which we are now going
to clarify. �

5. Applications to Russell’s paradox and its variants
5.1 Russell’s paradox.
In 1903 Russell published the famous paradox he had discovered two

years previously and of which he had informed other mathematicians by
correspondence. Here is the original quotation: “We examined the contra-
diction resulting from the apparent fact that if w be the class of all classes
which as single terms are not members of themselves as many, then w as one
can be proved both to be and not to be a member of itself as many”([54],
Chap. X, p. 107). Thus, in modern terminology, he defined the following
set:

R = {X | X /∈ X}, (20)
where X are sets; i.e., R is the set of all sets that are not members of
themselves, or the universal set formed by the property X /∈ X , which he
and then all mathematicians considered to be a paradoxical set, or Russell’s
antinomy. Therefore, the set R was supposed to be inconsistent in Cantor’s
Näıve Set Theory and the latter was called inconsistent, e.g., [9], p. 488-
489.

The property or predicate X /∈ X was called Russell’s condition.
Russell’s argument is the following:

R ∈ R ⇐⇒ R /∈ R (21)

which is a contradiction, and that is why the set R is inconsistent. Hence,
R does not exist from Poincaré’s point of view: “En mathématiques le mot
exister ne peut avoir qu’un sens: il signifie exempt de contradiction” ([52],
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p. 162), as well as from Russell’s: “The contradiction proves that the class
as one, if it ever exists, is certainly sometimes absent” ([54], Chap. X, p.
107).

Later on, when sets and proper classes were being distinguished and any
predicate (in particular, Russell’s condition) formed a class which existed by
one of the class-formation axioms, it was supposed that Russell’s paradox
said nothing other than that R was a proper class, not a set. E.g., an
explicit exposition of it we take from [41], p. 239: “Let us verify now that
the usual argument for Russell’s paradox does not hold in NBG−. By the
class existence theorem, there is a class Y = {x| x /∈ x}. Then (∀x)(x ∈
Y ⇐⇒ x /∈ x). In unabbreviated notion this becomes (∀X)(M(X) =⇒
(X ∈ Y ⇐⇒ X /∈ X)). Assume M(Y ). Then Y ∈ Y ⇐⇒ Y /∈ Y , which,
by the tautology (A ⇐⇒ ¬A) =⇒ (A ∧ ¬A), yields Y ∈ Y ∧ Y /∈ Y . Now,
by the deduction theorem, we obtain � M(Y ) =⇒ (Y ∈ Y ∧ Y /∈ Y ), and
then, by tautology (B =⇒ (A∧¬A)) =⇒ ¬B, i.e., the derived rule of proof
by contradiction, we obtain � ¬M(Y ). Thus, in NBG−, the argument
for Russell’s paradox merely shows that Russell’s class Y is a proper class,
not a set. NBG− will avoid the paradoxes of Cantor and Burali-Forti in
a similar way”. (In this citation we have only changed NBG into NBG−,
which is in our notation the corresponding set theory; � A means that A
is a theorem.)

Now, by Proposition 3, we can state the following conjecture:
Conjecture 1. In any set theory, if one assumes that R = {X |M(X)∧

X /∈ X} is a set, then the implication

R /∈ R =⇒ R ∈ R (22)

is false, i.e., Russell’s argument (21) is false and hence Russell’s paradox is
not a paradox in this set theory; thus, the proof that R is a proper class,
not a set, via Russell’s paradox is incorrect.

The sense of this conjecture is the following: after assuming M(R) we
notice that

1) Russell’s condition X /∈ X becomes impredicative;
2) by (13) and (14), the relation R ∈ R is multi-valued;
3) a set R with the relation R ∈ R (which in this case is reflexive and

hence a non-well-founded set) in general is not well-defined, i.e., indefinite.
We shall prove this conjecture for some well-known formal systems (set

theories), some from the syntactic and the semantic sides, some only from
semantic side.

Proposition 4. Conjecture 1 is true in NBG, i.e., if M(R), then the
implication R /∈ R =⇒ R ∈ R is false in NBG.
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Proof. It is well known that the axiom of regularity implies (∀X)(M(X)
=⇒ X /∈ X). Indeed, otherwise, the set Y = {X} would not satisfy the
axiom of regularity Reg (4). (See the more general Proposition 4.44(c), p.
279, in [41].) Thus, for each set X the statement (respectively, formula) X /∈
X is always true (respectively, true in some and hence in all interpretations
or models of NBG) and the statement X ∈ X is always false (respectively,
false in some, and hence in all interpretations or models of NBG) in NBG.
In particular, if M(R), then R /∈ R is true and R ∈ R is false. Hence, by the
calculation of the truth function for implication, the following statement
(respectively, formula) R /∈ R =⇒ R ∈ R is false (respectively, false in some
and hence in all interpretations or models). �

Corollary 1. Russell’s paradox in NBG is not a paradox which “shows
Pr(R)”, and hence the classical proof that R, which in NBG coincides
with V[U ], is a proper class is not correct when it proceeds via Russell’s
paradox.

Proof. Since by Proposition 4, the implication R /∈ R =⇒ R ∈ R is
false in NBG we obtain that there is no equivalence (21) and hence the
above argument � M(R) =⇒ (R ∈ R ∧ R /∈ R) and, that by the derived
rule of proof by contradiction, one obtains � ¬M(R), does not work any
more. Thus, in NBG � ¬M(R) proved via Russell’s paradox is incorrect.

Nevertheless, the latter � ¬M(R) can be easily proved by the Maximal-
ity Principle.

Proposition 5. Russell’s collection R = V[U ] in NBG is a proper
class, not a set.

Proof. Since, by the axiom of regularity, for each set X ∈ V[U ] the
statement X /∈ X is true, we obtain the relation X ∈ R. Thus, R = V[U ].
Assume that M(R). Then, as above, the statement R /∈ R is true. By the
Axiom of Pairing, i.e., for every two sets X, Y there exists a set {X, Y }
that has X and Y as its only members, in particular, when X = Y , there
exists a singleton {X}, thus, we obtain the singleton {R} ∈ V[U ]. Now, by
the Axiom of Union, we obtain the set R∪ {R} with a proper subset R,
i.e., R ⊂ R∪{R}, which is in contradiction with the maximality of R, since
it is the set of all elements X such that X /∈ X ; but by assertion M(R),
R /∈ R. This proves the statement ¬M(R), i.e., Pr(R). �

Remark 9. In proofs of Propositions 4 and 5 we avoid the traditional
(e.g., [41], Chap. 4, §1, [36], [12], [27], [4], etc.) arguments: Assuming
M(R), by the derived rule of proof by definition (actually, by a hidden
axiom) and that R ∈ R is a well-formed formula, the statement R /∈ R =⇒
R ∈ R is supposed to be true. Indeed, the formula R ∈ R is well-formed,
but in general a set R with the relation R ∈ R is not well-defined, because a
reflexive set R, i.e., R ∈ R, has a non-definite element R and we cannot say
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what set we are dealing with; moreover, if R is well-defined in some formal
systems, the statement R ∈ R can be false, as we have seen in the above
proofs. If the statement R /∈ R =⇒ R ∈ R were true by the definition of R
and a well-formed formula R ∈ R or a well-defined non-well-founded set R,
there should be a double-paradox of Russell. Indeed, in NBG there should
be two opposite statements: R /∈ R =⇒ R ∈ R is true and R /∈ R =⇒
R ∈ R is false. Since the statement R ∈ R =⇒ R /∈ R is always true in all
theories, we conclude that in NBG, after assuming M(R), there is Russell’s
paradox and there is no Russell’s paradox. Of course this double-paradox
would imply that ¬M(R), but we proved the statement ¬M(R) via the
Maximality Principle in a shorter and easier way, avoiding paradoxes and
formal logical tricks with an impredicative definition of R under assumption
M(R), together with the well-formed or well-defined formula R ∈ R. There
is another reason for us to avoid the derived rule of proof by definition. If
M(R), then by the Axiom of Power, there exists the set P(R) of all
subsets of R, and each element X ∈ P(R) satisfies Russell’s condition
X /∈ X . By Cantor’s theorem, the power of P(R) is greater than the power
of R, and thus, by Cantor-Bernstein’s theorem, P(R) is not a subset of
R. So, the statement M(R) =⇒ ¬(P(R) ⊆ R) is true. On the other hand,
using the derived rule of proof, by definition we conclude that the statement
M(R) =⇒ P(R) ⊆ R is true in spite of the fact that R ∈ P(R) and R /∈ R.
We can use the definition of R for every element X of P(R) except X = R
to prove that X ∈ R, because all X ∈ P(R) are well-founded, and hence
X /∈ X ; but for the well-founded set R we cannot conclude that R ∈ R
because a set R became indefinite. Notice that in NBG Russell’s “paradox”
coincides with Cantor’s “paradox” as well as with Mirimanoff’s “paradox,”
and after well-ordering R, it coincides with Burali-Forti’s “paradox” (see
all of them below).

Proposition 6. For any formal system (axiomatic set theory) K an
inner model of which is the class V[U ] in NBG, after the supposition M(R)
for R = {X |M(X)∧X /∈ X} the following statement (formula) R /∈ R =⇒
R ∈ R is false.

Proof. It is known that for any theorem A of K, RelV[U ]A is also a
theorem of K (see [41], Chap. 4, p. 282-283) or if A is a true statement
in K, then it is true in any model (see Chap. 1, §, Theorem 1 in [19]). By
Proposition 4, R /∈ R ⇐⇒ R ∈ R is false in inner model V[U ] of K, where
V[U ] is the universe in NBG of all well-founded sets. Hence it is false in
K.

Corollary 2. R /∈ R =⇒ R ∈ R is false in NBG−.
Proof. The same universe V[U ] in NBG is an inner model for NBG−.
Corollary 3. R /∈ R =⇒ R ∈ R is false in ZF [U ] + (AFA).
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Proof. Von Neumann’s universe V[U ] is an inner model for ZF [U ] +
(AFA).

Corollary 4. R /∈ R =⇒ R ∈ R is false in Cantor’s Näıve Set Theory.
Proof. We turn Cantor’s Näıve Set Theory into the following näıve

formal system by adding to the first order predicate caculus some näıve
axioms, judging by his silence on the issue, used without proving:

(I) Axiom of the singleton. If X is a set, then there exists a set {X}
which contains X and only X as an element.

(II) Axiom of the union of two disjoint sets. If X and Y are two
sets which have no common elements, then there exists a set X ∪ Y whose
elements are the elements of X and of Y , taken together.

(III) Axiom of the power set. If X is a set, then there exists a power
set P(X) whose elements are subsets of X .

(IV) Axiom of infinity. There exists an infinite set.
Clearly, von Neumann’s universe V is an inner model for such a formal

system (näıve set theory) and for each X ∈ V the formula X /∈ X is always
true and the formula X ∈ X is always false.

Proposition 7. Russell’s collection R in all the above set theories is a
proper class, not a set.

Proof. Since in all these theories, after assuming M(R), the statement
R ∈ R is false, we conclude that R /∈ R and, by the Maximality Principle,
we obtain that R is not maximal. Thus, � M(R).

We can even avoid the definition of R. Indeed, assuming M(R), we
notice that von Neumann’s universe V is a subclass of R. Hence R \ (R \
V) = V is a set which contradicts Proposition 5.

Thus, the set R is not inconsistent because of Russell’s famous paradox,
or antinomy, as has been believed for more than one hundred years [61]
but it is inconsistent because of a different argument, i.e., the Maximality
Principle.

Conjecture 2. In general, for any reflexive set X , there is no non-
trivial predicate (well-formed) B(x) such that X = {x| B(x)}, in particular,
B(X) = M(X)∧ X /∈ X does not define the reflexive set R under assump-
tion M(R).

We say “in general” because in NBG−+(AFA) a reflexive set X ∈ X is
uniquely determined by elements X \ {X}. We say “non-trivial predicate”
because for each reflexive set X there is a rivial predicate (tautology):
X = {x| x ∈ X}. The problem is that for each reflexive set X the nature of
its elements in X \ {X} is different from the nature of its reflexive element
X ∈ X . We know only one example in NBG−+(AFA) of a unique reflexive
set Ω such that Ω = {Ω}. �

5.2 Russell’s set is a parametric set.
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Later in [59], [28], [3] and [4] a parametric version of a real Russellian set
(not a proper class) was introduced. For any set a ∈ V[U ]− (well-founded
or non-well-founded, it does not matter) the following set

Ra = {b ∈ a| b /∈ b} (23)

always exists as a set because it is an intersection of the proper class R
and the set a. As has been observed: “There is nothing paradoxical about
Ra. The reasoning that seemed to give rise to paradox only tells us that
Ra /∈ a”. (See [4], p. 60). That means that the assumption Ra ∈ a gives
the paradox Ra ∈ Ra ⇐⇒ Ra /∈ Ra. This is the usual Russellian argument.
Consider, e.g., the proof, given by Halmos in [28], p. 6, changing only the
notation, which we take from [3]. “Can it be that Ra ∈ a? We proceed to
prove that the answer is no. Indeed, if Ra ∈ a, Ra ∈ Ra also (unlikely, but
not obviously impossible), or else Ra /∈ Ra. If Ra ∈ Ra, then, by (23), the
assumption Ra ∈ a yields Ra /∈ Ra − a contradiction. If Ra /∈ Ra, then, by
(23) again, the assumption Ra ∈ a yields Ra ∈ Ra − a contradiction again.
This completes the proof that Ra ∈ a is impossible, so that we must have
Ra /∈ a”.

In [59] Zermelo showed, by this relative Russell’s paradox, that the do-
main B of his sets is not a set.

We see that here the implication Ra /∈ Ra =⇒ Ra ∈ Ra is false, too,
as it was in Russell’s argument. If one, still believing in Russell’s paradox,
uses the derived rule of proof by definition and states that the implication
Ra /∈ Ra =⇒ Ra ∈ Ra is true, then the result Ra /∈ a follows logically from
the double-paradox Ra /∈ Ra =⇒ Ra ∈ Ra is true and Ra /∈ Ra =⇒ Ra ∈ Ra

is false, since Ra ∈ Ra =⇒ Ra /∈ Ra is always true.
Here is a shorter correct proof of this statement based on the Maximality

Principle.
Proposition 8. Ra /∈ a.
Proof. It is clear, that Ra /∈ Ra because otherwise, (i.e., Ra ∈ Ra), it

would be a member of a and, therefore, by (23), Ra /∈ Ra. Thus, we have
proved that Ra /∈ Ra. Notice the implication that Ra ∈ Ra =⇒ Ra /∈ Ra is
always true in similar situations.

Suppose now that Ra ∈ a. Then Ra∪{Ra} is a subset of a; moreover, it
is a subset of a whose elements do not contain themselves, in particular, Ra,
as we have proved above. Therefore, Ra is a proper subset of Ra ∪ {Ra};
i.e., Ra ⊂ Ra ∪ {Ra} ⊂ a which, by (23), is in contradiction with the
maximality of Ra, since it is the set of all elements b of a such that b /∈ b.
Consequently, Ra /∈ a. �

Remark 10. In spite of the gap in Halmos’s proof, the author of this
paper cannot refrain from relating a witty observation made by Paul R.
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Halmos (the author once met him and appreciated his wit as well as his
brilliant lectures and books): “The most interesting part of this conclusion
is that there exists something (namely Ra) that does not belong to a.
The set a in this argument was quite arbitrary. We have proved, in other
words, that nothing contains everything, or, more spectacularly, there is
no universe. ‘Universe’ here is used in the sense of ‘universe of discourse,’
meaning, in any particular discussion, a set that contains all the objects
that enter into that discussion. In older (pre-axiomatic) approaches to set
theory, the existence of a universe was taken for granted, and the argument
in the preceding paragraph was known as the Russell paradox. The moral
is that it is impossible, especially in mathematics, to get something for
nothing. To specify a set, it is not enough to pronounce some magic words
(which may form a sentence such as ‘x /∈ x’); it is necessary also to have at
hand a set to whose elements the magic words apply”. (Ibid., p. 6-7).

5.3 Zermelo’s paradox.
Zermelo founded his own paradox independently of Russell and said in

1908 that he had mentioned it to Hilbert and other people already before
1903. Later, in 1936, in his letter to Scholz, he wrote that the set-theoretical
paradoxes were often discussed in the Hilbert circle around 1900, and he
himself had at that time given a precise formulation of the paradox which
was later named after Russell (see [63]). We shall see below that Zermelo’s
opinion was mistaken, and that Russell’s and his paradoxes are similar but
not the same. Zermelo’s paradox is the following: a set M that comprises as
elements all of its subsets is inconsistent. Indeed, consider the set M0 of all
elements of M which are not elements of themselves (e.g., the empty set is
in M0) This set is a subset of M and hence by assumption on M , M0 ∈ M .
If M0 ∈ M0, then M0 is not a member of itself. Hence M0 /∈ M0 and since
M0 ∈ M , M0 ∈ M0: contradiction. (See [64], § 2.4; [61], p. 507). We notice
the same mistake: the implication (M0 /∈ M0 ∧ M0 ∈ M) =⇒ M0 ∈ M0 is
false.

We can repeat said above, if one still believing in Russell’s paradox
uses the derived rule of proof by definition and states that the implication
(M0 /∈ M0∧M0 ∈ M) =⇒ M0 ∈ M0 is true, then the result M0 /∈ M follows
logically from the double-paradox (M0 /∈ M0 ∧ M0 ∈ M) =⇒ M0 ∈ M0 is
true and (M0 /∈ M0 ∧ M0 ∈ M) =⇒ M0 ∈ M0 is false.

Here is the solution of Zermelo’s paradox based on the Maximaliti Prin-
ciple.

Proposition 9. There is no set M such that it comprises as elements
all of its subsets.

Proof. Suppose the contrary, and such set M exists. Then M0 = {X ∈
M | X /∈ X} is well-defined and M0 ∈ M . If M0 ∈ M0 in any possible way,
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then M0 ∈ M0 ∈ M0 and, clearly, by definition of it, M0 /∈ M0. (The first
part of Zermelo’s proof is correct.) By axiom (I), the singleton {M0} also
exists and it is a subset of M , i.e., {M0} ⊂ M (because M0 ⊂ M and, by
definition of M , M0 ∈ M). By axiom (II), we obtain that M0∪{M0} is also
a subset of M and consists of elements which are not elements of themselves
because in addition to all elements of M0 with such a condition, M0 itself
satisfied the same condition, i.e., M0 /∈ M0, as was proved in the first part.
Clearly, M0 is a proper subset of M0 ∪ {M0}; i.e., M0 ⊂ M0 ∪ {M0} which
is in contradiction with the maximality of M0. Consequently, M doest not
exist.

Notice also that contrary to Russell’s “set” R, which is not a set but
does exist as a proper class, Zermelo’s set M does not exist as a proper class
at all; in other words, there is no mathematical object such as Zermelo’s
set M , but there is an object R in NBG− and in NBG. Moreover, in
the latter it is called the Universe V[U ] or the class of all well-founded
sets WF. That is why Zermelo’s and Russell’s paradoxes are meaningfully
different. M cannot be a proper class because in its rigid definition M has
to be an element of M , which is impossible for proper classes. If of course
one distinguishes sets and proper classes, then M is an object of set theory
(a proper class) such that it comprises as elements all of its subsets (not
proper subclasses) but M in this case is not defined in the original sense of
Zermelo. �

6. Other set-theoretical paradoxes
The same argument is valid for the “set” On (Burali-Forti’s “paradox”

[13]), for the “set” Card of all cardinal numbers (Cantor’s “paradox,” first
mentioned in the letter to Dedekind of August 31. 1899, and later in [17]),
for the “set” U (Hilbert’s “paradox” [61], p. 505), and for the “set” WF
(Mirimanoff’s “paradox” [43]).

We shall also prove that the family NWF of all non-well-founded sets is
not a set but a proper class and it does not concern Russell-like paradoxes at
all. As above all proofs will be based on Maximality Principle. Admittedly,
it was implicitly used by Cantor in proving that the second number-class
set is not countable [16], §16, [Theorem] D. His proof takes up at least one
page–more precisely, 32 lines). Now this proof requires only five lines.

Proposition 10. For each initial ordinal ωα, the set of all ordinals λ
such that λ < ωα cannot be of a power smaller than the power of ωα.

Proof. Indeed, if the power of the set X = {λ| λ < ωα} were smaller
than the power of ωα, then the power of the next ordinal number β =
X ∪ {X} would be smaller than the power of ωα, too. Since β is greater
than each ordinal λ in X , it is not a member of X . Hence X ⊂ X ∪ {β};
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i.e., X is a proper subset of X ∪ {β}, which is in contradiction with the
maximality of X . �

6.1 Burali-Forti’s paradox, or the antinomy of the greatest or-
dinal.

The earliest antinomy in set theory was published in 1897 in [13]. It has,
however, a non-trivial history, starting out from the fact that there was
nothing paradoxical in it, since in [13] there was no contradiction. This is
because Burali-Forti had misconstrued Cantor’s definition of a well-odered
set, and used his own notion of a different kind of ordered sets which he
called “perfectly ordered classes”, and proved that such classes are non-well-
ordered. Russell [54], p. 323, reformulated the argument of Burali-Forti
as a contradiction and gave it its present name. (This observation was
borrowed from [24], p. 306-307, and [61], p. 350). And we will finish this
story with an amusing remark given by Halmos: “The contradiction, based
on the assumption that there is a set of all ordinals, is called the Burali-
Forti paradox. (Burali-Forti was one man, not two.)” (See [28], p. 80.)
We are going to show that Russell and others did not supply Burali-Forti’s
paradox with a contradiction, although there are axiomatic systems where
this contradiction arises.

Look at the modern explanation of Russell’s correction of Burali-Forti’s
antinomy of the greatest ordinal, e.g., in [61], p. 350. “Let Ω be the ordinal
number of the well-ordered set of all ordinals, No. But, for every ordinal
α, α + 1 > α. Thus Ω + 1 > Ω. But, for every α ∈ No, α ≤ Ω. Thus
Ω + 1 ≤ Ω”.

Recall that, due to Cantor, “ordinal numbers” are ordinal types of “well-
ordered aggregates”, i.e., well-ordered sets. Proper classes of equivalent
well-ordered sets can be represented by von Numann’s method [49], by
choosing a canonical set-representative of each proper class, that is to define
an ordinal as a set α of sets X which is well-ordered by the relation ∈
between its elements and transivity, i.e., if Z ∈ Y ∈ X , then Z ∈ X ,
starting, e.g., with the empty set, i.e., ∅; {∅, {∅}}; {∅, {∅}, {∅, {∅}}}; ... . (It
would perhaps have been fairer to say that the idea of this method for the
first time was given by Mirimanoff [43], p. 46.) The collection of all ordinals
On is well ordered by the relation ∈ (see [18], p. 8) and class transitive;
i.e., if Z ∈ Y ∈ On, then Z ∈ On. Note that the class of all ordinals No
above is in bijection with On; moreover, they are order isomorphic. Note
also that in NBG all ordinals are well-founded sets. Thus, for each X ∈ α
we have X �∈ X , in particular, α /∈ α, and moreover, we can even omit
“well” in “well-ordered” (see, e.g., [41], Chap. 4, §5, Exercise 4.84). The



32 JU. T. LISICA

situation in NBG− and in Näıve Set Theory is more complicated: “well-
ordered” is sufficient and α ∈ α can happen. Nevertheless, we remember
that in general the relations α ∈ α as well as α ∈ β ∈ α are indeterminate.

Proposition 11. On is a proper class, not a set.
Proof. Let On be a collection of all transitive, well-founded sets ordered

by the relation ∈, i.e., we are in NBG. Suppose that On is a set. Thus,
it is a transitive set well-ordered by the relation ∈ and hence is an ordinal.
Then, by (I), {On} is also a set, and, by (II), On∪{On} is a set which is
evidently well-ordered by the relation ∈ and transitive, too. Consequently,
On ∪ {On} is an ordinal. (Notice that in NBG On /∈ On and {On ∪
{On}} /∈ On because all sets in NBG are well-founded.) Moreover, by the
same argument, {On ∪ {On}} and On ∪ {On ∪ {On}} are sets and thus
On is a proper subset of On∪{On∪ {On}} because of the relation noted
above; i.e., On ∪ {On} /∈ On. The relation On ⊂ On ∪ {On ∪ {On}}
is in contradiction with the maximality of On. Thus On is not a set. It
is a proper class since its existence is guaranteed by the predicate: to be
an ordinal. If On is a family of all ordinal numbers represented in some
other way, then there is an isomorphism ϕ : On → On. Thus, the relations
On ∈ On and On + 1 ∈ On are impossible because by isomorphism ϕ
applied to these relation the corresponding relations are false in On. �

Remark 11. Burali-Forti’s antinomy of the greatest ordinal is seen now
as two inconsistent inequalities Ω + 1 > Ω and Ω + 1 ≤ Ω. Consequently,
we have the relations Ω < Ω+1 ≤ Ω in No and hence, by the isomorphism
between No and On mentioned above, we obtain the relations Ω ∈ Ω ∪
{Ω} ∈ Ω in On, which are indeterminate, as we have already seen many
times. So in the classical argument, to conclude by definition that Ω+1 ∈ Ω
is false. (The true state of affairs is that after the supposition that On = Ω
is a set, the definition of On has been radically changed; i.e., each possible
relation On ∈ On or Ω ∈ Ω∪{Ω} ∈ Ω changes the set On itself, and that is
why On is indeterminate.) Consequently, when Russell supposedly showed
a contradiction in the Burali-Forti example, he was wrong. If we suppose
that On is a set, then naturally On ∪ {On} = Ω + 1 is an ordinal and
Ω + 1 > Ω = On. But Ω ∪ {Ω} /∈ Ω, i.e., Ω + 1 �≤ Ω. Because Ω = On is a
well-founded set in NBG, and in NBG− as well as in Näıve Set Theory, the
relations Ω∪{Ω} ∈ Ω are indeterminate. Moreover, by the isomorphism of
classes of all ordinals represented in any way, the above relations are false
in On, i.e., in the collection of all well-founded, transitive sets ordered by
the relation ∈. In our proof of the inconsistency of the set On we omit
this erroneous step On ∪ {On} ∈ On but add a new ordinal On ∪ {On}
(different from each element of On) to On and obtain a larger set than On,
and this is a real contradiction, because On is a collection of all ordinals.
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6.2 Cantor’s paradox.
The historically second set-theory antinomy belongs to Cantor: the set

V∗ of all sets (which was called later “Cantor’s paradise”) is inconsistent
or paradoxical because the power set PV∗ is always of a greater cardinality
than V∗, but at the same time PV∗ ⊆ V∗ since V∗ is the most inclusive
set of sets. Notice that the same mistake obtains: the relation PV∗ ⊆ V∗

implies, in particular, V∗ ∈ V∗ since V∗ ∈ PV∗. But the relation V∗ ∈
V∗ is many-valued and indeterminate, as we saw above, and therefore,
false. Thus there is no real paradox or contradiction in Cantor’s argument;
moreover, in this case Cantor’s paradox is not a paradox at all. But what
was correctly asserted via Cantor’s “paradox” was the following:

Proposition 12. V∗ is a proper class, not a set, or in Cantor’s de-
nomination V∗ is an “inconsistent system”.

Proof. Suppose that V∗ is a set. Then, by the Power-set Axiom, the
collection (system) PV∗ of all subsets of V∗ is a set. It is clear, by (I), that
there is an injection i : V∗ → PV∗, given by i(X) = {X}. On the other
hand, PV∗ is not a subset of V∗. Otherwise, there would be an embedding
j : PV∗ → V∗ and, by the Cantor-Bernstein theorem, PV∗ and V∗ would
be equivalent, which is false because of Cantor’s theorem |PV∗| > |V∗|.
Thus, there exists an element X ∈ PV∗ such that X is a set and X /∈ V∗.
Then, by (I), {X} is a set and, by (II), V∗ ∪ {X} is a set. Moreover,
V∗ ⊂ V∗ ∪ {X}, i.e., V∗ is a proper subset of V∗ ∪ {X}, which is in
contradiction with the maximality of V∗. Thus V∗ is not a set but a proper
class, given by the predicate X = X , i.e., V∗ def

= {X | X = X & ∃{X}}
and called the universal class (see [27], p. 124). (Of course, we could take
X = V∗ at the beginning, and since V∗ ∈ V∗ is indeterminate, conclude
that V∗ /∈ V∗ and, by supposition that V∗ is a set, obtain, by (I) and (II),
that V∗ is a proper subset of V∗ ∪ {V∗}. In other words, we could repeat
our method of maximality; but we wished to find a mistake in Cantor’s
argument.) �

Cantor himself reached the faulty conclusion that PV∗ ⊆ V∗, which is
in contradiction with their cardinality, and obtained a supposed “paradox”.
But it was only a presumption, which was proved to be false by Cantor’s
theorem |PV∗| > |V∗|, nothing more. Therefore, there is no Cantor’s
paradox. It would be a paradox if Cantor could prove that PV∗ ⊆ V∗.
Meanwhile his conclusion PV∗ ⊆ V∗ was made via the Definition of V∗;
but after the assumption that V∗ was a set, the Definition of V∗ was
radically changed, and V∗ ∈ V∗ became automatically many-valued. In
other words, Cantor had to prove that each set X ∈ PV∗ is an element
of V∗. He could do it by Definition of V∗ except in the one case when
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X = V∗ ∈ PV∗, because in V∗ there are many (actually all) reflexive sets
X including all skands X = X(0,α), α ≥ ω, such that X(0,α) = X(1,α). Then,
since V∗ ∈ V∗ as Cantor concluded by Definition, a reflexive set V∗ should
be at once the skands of all lengths α ≥ ω, which is impossible. Thus, it is
impossible to prove that PV∗ ⊆ V∗.

Absolutely by a similar argument Cantor proved that the collection
Card of all cardinal numbers is not a set (August 31, 1899, letter to
Dedekind) and Cantor made the following conclusion: “... the system Card
is not a set. That is why there exist certain pluralities which are not at the
same time wholes (unities), i.e., pluralities for which the real ‘mutual being
of all their elements’ is impossible. They are those I call the ‘inconsistent
systems’; as for the rest I call them the ‘sets’ ” [62].

Here is a correct proof of Cantor’s statement.
Proposition 13. Card is a proper class, not a set, or in Cantor’s

denomination Card is an “inconsistent system”.
Proof. Suppose that Card is a set. It is known that Card is in a

bijection with the family In of all finite numbers together with the all initial
ordinals ωκ of On which we identify with the initial segments (0, ωκ) of On,
κ ∈ On (if κ = 0, then the corresponding segment is the empty set). Since
we supposed that Card is a set, therefore In is a set, by the Replacement
Axiom for sets, and we obtain that the discrete sum X =

∐
ωκ∈In

[0, ωκ) is

also a set, by the Union Axiom for sets, and, by the Power-set Axiom,
PX is a set. Hence there exists an initial ordinal ωλ such that PX and
[0, ωλ) are bijective. It is clear that ωλ > ωκ, for each ωκ ∈ In (because of
Cantor’s theorem: |P[0, ωκ)| > |[0, ωκ)|, κ ∈ On), which is in contradiction
with the maximality of In. Thus Card is not a set but a proper class, since
Card ⊂ V∗. �

Remark 12. Notice that from the fact that On is not a set but a proper
class, as has been proved above, it does not follow that its subclass Card is
also a proper class. On the other hand, there is a bijection between On and
Card because there is an injection j : On → Card, given by j(κ) = ωκ,
κ ∈ On, and we apply the Cantor-Bernstein theorem. Thus Card is not a
set, but a proper class.

6.3 Hilbert’s paradox.
At least earlier than 1905 Hilbert formulated a paradox of his own which

he had considered “purely mathematical” in the sense that it did not make
use of notions from Cantor’s theory of cardinals and ordinals. Hilbert never
published the paradox: “I have never published this contradiction, but it
is known to set theorists, especially to G. Cantor” [33], p. 204.
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Let us quote it from [61], p. 505-506. “The paradox is based on a
special notion of set which Hilbert introduces by means of two set formation
principles starting from the natural numbers. The first principle is the
addition principle (Additionsprinzip). In analogy to the finite case, Hilbert
argued that the principle can be used for uniting two sets together ‘into
a new conceptual unit’, a new set that contains the elements of both sets.
This operation can be extended: ‘In the same way, we are able to unite
several sets and even an infinitely many into a union.’ The second principle
is called the mapping principle (Belegungsprinzip). Given a set M, he
introduces the set MM of self-mappings (Selbstbelegungen) of M to itself.
A self-mapping is just a total function (‘transformation’) which maps the
elements of M to elements of M.

Now, he considers all sets which result from the natural numbers ‘by
applying the operations of addition and self-mapping an arbitrary number
times.’ By the addition priciple, which allows us to form the union of
arbitrary sets, one can ‘unite them all into a sum set U , which is well-
defined.’ In the next step the mapping principle is applied to U , and we
get F = UU as the set of all self-mappings of U . Since F was built from
the natural numbers, by using the two principles alone, Hilbert concludes
that it has to be contained in U . From this fact he derives a contradiction.

Since there are ‘not more’ elements in F than in U there is an assignment
of the elements ui of U to elements fi of F such that all elements of fi are
used. Now one can define a self-mapping g of U which differs from all fi.
Thus, g is not contained in F . Since F contains all self-mappings, we have
a contradiction. In order to define g, Hilbert used Cantor’s diagonalization
method. If fi is a mapping ui to fi(ui) = uf i

i
he chooses an element ugi

different from uf i
i

as the image of ui under g. Thus, we have g(ui) = ugi �=
uf i

i
and g ‘is distinct from any mapping fk of F in at least one asssignment.’

Hilbert finishes his argument with the following obsorvation:
“We could also formulate this contradiction so that, according to the

last consideration, the set UU is always bigger [of greater cardinality] than
F = U , but according to the former, is an element of F = U .” �

Let us comment on the above proof. In spite of the difference between
Cantor’s and Hilbert’s definitions of set (e.g., the empty set set is not in
U , and other non-intersections) their proofs and arguments are similar and
contain the same mistake. Let us see it in Hilbert’s paradox. Hilbert has
proved, using Cantor’s diagonalization method, only that his supposition
that F ⊆ U is false, nothing more. Thus, there is no contradiction in such
an unfortunate supposition. If he had proved that F ⊆ U was true, there
would be a real paradox to be named after him. What he has essentially
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proved is that there is an element g of F such that it was not an element
of U . Then by his first principle U ∪ F is a set; moreover, U is a proper
subset of U ∪ F because b is not in U and it is in U ∪ F . Thus, by the
universality of U , (i.e., U is the set of all Hilbert’s sets), U is not a Hilbert
set, nor is F = UU a Hilbert set. There is no paradox here at all. There is
only a proof by contradiction, and the supposition that U is a set is simply
false. �

6.4 Mirimanoff’s paradox.
In [43], p. 43, Mirimanoff was actually concerned with the collection

WF of all well-founded sets, and presented his paradox:

WF ∈ WF ⇐⇒ WF /∈ WF (24)

as an analogue of Russell’s paradox. And he concluded that the set WF
did not exist, i.e., in Cantor’s terminology, it is an inconsistent system, or in
modern terminology, it is not a set. His argument is the following. It is clear
that WF /∈ WF because if it were not so and WF ∈ WF, then there would
exist an infinite descending chain in WF, e.g., WF � WF � WF � ... and
we would obtain that WF is non-well-founded and hence WF /∈ WF.

On the other hand, if WF is non-well-founded; there exists an infinite
chain x0 � x1 � x2... in WF for some x0 ∈ WF, and then x0 is evidently
non-well-founded, which is wrong. Therefore, WF is well-founded. Hence
WF ∈ WF; contradiction.

The last conclusion is false because WF ∈ WF is indeterminate as we
saw above more than once.

Here is a correct proof of the following
Proposition 14. WF is a proper class, not a set.
Proof. Assume that WF is a set. Then by (I) the singleton {WF}

is also a set. Since all elements of WF are well-founded we conclude that
WF is not an element of WF because if it were, then there would be
an evident infinite descending ∈-sequence WF � WF � WF � ... Thus
WF and {WF} are two sets without common elements. Then, by (II),
X ′ = WF ∪ {WF} is also a set. Moreover, its elements are well-founded
and WF is a proper subset of X ′ because WF is a member of X ′ but not
a member of WF. This is in contradiction with the maximality of WF
because it is the well-founded universe, since WF is the collection of all
well-founded sets. Consequently, the assertion that WF is a set is false.
By the well-founded predicate and the Existence Axiom for a class, WF is
a proper class. �

In NBG(1) we have the following collection:

T = {X | X ∈ X} (25)
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which is symmetric to Russell’s “set” R = {X | X /∈ X} [21], p. 277, and on
the assumption that it is a set it does not look paradoxical or inconsistent.
We are not saying that T ∈ T, because otherwise, the relation T ∈ T
cannot even be called indeterminate as above; it is meaningless as Russell
tells us in [58], p. 80. Indeed, T contains, e.g., all skands of arbitrary
lengths; T ∈ T, if it were the case, would be a skand of a fixed length, and
other skands of different lengths would be different from this fixed one. In
other words, T cannot be a skand of all lengths at once. Nevertheless,

Proposition 15. T is a proper class, not a set.
Proof. Consider for an arbitrary well-founded set X , i.e., X ∈ WF,

a self-similar skand X(0,ω) with the components Xi = X , 0 ≤ i < ω, and
denote by L the subclass {X(0,ω)| X ∈ WF, Xi = X, 0 ≤ i < ω} which
consists of all such self-similar skands X(0,ω) with Xi = X , 0 ≤ i < ω.
Clearly, L ⊂ T. Since WF is a proper class then L, which is bijective to
it, is also a proper class. Consequently, T is also a proper class because on
the contrary, if T were a set the relation L ⊂ T would imply that L were
a set. �

All these results are well-known. What is new is the simple proofs of
them and the unexpected discovery that the classical set-theoretical para-
doxes are not paradoxes at all. Moreover, we maintain that the substance
of all such “paradoxical sets”, actually proper classes, is in the following
simplest lemma of such a kind of proposition.

Lemma 1. The collection S of all singletons in WF is a proper class,
not a set.

Proof. Suppose the contrary, and S is a set. By (I), {S} and {{S}}
are also well-founded sets. Moreover, {S} /∈ S because all elements of S
are well-founded. Then, by (II), the disjoint union S ∪ {{S}} is also a set
and S is a proper subset of S∪ {{S}} which contradicts the maximality of
S. �

Corollary 5. That propositions 4, 6-12 together with Generalized
Lemma 1, i.e., the collection of all singletons in V[U ]− form a proper class,
not a set, is a consequence of Lemma 1.

The Proof is evident. One can easily find in all these cases that S is a
subclass of the supposed “sets” or that there is a subclass of the supposed
“sets” which is in bijection with S. Then the assumption that the wider
class is a set implies, by an axiom in NBG which says that the intersection
of any set X with an abitrary class Y is a set (see, [41], Chap. 4, Axiom S),
that S is a set, contrary to Lemma 1. Indeed, the simplest proof is of the
Generalized Lemma 1, Proposition 12, Proposition 14, because evidently
the class of all well-founded singletons is a subclass of all singletons as
well as S ⊂ V− and S ⊂ WF, and the statements made of them hold.
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Since, by von Neumann’s axiom N, V− ≈ On there is a subclass of N, On
which is equivalent to S, and by the injection j : On → Card (Remark
12), the statements of Propositions 11 and 12 hold. As to Russell’s set R
(Proposition 5), it contains S as a subclass because, for each well-founded
set X ∈ R, the singleton {X} is also well-founded and {X} ∈ R; otherwise,
{X} ∈ {X} and hence {X} = X and the latter is a non-well-founded set.
In T there is a subclass of self-similar skands X(0,ω) whose components
Xi = X , 0 ≤ n < ω, X ∈ S, and thus Proposition 15 holds. �

Remark 13. In [4] there is another, also very short proof of a general-
ized Lemma 1, but “from the top to the bottom”, whereas in our proof we
are going “from the bottom to the top”. Here it is. If S in V[U ]− were a
set, its union would be a set. But

⋃
S contains the proper class V[U ]− of

all sets. This is because for all sets a, {a} ∈ S. Since
⋃

S is both a proper
class and a set, we have a contradiction. (See [4], p. 338, and note that
in [4] it has already been proved that the class of all sets is a proper class,
although via Russell’s paradox; see Ibidem, p. 16). �

7. Comparison of NBG(1) with some other approaches to non-
well-founded sets

First of all, notice that objects X (1) in V[U ](1) are essential extensions
of some but not all extraordinary sets in the sense of Mirimanoff [43], [44],
[45] as well as non-well-founded sets in [22]. In [45], p. 33, Mirimanoff
considered extraordinary sets in the following form:

E = {y, z, ...a, b, c, ...}, (26)

where sets y, z, ... depend themselves on E; in particular, he considered sets
in the form

E = {E, a, b, c, ...}. (27)

In NBG(1) we consider not only the latter form and those which are
self-similar skands, or circular skands of period 1, but also skands or extra-
ordinary sets of the form

E = {a, b, c, ..., {E, x, y, z, ...}}, (28)

i.e., circular skands of period 2, and of course we consider also circular
skands of arbitrary finite period n. But we do not consider extraordinary
sets, or self-similar skands, e.g., of the form

E = {E, a, b, c, ..., {E}} (29)

which is a particular case of (26). This restriction of ours is done knowingly
and it is similar to the restriction of well-founded sets in comparison with
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non-well-founded sets which can be called 0-rank self-similar skands (well-
founded sets), 1-rank self-similar skands (circular sets of period 1), and we
could postulate the existence of self-similar skands of arbitrary finite rank.
For our purposes we need such a restriction. So, skands are not extensions
of all of Mirimanoff’s extraordinary sets of the form (26).

On the other hand, the definition (26) provides the possibility of the
existence of skands whose lengths are greater than ω. However nothing
was said in [45] about such things, and it appears that Mirimanoff tacitly
supposed that the length of skands was equal to ω. Only a single footnote on
page 12 in [22] says that “∈μ-constituent of relation (i.e., ∈-chains of length
μ) can be defined for an arbitrary ordinal number μ, but we consider in this
paper only finite numbers μ”. Nevertheless, this footnote, given by Elkund,
does not determine the fact that non-well-founded objects, presented in [22],
are skands of ω-length in our terminology, and hence non-well-defined. So,
skands in NBG(1) are essential extensions of extraordinary sets of length
ω. �

Now we want to compare NBG(1) with Aczel’s model or theory of non-
well-founded sets [1] which was motivated by Robin Milner’s work [42]
on computer science modeling of concurent processes. Aczel’s model of
so-called hypersets was successfully applied to the treatment of the Liar
paradox [3] and various other vicious circle phenomena [4].

Starting out with the Zermelo-Frankel set axiomatic system ZFC, which
includes the axiom of choice and the axiom of foundation, Aczel rejected the
latter and proposed his own Anti-Foundation Axiom (AFA for short);
and with a natural correction of the Axiom of Extensionality he ob-
tained the set axiomatic system ZFA− + AFA, which is consistent on the
assumption that ZFC is consistent.

The binary relation x ∈ y Aczel pictures as an element of a graph x −→ y
with nodes x, y and edge (x, y) between them; finite x0 −→ x1 −→ ... −→
xn−1 −→ xn and infinite sequences finite x0 −→ x1 −→ x2 −→ ... as
well as pointed and accesible graphs, labelled graphs, children, decorations
of graphs, etc., are understood in the usual way. So, every set with an
∈-relation can be pictured by labelled graphs.

Then the Labelled Anti-Foundation Axiom says: Every labelled
graph has a unique labelled decoration.

This axiom is a natural extension of Mostowski’s Collapsing Lemma that
tells us that every well-founded labeled graph has a unique decoration in
WF. On the other hand, AFA is a strong restriction of V[U ]− because
of Scott’s axiom: For any extensional relation R on A and for any not
R-well-founded x ∈ A there is no set containing all possible images of x
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under isomorphisms between (A, R) and a transitive structure (T,∈). (Un-
published paper of 1960). As a consequence of this axiom the uniqueness
of a “Mostowski collapse” cannot be consistently postulated for non-well-
founded sets. (See details in [26].)

There is an equivalent formulation of AFA which is nearer to our paper
called the Solution Lemma.

The Anti-Foundation Axiom: Every flat system of equations has a
unique solution, [4], p. 72.

It is enough for us because a particular example of a flat equation is
(13). Thus, axiomatic systems ZFA−+AFA and NBG(1) are incompatible,
although they have mutual objects such as the empty skand e(0,ω) = {{...}}
in our paper and Ω = {{...}} in [1]. Moreover, the hyperset Ω∗ = {Ω, Ω∗} is
equal to Ω because Ω = {Ω} = {Ω, Ω} and we apply the Solution Lemma.
We will see below that the generalized skand {e(0,ω), {e(0,ω), {...}}} is not
equal to e(0,ω).

Analysing AFA we see that a unique solution of a flat equation (13) is
actually a proper class of all its solutions in V[U ](1). Thus the quotient
class V[U ](1) recieved by the solution lemma equivalent relation, we obtain
a subclass of the hyperset universe. That is why Russell’s paradox and
other set-theoretical paradoxes (except Cantor’s and Hilbert’s paradoxes)
are possible in the hyperset universe (and only in such systems) of course,
on the assumption that R or other considered classes are sets, and, what
is especially important, that one has to refer to AFA in implications such
as, e.g., R /∈ R =⇒ R ∈ R. �

8. ν-generalized skands, formal theory NBG[U ](ν) and its model
in the universe of elements U[U ](ν), and the universe U[U ](Ω)

We have already extended the formal set theory NBG[U ]− by a new
axiom SEA&RSS which is less restrictive than FA and have obtained
the formal theory NBG[U ](1) as well as have enriched V[U ] = V[U ](0) by
new objects and have extended it to the class V[U ](1) of sets X which can
be either well-founded or non-well-founded the latter are skands of length
l ≥ ω considered as sets of V[U ]. Moreover, we have shown that the
class U[U ](0) = V[U ](0) ∪ U is a model of NBG[U ](1) and an inner model
of NBG[U ]−. We can successively continue this process of construction
for each ordinal number ν ∈ On, defining formal theories NBG[U ](ν

′),
1 < ν′ ≤ ν, enriching V[U ](0) by new ν′-generalized skands, 1 < ν′ ≤ ν.
Moreover, there are sequential embeddings:

V[U ](0) ⊂ V[U ](1) ⊂ V[U ](2) ⊂ ... ⊂ V[U ](ν) ⊂ V[U ]−, (30)
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where all embeddings are proper.
This can be done by the following transfinite induction.
Suppose that we have already constructed NBG[U ](ν

′) for each 1 ≤
ν′ < ν, and classes V[U ](ν

′) of sets in the coresponding theories, enriching
them by ν′′-generelized skands as sets of V[U ]−, 1 < ν′′ ≤ ν′, and hence the
universe of elements U[U ](ν

′) = V[U ](ν
′)∪U of this theory NBG[U ](ν

′). Now
we construct a formal set theory NBG[U ](ν) and the class V[U ](ν) of all sets
in NBG[U ](ν) and hence the universe of elements U[U ](ν) = V[U ](ν) ∪ U
of this theory NBG[U ](ν), and the following sequential embeddings are
proper:

V[U ] = V[U ](0) ⊂ V[U ](1) ⊂ V[U ](2) ⊂ ... ⊂ V[U ](ν
′) ⊂ V[U ]− , (31)

0 ≤ ν′ < ν.
Definition 5. Let f(α0,α) : (α0, α) → ⋃

0≤ν′<ν

V[U ](ν
′) be a map. By

a ν-generalized skand X
(ν)
(α0,α)

we understand a usual skand as a system of
embedded curly braces {α0{α0+1...{α′...α′}...α0+1}α0}, indexed by ordinals
α′ ∈ (α0, α), whose pairs of braces {{ and {} are not filled or filled by previ-
ously defined sets of

⋃
0≤ν′<ν

V[U ](ν
′), i.e., whose components X

(ν)
α′ coincide

with the images f(α0,α)(α′), respectively, α0 ≤ α′ < α.

Definition 6. Two ν-generalized skands X
(ν)
(α0,α) and Y

(ν)
(β0,β) are equal if

the segments (α0, α) and (β0, β) are isomorphic as well-ordered sets and the
corresponding components X

(ν)
α′ = Y

(ν)
β′ , where this unique isomorphism is

given by ϕ : (α0, α) → (β0, β) and β′ = ϕ(α′), α0 ≤ α′ < α, β0 ≤ β′ < β,
are equal as sets of

⋃
0≤ν′<ν

V[U ](ν
′).

ν-Generalized Skand Existence Axiom and Recognition ν-Gene-
ralized Skand as a Set.

For any map f(α0,α) : (α0, α) → ⋃
0≤ν′<ν

V[U ](ν
′), α−α0 ≥ ω, there exists

a unique skand X
(ν)
(α0,α) such that for each α′ ∈ (α0, α) one has X

(ν)
α′ =

f(α0,α)(α′). This ν-generalized skand X
(ν)
(α0,α) is considered as a set X ∈

V[U ]− whose elements are elements of the set f(α0,α)(α0) and one more

element X
(ν)
(α0+1,α) which is a restriction of X

(ν)
(α0,α) on (α0 + 1, α), i.e.,

X = {xα0
0 , xα0

1 , ..., xα0
λ , ..., X

(ν)
(α0+1,α)

}, (32)
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where {xα0
0 , xα0

1 , ..., xα0
λ , ...} is a set whose elements are in the class

⋃
0≤ν′<ν

V[U ](ν
′). The only element of the set X is the skand X

(ν)
(α0+1,α)

con-

sidered as a set is not an element of
⋃

0≤ν′<ν

V[U ](ν
′) but an element of

V[U ]−.

Notice that ν-genelized skands X
(ν)
(α0,α) of a length l = (α − α0) < ω are

elements of the class
⋃

0≤ν′<ν

V[U ](ν
′) and are out of our interest.

As above we will note this very set by the same symbol X
(ν)
(α0,α)

but we

shall differ X
(ν)
(α0,α)

as a ν-generalized skand in Definition 5 and X
(ν)
(α0,α)

as
a set (32).

As in the case of the first step of induction we want to extend NBG−
and NBG[U ]− to NBG(ν) and NBG[U ](ν), respectively, by less restrictive
axioms than FA, which will be based nevertheless on NBG.

As above we suppose that U (0) is a set (which can be empty) or class,
then we will define a theory NBG[U ](ν) which is an extension of theories
NBG[U ]− and NBG−; the latter in the case U = ∅. For this purpose
we add to NBG(0) a wider class of individuals than U (0) by adding to
it a new class of individuals U (ν). Elements u

(ν)
λ ∈ U (ν), λ ∈ On, are

arbitrary skands X
(ν)
(α0,α) of length l = (α−α0) ≥ ω taken with the forgetful

operator E which “forgets” the inner structure (∈ relations) of X
(ν)
(α0,α).

More precisely, u
(1)
λ = EX

(ν)
(α0,α)

and no element or object is a member

of EX(α0,α). Moreover, if X
(ν)
(α0,α)

= X
(ν)
(β0,β)

, then EX
(ν)
(α0,α)

= EX
(ν)
(β0,β)

and they define the only individual u
(ν)
λ ∈ U (ν). As above we need the

inverse operator, i.e., “remember operator” E−1, i.e., for any individual
u

(ν)
λ = EX

(ν)
(α0,α), λ ∈ On, E−1u

(ν)
λ = X

(ν)
(α0,α).

Since in NBG[U ](ν) we postulate existence of new objects and sets we
have to revise the previous Extensionality Axiom (sortlyEA) of NBG[U ](0).

ν-Strong Extensionality Axiom.

Two sets (resp., classes) X (ν) and Y (ν) whose elements are well-founded
sets, individuals and ν-generalized skands as non-well-founded sets are
equal if for each element x ∈ X (ν) there is an element y ∈ Y (ν) such
that x = y and for each element y ∈ Y (ν) there is an element x ∈ X (ν) such
that y = x, where “=” means the following:
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1) the equality of individuals, when x, y ∈ U (0), i.e., (x = y) ⇐⇒
(∀z)(x ∈ z ⇐⇒ y ∈ z);

2) the equality of well-founded sets, when x, y ∈ V[U ](0), i.e., by EA of
NBG[U ];

3) the equality of ν-generalized skands, when x, y ∈ E−1U (ν), i.e., by
Definition 6;

4) the (iterative) equality of sets in V[U ](ν), i.e., by using 1), 2), 3) in
ν-SEA for a complex sets x, y ∈ V[U ](ν).

The latter class V[U ](ν) is defined by transfinite recursion. Denote by
U ′ the discrete union U (0) � U (ν). By formulas (2) and (3), we define a
class H[U ′] which is a class of well-founded sets and determines a model
of NBG[U ′], H[U ′] = U[U ′] and is an inner model of NBG[U ′]−. Now we
apply the remember operator E−1 to all individuals of U (ν) which are in
any constituents of sets in V[U ′] = H[U ′] \ U (0) or individuals themselves
in H[U ′] \ U (0), in short words, in all sets X ∈ H[U ′] \ U (0) as well as
individuals in U(ν) ⊂ X ∈ H[U ′] \ U (0) we change all these individuals on
the corresponding ν-generalized skands and consider them as sets like in
(??).

One can see that after such changing, V[U ′] turns into the class V[U ](ν)

of all sets in this theory NBG[U ](ν) which can be well-founded and non-
well-founded. Moreover, by Propositions 1 and 2, V[U ](ν) is a model of
NBG[U ](ν) and an inner model of NBG[U ]−.

This construction gives the following theorem.
Theorem 2. The set theory NBG[U ](ν) is consistent on the assumption

that NBG− is consistent.
Proof is the same as in Theorem 1.
In our case we have an additional class of individuals U (ν) as “pseudo-

individuals” in the above sense, i.e., each ∈-descending chain is finite or
terminates, i.e., reaches its bottom or “foundation” which is an empty set,
or an individual, or a skand, or ν′-generalized skand, 1 < ν′ ≤ ν. �

Since by definitions and construction of U ′ we obtain the following em-
beddings:

U = U (0) ⊂ U (1) ⊂ U (2) ⊂ ... ⊂ U (ν) = U ′. (33)

It is clear that by (33) and the second part of ν-SEA&RSS, i.e., νRSS,
we obtain the following embeddings:

V[U ] = V[U ](0) ⊂ V[U ](1) ⊂ V[U ](2) ⊂ ... ⊂ V[U ](ν) ⊂ V[U ]−. (34)

Note that the latter embedding is proper because of the possibility of
the next step ν + 1 of trasfinite induction. �
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At last, since we have constructed NBG[U ](ν) and V[U ](ν) for all ν ∈ On
we obtain the following proper embeddings:

V[U ] = V[U ](0) ⊂ V[U ](1) ⊂ V[U ](2) ⊂ ... ⊂ V[U ](ν) ⊂ ... ⊂ V[U ](Ω) ⊂ V[U ]−,
(35)

where V[U ](Ω) =
⋃

ν∈On

V[U ](ν) and the formal non-well-founded sets theory

NBG[U ](Ω) has all axioms of NBG[U ]− plus two additional axioms. We
shall start with the following definitions

Definition 7. Let f(α0,α) : (α0, α) → V[U ](Ω) be a map. By a Ω-

generalized skand X
(Ω)
(α0,α)

we understand a usual skand as a system of
embedded curly braces {α0{α0+1...{α′...α′}...α0+1}α0}, indexed by ordinals
α′ ∈ (α0, α), whose pairs of braces {{ and {} are not filled or filled by sets of
V[U ](Ω), i.e., whose components X

(Ω)
α′ coincide with the images f(α0,α)(α′),

α0 ≤ α′ < α.
Definition 8. Two Ω-generalized skands X

(Ω)
(α0,α)

and Y
(Ω)
(β0,β)

are equal if
the segments (α0, α) and (β0, β) are isomorphic as well-ordered sets and the
corresponding components X

(Ω)
α′ = Y

(Ω)
β′ , where this unique isomorphism is

given by ϕ : (α0, α) → (β0, β) and β′ = ϕ(α′), α0 ≤ α′ < α, β0 ≤ β′ < β,
are equal as sets of V[U ](Ω).

Ω-Generalized Skand Existence Axiom and Recognition Ω-Gene-
ralized Skand as a Set.

For any map f(α0,α) : (α0, α) → V[U ](Ω), α − α0 ≥ ω, there exists

a unique skand X
(Ω)
(α0,α) such that for each α′ ∈ (α0, α) one has X

(Ω)
α′ =

f(α0,α)(α′). This Ω-generalized skand X
(Ω)
(α0,α)

is considered as a set X ∈
V[U ]− whose elements are elements of the set f(α0,α)(α0) and one more

element X
(Ω)
(α0+1,α)

which is a restriction of X
(Ω)
(α0,α)

on (α0 + 1, α), i.e.,

X = {xα0
0 , xα0

1 , ..., xα0
λ , ..., X

(Ω)
(α0+1,α)

}, (36)

where {xα0
0 , xα0

1 , ..., xα0
λ , ..., X

(Ω)
(α0+1,α)

} is a set whose elements are mebmers

of the class V[U ](Ω).
Notice that in this limit case each Ω-generalized skand X

(Ω)
(α0,α)

, α−α0 ≥
ω, coincides with ν-generalized skand X

(ν)
(α0,α) for some ordinal ν ∈ On

and thus X
(Ω)
(α0+1,α) is not a new element which should be enreach V[U ](Ω).

Indeed, it is a consequence of the following proposition.
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Proposition 16. For any Ω-generalized skand X
(Ω)
(α0,α)

there exists a

minimal ordinal ν and a unique ν-generalized skand X
(ν)
(α0,α) such that for

each α′ ∈ (α0, α) one has X
(Ω)
α′ = X

(ν)
α′ .

Proof. Since, by Definition 7, each X
(Ω)
α′ is a set and X

(Ω)
α′ = f(α0,α)(α′),

α0 ≤ α′ < α, and X
(Ω)
α′ ∈ V[U](Ω) =

⋃
ν′∈On

X (ν′) we can find a min-

imal ordinal ν′
α′ such that f(α0,α)(α′) ∈ V[U ](�

′
α′). Indeed, V[U ](�

′
α′) is

the intersection of all V[U ](�′′) such that f(α0,α)(α′) ∈ V[U ](�′′). Since
{να0, να0+1, ..., να′, ...} is a set which contains α ordinals we can take ν′′ =

sup
α′∈(α0,α)

ν′
α′ which always exists. Then putting ν = ν′′ + 1, we obtain the

conclusion of Proposition 16.
Moreover, Ω-GSEA&R Ω-GSS is the weakest restriction axiom among

all previous axioms FA, SEA&RSS, 1-SEA&RSS, ...,ν-SEA&RSS,...
1 < ν ∈ On. Hence V[U ](Ω) is the largest class of wel-founded and non-
well-founded sets in the theory NBG[U](Ω). We also denote by U[U ](Ω) =
V[U ](Ω) ∪ U the universe of elements or as usually say “the universe of
arguments”.

Ω-Strong Extensionality Axiom. Two sets (resp., classes) X (Ω) and
Y (Ω) whose elements are well-founded sets, individuals and Ω-generalized
skands as non-well-founded sets are equal if for each element x ∈ X (Ω) there
is an element y ∈ Y (Ω) such that x = y and for each element y ∈ Y (Ω) there
is an element x ∈ X (Ω) such that y = x, where “=” means the following:

1) the equality of individuals, when x, y ∈ U (0), i.e., (x = y) ⇐⇒
(∀z)(x ∈ z ⇐⇒ y ∈ z);

2) the equality of well-founded sets, when x, y ∈ V[U ](0), i.e., by EA of
NBG[U ];

3) the equality of Ω-generalized skands, when x, y ∈ E−1U (Ω), i.e., by
Definition 8;

4) the (iterative) equality of sets in V[U ](Ω), i.e., by using 1), 2), 3) in
Ω-SEA for a complex sets x, y ∈ V[U ](Ω).

Theorem 3. The set theory NBG[U ](Ω) is consistent on the assumption
that NBG− is consistent.

Proof is the same as in Theorem 1.
In our case we have an additional class of individuals U (ν) as “pseudo-

individuals” in the above sense, i.e., each ∈-descending chain is finite or
terminates, i.e., reaches its bottom or “foundation” which is an empty set,
or an individual, or a skand, or ν-generalized skand, for some 1 < ν ∈ On.
�
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9. Skand operations and categories of generalized skands
Let α ≥ ω be an arbitrary fixed ordinal number. We consider now

all Ω-generalized skands X
(Ω)
(0,α) whose components X

(Ω)
α′ , 0 ≤ α′ < α, are

elements of U(Ω) = V(Ω), i.e., we consider the formal non-well-founded set
theory NBG(Ω) without individuals, i.e., U = ∅ or, in other words, the
theory of “pures” sets. (For simplicity, we omit the index (Ω) and write
X(0,α) instead of X

(Ω)
(0,α)

, Xα′ instead of X
(Ω)
α′ , and generalized skand instead

of Ω-generalized skand.)
It is clear, that all such skands form a class (proper class), not a set.

We denote it here by S(α). Inside S(α) we define the following so called
skand-operations.

Definition 9. By the union X(0,α) ∪ Y(0,α), intersection X(0,α) ∩ Y(0,α),
difference X(0,α) \ Y(0,α) of two elements X(0,α) and Y(0,α) of S(α) we un-
derstand a generalized skand Z(0,α) whose components Zα′ are Xα′ ∪ Yα′ ,
Xα′ ∩ Yα′ and Xα′ \ Yα′ , respectively, 0 ≤ α′ < α. By the power of a
generalized skand X(0,α) we understand a generalized skand PX(0,α) whose
components (PX)α′ are PXα′.

Definition 10. By the mapping f(0,α) : X(0,α) → Y(0,α) of two general-
ized skands X(0,α) and Y(0,α) we understand a generalized skand f(0,α) whose
components fα′ are the mappings fα′ : Xα′ → Yα′ , where Xα′ and Yα′ are
components of X(0,α) and Y(0,α), respectively, 0 ≤ α′ < α. Moreover, f(0,α)

is an injection, surjection and bijection, respectively, if the same are all map-
pings fα′ , 0 ≤ α′ < α. In particular, a generalized skand X(0,α) is a subskand
of Y(0,α), if there exists an identical injection 1(0,α) : X(0,α) → Y(0,α).

It is clear that one can define other skand-theoretical operations such
as products and coproducts, inverse and direct limits, pull-backs and push-
outs, the equivalence relation and quotients, etc., by the set-operations on
the corresponding components of skands, respectively. We shall not use
these constructions here, and thus omit details.

One can easily verify that the elements of S(α) as objects and mappings
between such objects as morphisms form a category which we denote by
Sk(α).

Of special interest for us here are categories Sk(ωκ)(P ), κ ≥ 0, whose
objects are self-similar generalized skands X(0,α)(X), i.e., when α = ωκ,
κ ≥ 0 is fixed, and whose components are permanent, i.e., Xα′ = X , for each
0 ≤ α′ < α, X ∈ V[U ](Ω) and whose morphisms are self-similar generalized
skand-mappings f(0,α)(f) of such generalized skands whose components are
permanent, i.e., mappings fα′ = f : X → Y , for each 0 ≤ α′ < α.

For κ = 0, we consider the usual category of sets whose objects are
elements of V[U ](Ω); i.e., sets and morphisms are mappings of sets.
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Proposition 17. For each X(0,ωκ)(X) ∈ Sk(ωκ)(P ), κ ≥ 1, there is an
index λ, 1 ≤ λ, such that X(0,ωκ)(X) ∈ U (λ).

Proof. Since X ∈ V[U ](Ω) there exists an ordinal number ν ≥ 0 such
that X ∈ V[U ](ν). Among all such ν there is a minimal number and we
denote it also by ν. Then X(0,ωκ)(X) ∈ V[U ](ν+1) and we put λ = ν + 1.

It is clear that all skand-operations on self-similar generalized skands
give us a self-similar generalized skand as a result. We shall often use the
following skand-operation:

Definition 9. Let X(0,ωκ)(X) (X(0,ωκ) for short) be a self-similar gen-
eralized skand, where κ ≥ 1 is fixed. By a singleton-skand we understand
the following self-similar generalized skand
S(0,ωκ)(X(0,ωκ)) = {X(0,ωκ), {X(0,ωκ), {...}}}.

It is clear that, by Definition 6, the empty skand e(0,ωκ) is not equal to the
singleton-skand S(0,ωκ)(e(0,ωκ)) in contrast to their equality in ZFA−+AFA
(see [1], p. 8) as we promised to show in paragraph 7.

There is an evident functor Fκ′κ′′ : Sk(ωκ′
)(P ) → Sk(ωκ′′

)(P ), 1 ≤ κ′ ≤
κ′′, which associates with every object X(0,ωκ′)(X) the object X(0,ωκ′′)(X)
and with every self-similar morphism f(0,ωκ′

)(f) : X(0,ωκ′
)(X) → Y(0,ωκ′

)(Y )
the self-similar morphism f(0,ωκ′′)(f) : X(0,ωκ′′)(X) → Y(0,ωκ′′)(Y ). A verifi-

cation of the category’s axioms is trivial. Moreover, all categories Sk(ωκ)(P ),
κ ≥ 1, are isomorphic to each other and hence to the usual category of sets,
which are elements of U(Ω) and morphisms are maps of such sets.

Proposition 18. The skand V(0,ωκ) which is a skand-union of all self-
similar generalized skands of length ωκ, i.e., V(0,ωκ) =

⋃

X∈V[U ](Ω)

X(0,ωκ)(X),

where κ ≥ 1 and fixed, is not an element of V[U ](Ω); i.e., it is a proper class,
not a set.

Proof. Suppose the contrary, and V(0,ωκ) is a set. Consequently, there
exists a generalized singleton-skand S(0,ωκ)(V(0,ωκ)) of V(0,ωκ) which is a set,
too. Thus, there exists a singleton skand S(0,ωκ)(S(0,ωκ)(V(0,ωκ))). Since
S(0,ωκ)(V(0,ωκ)) is not an element of a permanent component of V(0,ωκ)

(otherwise, we should have a skand of the form
V(0,ωκ) = {a, b, c, ..., {V(0,ωκ)}, V(0,ωκ)} which is impossible) we obtain that
V(0,ωκ) is a proper subskand of V(0,ωκ) ∪ S(0,ωκ)(S(0,ωκ)(V(0,ωκ))) which is
in contradiction with the maximality of V(0,ωκ). Consequently, V(0,ωκ) is
not a set, but a proper class, and there is no a generalized singleton-skand
S(0,ωκ)(V(0,ωκ)) of it, which is of a great importance for us. �

10. A new representation of ordinal and cardinal numbers
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We recall once more that, due to Cantor, an ordinal number α (shortly
an ordinal or an element of On) is “the ordinal type of a well-ordered set”
[34], p. 152. Likewise, a cardinal number ℵα (shortly a cardinal or an
element of Card) was defined by Cantor as “the power type of equivalent
sets” [34], p. 87. In other words, an ordinal number α is a common symbol
for the class of all isomorphic (“similar”) well-ordered sets and a cardinal
number (n ≥ 0, for natural or finite cardinal numbers and ℵν, ν ∈ On,
ν ≥ 0, for transfinite or infinite cardinal numbers) is a common symbol for
the class of equivalent sets, i.e., which are into a one-to-one correspondence.
There is a natural binary relation < between two ordinals (respectively,
cardinals) α and β iff there exist well-ordered sets (respectively, sets) A
and B of the ordinal (respectively, cardinal) types α and β, respectively,
and an initial segment B′ ⊂ B such that A and B′ are similar (respectively,
equivalent). (Note that we identify here cardinal numbers with the natural
and initial ordinal numbers.)

There are diffferent represenations of ordinals numbers as special well-
founded well-ordered sets, e.g., initial segments (0, α) of On ordered by
inclusion (Cantor [15]); the canonical representation of ordinals by pure
sets ∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, etc. (Mirimanoff [43]); the represe-
nation of ordinal numbers by well-founded sets which are ordered by ∈ and
transitive (von Neumann [49]). There is a series of similar constructions
which represent the class of all ordinal numbers (and hence all cardinal
numbers) by non-well-founded sets which are well-ordered by ∈ and tran-
sitive. The state of affairs is that these constructions give one more detail
concerning the last ordinal and cardinal number, called here the eschaton.

Definition 10. A reflexive set (in particular, a self-similar skand) α,
which elements are also reflective sets, is called an ordinal number if it
is reflexively well-ordered by the relation ∈ between its elements, i.e., for
X, Y ∈ α, X ∈ Y includes the case X = Y since X ∈ X ; moreover, it is
transitive, i.e., if X, Y, Z ∈ α and Z ∈ Y ∈ X , then Z ∈ X ; it satisfies the
following conditions: 1) for every X, Y ∈ α, if X �= Y , then either X ∈ Y
or Y ∈ X , but not both; 2) every non-empty subset of α has a minimal
element. Two ordinal numbers α and β are equal if there exists a bijection
between them, which is an order-preserving function.

Remark 14. Definition 10 differs from the analogous classical definition
of an ordinal number in NBG because in the latter case sets X, Y, Z are
well-founded, as opposite to the former; one more remark: if α ∈ β, then
α < β and there is no relation α ∈ α in the classical case, contrary to
Definition 10, where α ∈ β implies in general α ≤ β, since an equality
may exist in the case β = α. One can compare the definition of a reflexive
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well-ordering with a reflexive total ordering R in [41], p. 9, such that every
non-empty subset of the field of R has an R-least element.

The classes Onωκ , κ ≥ 1, of all ordinals in the sense of Definition 10 can
be defined by the following transfinite induction.

Let κ > 0 be a fixed usual ordinal number, i.e., an element of On. We
begin with the empty skand e(0,ωκ) = {{{...}}} and call it the first element
of Onωκ , denoting it by e(1). Using Definition 9, we put successively

e(1) = e(0,ωκ),
e(2) = {e(1), {e(1), {...}}}= {e(1), e(2)},
e(3) = {e(1), e(2), {e(1), e(2), {...}}} = {e(1), e(2), e(3)},
.............................
e(n) = {e(1), e(2), ..., e(n−1), {e(1), e(2), ..., e(n−1), {...}}}=

= {e(1), e(2), ..., e(n−1), e(n)},
.............................
e(ω) = {e(1), e(2), e(3), ..., {e(1), e(2), e(3), ..., {...}}}=

= {e(1), e(2), e(3), ..., e(ω)},
e(ω+1) = {e(1), e(2), e(3), ..., e(ω), {e(1), e(2), e(3), ..., e(ω), {...}}} =
{e(1), e(2), e(3), ..., e(ω), e(ω+1)},
..................................... .
It is clear that
e(1) ∈ e(1) and e(1) ⊆ e(1), e(1) ∈ e(2) and e(1) ⊂ e(2), e(1) ∈ e(3) and

e(1) ⊂ e(3), ... e(1) ∈ e(ω) and e(1) ⊂ e(ω), ...;
e(2) ∈ e(2) and e(2) ⊆ e(2), e(2) ∈ e(3) and e(2) ⊂ e(3), e(2) ∈ e(4) and

e(2) ⊂ e(4),... e(2) ∈ e(ω) and e(2) ⊂ e(ω),...;
and so forth.
One can see that each ordinal e(α) is the ordinal type of the 0-component

e(α)
0 of the skand e(α). Moreover, although there is no the ordinal number

0 among self-similar skands, there is a one-to-one correspondence between
the class of all ordinals Onωκ = {e(1), e(2), ..., e(α), ...}, α ≥ 1, and the class
of all α ∈ On, because the ordinal type of 0-component e(α), which is not
a self-similar skand, is the same as the initial segment (0, α) of On. �

Consider now a more interesting description of the class of all ordinals
in the sense of Definition 10. It is the skand-union of all ordinal numbers,
i.e., Ω(0,ωκ) = { ⋃

α≥1
e(α), { ⋃

α≥1
e(α), {...}}}.

Proposition 19. The self-similar skand Ω(0,ωκ), where κ ≥ 1 and is
fixed, is not an element of V[U ](Ω); i.e., it is a proper class, not a set.

Proof. Suppose the contrary, and Ω(0,ωκ) is a set. Consequently, there
exists a generalized singleton-skand
S(0,ωκ)(Ω(0,ωκ)) = {Ω(0,ωκ), {Ω(0,ωκ), {...}}} of Ω(0,ωκ) which is a set, too.
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Thus, there exists a singleton skand
S(0,ωκ)(S(0,ωκ)(Ω(0,ωκ))). Since S(0,ωκ)(Ω(0,ωκ)) is not an element of a per-
manent component of Ω(0,ωκ) (otherwise, we should have a skand of the
form ω(0,ωκ) = {a, b, c, ..., {Ω(0,ωκ)}, Ω(0,ωκ)} which is impossible) we obtain
that Ω(0,ωκ) is a proper subskand of Ω(0,ωκ)∪S(0,ωκ)(S(0,ωκ)(Ω(0,ωκ))) which
is in contradiction with the maximality of Ω(0,ωκ). Consequently, Ω(0,ωκ) is
not a set, but a proper class, and there is not a generalized singleton-skand
S(0,ωκ)(Ω(0,ωκ)) of it, which is of great importance for us. �

Thus Ω(0,ωκ) with a fixed κ ≥ 1 is a generalized skand-class whose per-
manent component is a well-ordered class Onωκ .

Moreover, formally Ω(0,ωκ) ∈ Ω(0,ωκ), which is not in contradiction with
an agreement that classes are not elements of classes. In our case, with a
specific definition of skand-operations, Ω(0,ωκ) cannot be an element of any
class or set, e.g., the singleton S(0,ωκ)(Ω(0,ωκ)) which does not exist at all
as an element of V[U ](Ω), but, by our natural construction, it is an element
of itself.

We see also that Ω(0,ωκ′) and Ω(0,ωκ′′) are isomorphic for every 1 ≤ κ′ <

κ′′ and we can omit indexes; i.e., we write Ω and call this generalized skand-
class the last ordinal number or the eschaton in the sense of Definition 10,
because it is well-ordered by ∈, and is class-transitive. In other words, Ω is
a common symbol for the ordinal type of well-ordered proper classes whose
all initial segments are sets. It is the last, indeed, because there are no
more units, i.e., generalized singleton-skands one could add to Ω.

It is clear that Ω is the initial class-ordinal number because it is not
equinumerous to any smaller ordinal number. Indeed, any α < Ω is a
set and hence is not equivalent to Ω. By definition, the cardinality |A|
of any proper class A is defined as the unique class-cardinal Ω which is
equinumerous to A (the existence of such equinumerousness follows from
the well-ordering theorem).

Proposition 20. Ω is a strongly inaccessible class-cardinal, not a set
cardinal.

Proof. Let e(ων) < Ω, where ων is the initial ordinal number. Then
the power-skand Pe(ων) is a set, and hence its permanent component is
not in one-to-one correspondence with the permanent component Ω0 of
Ω(0,ωκ), κ ≥ 1 is fixed; thus, Pe(ων) < Ω. Moreover, for any e(ωα) < Ω and
β < Ω, the sum of cardinals, i.e., the initial ordinals,

∑
α<β

e(ωα) is a set and

hence its permanent component is not in one-to-one correspondence with
the permanent component Ω0 of Ω(0,ωκ), κ ≥ 1 is fixed and hence Ω is not
its ordinal type. �
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Remark 15. The eschaton Ω looks like the initial ordinal ω which is
also a strongly inaccessible cardinal with respect to all finite numbers, and
is the first transfinite ordinal. The same can be said for Ω, which is a
strongly inaccessible class-cardinal with respect to all infinite numbers, i.e.,
all transfinite numbers, and is the first trans-infinite class-ordinal, or the
first trans-definite ordinal, as it was called in [6].

Definition 11. By a proper generalized skand-class we understand
X(α0,α), at least one component Xα′, α0 ≤ α′ < α, α ∈ On of which is
a proper class, in particular, a proper generalized self-similar skand-class.

Definition 12. By a hyper-skand and generalized hyper-skand we un-
derstand X(α0,Ω), whose components Xα′, α0 ≤ α′ < Ω, are elements of
V[U ] and V[U ](Ω), respectively, in particular, a self-similar hyper-skand
and generalized self-similar hyper-skand X(α0,Ω)(X).

Thus O(0,ω) = {0, 1, 2, ..., ω, ω + 1, ..., {0, 1, 2, ..., ω, ω + 1, ..., {...}}},
C(0,Ω) = {0, {1, {..., {n, {...{ω, {ω + 1, {...{α, {...}}}}}}}}}} and
E(0,Ω) = {e(1), {e(2), ..., e(n), {...{e(ω), {e(ω+1), {...{e(α), {...}}}}}}}}}},

α ∈ On, are examples of a skand-class, a hyper-skand and a generalized
hyper-skand of all ordinals, respectively.

Definition 13. By a proper (generalized) hyper-skand-class we under-
stand X(α0,Ω), at least one component Xα′ , α0 ≤ α′ < Ω of which is a
proper class, in particular, a proper (generalized) self-similar hyper-skand-
class.

Remark 16. Definitions 11, 12, 13 are very general in the sense that
defined objects are outside of the U−-world and are not even subclasses
of it. Nevertheless, there are operations similar to operations on proper
classes which are subclasses of V[U ](Ω). On the other hand, there are no
such operations as the power-skand, singleton-skand or other set-theoretic
operations. It is indeed true: “The content of a concept diminishes as
its extension increases; if its extension becomes all-embracing, its content
must vanish altogether”. We need these definitions for descriptions of some
aspects of the Skand Theory considered here. �

11. Applications to ε-numbers
What we now want to show are applications of skands outside of the

Skand Theory considered above.
Remark 17. The concept of a skand, i.e., objects X(α0,α) above, is

wider than its concrete realization as a system of embedded braces and the
components thereof; it is not rigidly attached to curly brackets and it may
also be a system of embedded round brackets, e.g., streams

s = (a1, (a2, (a3, (....(aω, (aω+1, (...(aλ, (aλ+1, (...)))))))))), (37)
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where aλ ∈ A, A is a set, 1 ≤ λ < Λ ∈ On, (see, in particular, the case of a
countable system of embedded round brackets in [4], p. 34-35, 197-208), or a
system of embedded angle brackets for the set theoretic operation modeling
the operation of ordered pairs, etc. Skands X(0,α) can be interpreted as a
limit power or continued exponential with a basis which is an ordinal γ0 ≥ 1
such that X0 = γ0 is the first component of X(0,α) and with the exponent
X(1,α), i.e.,

X(0,α) = γ
X(1,α)

0 (38)
such that Xα′ = γα′ (notice that here we do not differ a singleton {γα′})
which is exactly Xα′ with its element itself γα′, the more so, as it is an
individual), γα′ ∈ On, γα′ > 0, 0 ≤ α′ < α, i.e., a transfinite sequence of
basis-exponents

X(0,α)
sign
= γ∧

0 γ∧
1 γ∧

2 ...∧γ∧
ωγ∧

ω+1...
∧γα′ ...

def
= γ

X(1,α)

0 = ... = γ
γ

γ..
.
γ..

.

α′
2

1
0 .

(39)

Note only that the latter term in (39) should be properly defined (see
below), and in (39) it is only a designation, nothing else.
We shall use such a skand-exponent in application to the theory of ε-
numbers in the sense of Cantor. For convenience in the further designation
of such a skand-exponent we prefer braces {{, i.e., E(0,α) = {γ0, {γ1, {...}}}
to the power-sign ∧ in (39) or expressions like [γ0, γ1, γ2, ...γω, γω+1, ..., γα′, ...]
in [51], as a descending sequence of two-element non-well-founded sets
E(0,α) � E(1,α) � ... � E(α′,α) � ..., where E(α′,α) = {γα′, E(α′+1,α)},
0 ≤ α′ < α.

Let γ, ξ be arbitrary ordinal numbers such that γ > 0 and ξ ≥ 0. We
recall that the ξth power of γ, i.e., γξ, is defined by the following transfinite
induction:

γ0 = 1, (40)

γα+1 = γαγ, (41)

γλ = lim
α<λ

γα, (42)

for limit-numbers λ = lim
α<λ

α.

And as in arithmetic, γ is called the basis, ξ, the exponent, of the power
γξ.

Consider now the following equation:

γξ = ξ (43)
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with indeterminate ξ.
The roots ξ = α of the equation (43) in the case γ = ω and α < ω1,

where ω1 is the smallest non-denumerable ordinal, Cantor called epsilon-
numbers. More precisely, “to distinguish them from all other numbers I
call them the “ε-numbers of the second number-class” ([16], §20).

We can omit these restrictions of Cantor’s, since all his results on the
ε-numbers are valid in general cases. Here we repeat Cantor’s construction
in a generalized form.

Let γ > 0 be a fixed ordinal. If α > 0 is any ordinal number which
does not satisfy the equation (43), it determines an increasing sequence αn,
0 ≤ n < ω, by means of the equalities

α0 = α, α1 = γα α2 = γα1, ..., αn = γαn−1, ... . (44)

Then lim
n

αn
def
= sup

n
αn = E(α) of this increasing sequence always exists

because On is well-ordered, and we call it an ε-number, too.
Indeed, in the trivial case, when γ = 1, the only root of the equation

(43) is evidently ξ = 1, and hence this actually increasing sequence in (44)
is the constant sequence αn = 1, 0 ≤ n < ω, and thus lim

n
αn = sup

n
αn =

E(α) = 1, for every α > 1.
If γ > 1, then (44) is an ascending sequence (in Cantor’s terminology,

an “ascending fundamental series”) because

γ > 1 =⇒ γα ≥ α, (45)

for every α ≥ 0 (see, e.g., [36], Chap. VII, §6); in our case, when α > 1 and
does not satisfy the equation (43), we have γα > α and, by (45), γγα

> γα,
and so on. Consequently, (44) is an ascending sequence; indeed, for all
0 < n < ω, α1 > α0, α2 > α1, α3 > α2, ..., αn > αn−1, ... .

Put now E(α) = lim
n

αn = sup
n

αn which is a limit-ordinal number and

always exists, because for the set A = {α0, α1, ..., αn, ...}, there exists an
ordinal β < β0 (for some fixed β0), which is greater than each element of
A (see [36], Chap. VII, §2, Theorem 6). Consequently, the least of such β,
which always exists in the well-ordered set (0, β0) since each of its subsets
has the smallest element, is the desired ordinal number E(α).

By (41), (42), the function f(α) = γα is ascending and continuous;
therefore, we have γE(α) = γ

lim
n

γαn

= lim
n

γαn = lim
n

αn+1 = E(α); i.e.,

E(α) satisfies (43).
Cantor considered the case γ = ω, α = 1 and proved that

E(1) = lim
n

ωn, (46)
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where
α0 = 1 α1 = ω α2 = ωα1, ..., αn = ωαn−1, ... , (47)

is an ε-number [16], §20, [Theorem] A. Moreover, ε0 = E(1) = lim
n

ωn is the

least of all the ε-numbers ([16], §20, [Theorem] B). (This, of course, is true
in his own sense; in our general construction there are two more ε-numbers
1, when γ = 1 and ω, when 1 < γ < ω and α = γ, which are evidently
smaller than ε0.)

He also showed that after the least ε-number, ε0, there follows then the
next greater one:

ε1 = E(ε0 + 1), (48)
and so on; i.e., there is the following formula of recursion:

εn = E(εn−1 + 1), (49)

1 ≤ n < ω. ([16], §20, [Theorem] D).
The limit lim

n
ενn of any ascending sequence εν0 , εν1, ..., ενn, .. of ε-number

ενn , 0 ≤ n < ω, is an ε-number, too. ([16], §20, [Theorem] E). Finally, all
the totality of ε-numbers of the second number-class is a well-ordered set

ε0, ε1, ..., εn ... εω, εω+1, ... εα′ , ... (50)

of the second number-class type, and has thus the power ℵ1, where 0 ≤
α′ < Ω, ([16], §20, [Theorem] F); i.e., Ω is the initial ordinal, in recent
terminology, which is the first after the initial ordinal ω. (Here we quote
notations ωn, n ≥ 1, and Ω in [34], pp. 196, 199, literally; thus, do not
confuse them with ωκ, κ = 1, 2, ..., and Ω below, respectively, which denote
absolutely different objects.)

We also mention two more of Cantor’s results. If ε′ is any ε-number,
ε′′ is the next greater ε-number, and α is any number which lies between
them:

ε′ < α < ε′′, (51)
then E(α) = ε′′ ([16], §20, [Theorem] C); and if ε is any ε-number and α is
any number such that 1 < α < ε, then ε satisfies the three equations:

α + ε = ε; αε = ε; αε = ε (52)

([16], §20, [Theorem] G).
Note that for the ε-number ω in our general construction, for each α

such that 1 < α < ω, (52) also holds.
All these results of Cantor are valid in the general case of course, with

natural corrections: ordinal types, the cardinality of the initial ordinals,
etc. But we want more. We want with the help of self-similar skands to
clarify this general situation.
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Cantor’s formula (46) of the least (in Cantor’s sense) ε-number ε0 can
be symbolically written in the following form:

ε0 = ωωω..
.ω

..
.

; (53)

i.e., by misuse of language, “ε0 is the power of ω whose exponent is the
power of ω, whose exponent is the power ω, etc., more precisely, ω times
‘the power of’ ”, or “the first ‘limit power’ of ω whose exponents at each
nth place of the skand-exponent E(0,ω) is ω, 1 ≤ n < ω”. How else?

Let us denote (53) by a bit shorter formula:

ε0 = ωωω..
.ω

..
.

= E(0,ω)(ω)
def
= ωE(1,ω)(ω), (54)

where X(0,ω)(ω) denotes the self-similar skand-exponent of length ω whose
components En, 0 ≤ n < ω, are ω (see Remarks 1, 17). Actually, we
want to generalize this notation and the notion of the “limit power” to the
following one:

εκ = E(0,α)(γ)
def
= γE(1,α)(γ) = γγγ..

.γ
..

.γ..
.γ

..
.

, (55)

for γ > 1, α = ωκ, κ ≥ 1, and κ ∈ On.
Actually, we have to explain the meaning of the symbol E(0,α)(γ) =

γγγ..
.γ

..
.γ..

.γ
..

.

as a good way of describing all possible ε-numbers because,
by Definition 2, E(0,ωκ)(γ) = E(1,ωκ)(γ) and therefore,

γE(0,ωκ)(γ) = γE(1,ωκ)(γ) = E(0,ωκ)(γ); (56)

i.e., E(0,ωκ)(γ) in (55) is a root of the equation (43), for an arbitrary ordinal
κ ≥ 1, and hence is an ε-number.

Here is an explicit explanation of this idea.
Definition 14. By a skand-exponent E(α0,α) of length l = α − α0 ≥ ω

we understand a system of embedded curly braces, indexed by α′ ∈ (α0, α),
all of whose components are one-element, moreover, for each α0 ≤ α′ < α,
Eα′ = {γα′{ or Eα′ = {γα′}, if α′ = α − 1, where γα′ �= 0 and γα′ ∈ On. If
all components are equal to γ, then we write E(α0,α)(γ) = {γ, {γ, {...}}} and
consiner it as a descending sequence of a two-elements non-well-founded set
E(α0,α) � {γ, E(α0+1,α)} � {... � {γ, E(α0+α′,α)} � ..., 0 ≤ α′ < α − α0.
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Definition 15. Two skand-exponents E1
(α0,α) and E2

(β0,β) are called
equal if the segments (α0, α) and (β0, β) are isomorphic as well-ordered
sets, where ϕ : (α0, α) → (β0, β) is this isomorphism, and the corresponding
components E1

α′ and E2
β′ are equal, for each β′ = ϕ(α′), α0 ≤ α′ < α.

Definition 16. By an ω-limit power of the skand-exponent

E(α0,ω) = {γα0, {γα0+1, {...}}} = γ
γ..

.

α0+1
α0 (57)

we understand 1, if γα0 = 1; if γα0 �= 1, then we understand lim
n

βα0+n =
sup

n
βα0+n of the following ω-sequence

Eα0,α0+1, E(α0,α0+2), ... E(α0,α0+n+1), ... (58)

where E(α0,α0+1) = γα0 and

E(α0,α0+n+1) = γ
γ..

.
γ

γα0+n
α0+n−1

α0+1
α0 , (59)

for each 1 ≤ n < ω, is understood in the usual way: we descend, begin-

ning with γ
γα0+n

α0+n−1, γ
γ

γα0+n
α0+n−1

α0+n−2 ,...,γ
γ..

.
γα0+n

α0+2

α0+1 γ
γ..

.
γα0+n

α0+2

α0+1 , ..., up to γ
γ

γ..
.
γα0+n

α0+2
α0+1

α0 =
E(α0,α0+n+1).

Now, first of all, we shall prove the following lemmas.
Lemma 2. Let ε0 and ε1 be the first and the second ε-numbers in

Cantor’s sense. Then for each γ, ε0 ≤ γ < ε1, we have

E(0,ω)(γ) = ε1; (60)

in particular,

E(0,ω)(ε0) = ε
ε
ε..

.

0
0

0 = ε1. (61)

Moreover, for each ω-sequence of ordinals γ0, γ1, ..., γn, ... such that ε0 ≤
γn < ε1, 0 ≤ n < ω, we have

E(0,ω){γ0, {γ1, {γ2, {...}}}}= γ
γ

γ..
.

2
1

0 = ε1. (62)

Proof. Since by the third equation in (52), γε1
0 = ε1, we have γγ1

0 <

γε1
0 = ε1 as well as γγ2

1 < γε1
1 = ε1, and hence γ

γ
γ2
1

0 < ε1. The same

argument says that γ
γ

γ..
.γn

2
1

0 < ε1, for each 0 ≤ n < ω. Consequently,

E(0,ω) = {γ0{γ1{γ1...}}} = γ
γ..

.

1
0 = lim

n
E(0,n) = lim

n
γ

γ
γ..

.γn

2
1

0 ≤ ε1. (63)
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In particular, for γ = γn, 0 ≤ n < ω, E(0,ω)(γ) = γγ..
.

≤ ε1.
In spite of the fact that E(0,ω)(γ) satisfies the equation (43) and seems

to be an ε-number, it is not a definition in Cantor’s sense, and it might
be something different from Cantor’s classical ε-numbers and X(0,ω)(γ) =

γγ..
.

< ε1. Why not? We shall show now that this is not the case. Clearly,
by ε0 ≤ γ, E(0,ω)(ε0) ≤ E(0,ω)(γ) and, by ε0 ≤ γn, 0 ≤ n < ω, E(0,ω)(ε0) ≤

E(0,ω) = γ
γ

γ..
.

2
1

0 . On the other hand, by ω < ε0, we obtain

E(0,n+1) = ωω..
.ω

ε
ε0
0

< ε
ε..

.
ε
ε
ε0
0

0

0
0 = X(0,n+1)(ε0). (64)

Since ε0 + 1 < εε0
0 < ε1, by (48) and [Theorem] C, we obtain

ε1 = lim
n

E(0,n+1) = lim
n

ωω..
.ω

ε
ε0
0

≤ lim
n

ε
ε..

.
ε
ε
ε0
0

0

0
0 = lim

n
E(0,n+1)(ε0) ≤

≤ lim
n
{γ0{γ1{γ2{...{γn}}}}} = γ

γ
γ..

.γn

2
1

0 ≤ ε1.

(65)

Consequently, E(0,ω) = γ
γ

γ..
.

2
1

0 = ε1, which completes the proof of Lemma 2.
�

Lemma 3. Let ε′ and ε′′ be neighboring ε-numbers in Cantor’s sense.
Then for each γ, ε′ ≤ γ < ε′′, we have

E(0,ω)(γ) = ε′′; (66)

in particular,

E(0,ω)(ε
′) = ε′ε

′ε′..
.

= ε′′. (67)

Moreover, for each ω-sequence of ordinals γ0, γ1, ..., γn, ... such that ε′ ≤
γn < ε′′, 0 ≤ n < ω, we have

E(0,ω){γ0, {γ1{γ2{...}}}} = γ
γ

γ..
.

2
1

0 = ε′′. (68)

The Proof is absolutely similar to the proof of Lemma 2.
Lemma 4. Let ε0, ε1, ε2, ... be an ascending ω-sequence of ε-numbers.

Then E(0,ω) = ε
ε
ε..

.

2
1

0 = lim
n

εn, and hence is an ε-number in Cantor’s sense.
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Proof. Since ε0 < ε1 < ε2 < ... we have, by (52), E(0,n+1) = ε
ε
ε..

.εn

2
1

0 =
εn. Consequently, by Cantor’s Theorem E, E(0,ω) = lim

n
E(0,n+1) = lim

n
εn

is an ε-number. �
Lemma 5. For any ordinal number γ ≥ ω, E(0,ω)(γ) = γγγ..

.

is an
ε-number in the sense of Cantor. Moreover, for each increasing ω-sequence

of ordinals γ0, γ1, ..., γn, ... such that ω ≤ γ0, E(0,ω) = γ
γ

γ..
.

2
1

0 is an ε-number
in Cantor’s sense.

Proof. By (45), we have ωγ ≥ γ and hence γ < E(γ). This is the
well-known fact that for each ordinal γ, there is an ε-number greater than γ
([56], p. 327). Let ε′′ be the least of such ε-numbers. Take the preceeding ε′

which always exists because ε′′ cannot be a limit of ε-numbers, otherwise, ε′′

could not be the smallest ε-number greater than γ. Obviously, ε′ ≤ γ < ε′′.
Then we apply Lemma 3 and obtain E(0,ω)(γ) = ε′′.

Let now γ0, γ1, ..., γn, ... be an increasing ω-sequence, i.e., γ0 ≤ γ1 ≤ ... ≤
γn ≤ .... If it is stable, i.e., γn0 = γn0+1 = γn0+2 = ..., we put γ = γn0 and

apply the first assertion of Lemma 5, i.e. E(n0,ω) = γ
γ

γ..
.

n0+2
n0+1

n0 = γγγ..
.

= ε′′.

Then, clearly, E(0,ω) = γ
γ

γ..
.
γε′′
n0−1

2
1

0 = ε′′.
If it is not stable, then without loss of generality we can assume that

γ0 < γ1 < ... < γn < .... Suppose now that there are only finite ε-numbers
between these ε-numbers, e.g., γ0 and γn0, and denote the greatest of them
by ε′. Then, clearly, E(n0,ω) = ε′′ and E(0,ω) = ε′′ as in the previous
case. Finally, suppose that there is a ascending ω-sequence εν0 < εν1 < ...
with is cofinal to a ascending ω-sequence γ0 < γ1 < .... Then, evidently,
ε′′ = lim

n
γn = lim

n
εn and the proof that E(0,ω) = ε′′ is similar to that for

Lemma 4. �
Remark 18. It is not true that for an arbitrary ω-sequence of ordinals

γ0, γ1, ..., γn, ... the limit power E(0,ω) = γ
γ..

.γ
..

.

n

1
0 is an ε-number.

Indeed, consider the following ω-sequence ω, 2, 2, ... , then

ω22..
.

= lim
n

ω22..
.2

= ω
lim
n

22..
.2

= ωω . And ωω is not an ε-number.

Indeed, 2ωω
= 2

lim
n

ωn

= lim
n

2ωn
= lim

n
ωωn−1

= ω
lim
n

ωn−1

= ωωω
> ωω. The

moral is that there are many ω-sequences of ordinals and corresponding
skand-exponents whose limit-powers are equal to ε-numbers; on the other
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hand, there are also a lot of ω-sequences of ordinals and the corresponding
skand-exponents whose limit-powers are not ε-numbers at all.

Remark 18 allows us to give the following
Definition 17. By an ε-number we understand any ordinal number of

the form
ε = E(0,ω)(γ), γ ≥ 1, (69)

and also for an arbitrary set E of such ε-numbers in (69) its supremum, i.e.,

ε′ = sup
ε∈E

E . (70)

It is clear that all ε-numbers in Definition 17 are ε-numbers in the sense
of Cantor except two numbers: 1 because 11 = 1 and (43) holds, and ω,
because 2ω = ω and (43) holds, too. Let us denote these first two ε-numbers
by ε0 and ε1, respectively. Since ε2 = E(0,ω)(ω), by Lemma 2, we obtain
that it is the least ε-number in the sense of Cantor; and all finite indexes
of ε-numbers in the sense of Cantor are shifted by adding 2.

Definition 18. Let α = ωκ, κ ≥ 1. Then by a limit-power with the
basis γ > 1 and the same exponents we understand the skand-exponent
E(0,α)(γ), given by the following transfinite recursion:

E(0,ω)(γ) = ε̄1, κ = 1; (71)

E(0,ω2)(γ) = E(0,ω)(ε̄1) = ε̄2, κ = 2; (72)
..................................

E(0,ωn)(γ) = E(0,ω)(ε̄n−1) = ε̄n, κ = n; (73)
..................................

E(0,ωω)(γ) = sup
n

E(0,ωn)(γ) = sup
n

E(0,ω)(ε̄n−1) = ε̄ω, κ = ω; (74)
..................................

In the general case

E(0,ωκ)(γ) = E(0,ω)(ε̄κ−1) = ε̄κ, κ − 1 < κ; (75)

E(0,ωκ)(γ) = sup
λ<κ

E(0,ωλ)(γ) = sup
λ<κ

E(0,ωλ)(γ) = ε̄κ, � ∃ κ − 1. (76)

In accordance with Remark 18 and Definition 18, we are going to de-
scribe in canonical form all ε-numbers.

Theorem 4. There is a one-to-one correspondence between all ordinal
numbers ωκ, 0 ≤ κ ∈ On and all ε-numbers εκ, defined in Definition 17,
as follows: ε0 = E(0,1)(1) and εκ = E(0,ωκ)(2), κ ≥ 1.

Proof. If κ = 0, we put ε0 = 1. If κ > 0, putting in Definition 18
γ = 2, ε̄κ = εκ, we obtain, by Lemmas 2,3,4,5, a successive enumeration of
all ε-numbers in the sense of Definition 17 and thus all ε-numbers in the
sense of Cantor. �
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Theorem 4′. Put ε0 = 1 and ε1 = ω. Then for κ > 1 one has
the following formulas for all ε-numbers: εκ+1 = E(0,ω)(εκ) and εκ+ω =
lim

0≤n<ω
E(0,ω)(εκ+n).

Proof is inside the the proof of Theorem 4.
It is easy to see that if α �= ωκ, κ > 0, then E(0,α)(2) is not an ε-number.

Indeed, put α = ω + 1, then E(0,ω+1) = E(1,ω+1) = ω2; but 2ω2
= ωω �= ω2.

Corollary 6. The set E(α) = {εκ| εκ < ωα}, i.e., the set of all ε-numbers
εκ such that εκ less than the initial number ωα has a power greater than
or equal to ωα.

Proof. If the power of E(α) were less than the power of ωα, then ε =
sup

εκ∈E(α)

εκ would be greater than all of the elements in E(α), and it would

be an ε-number whose power would be less than ωα, because the latter is
not the limit of a transfinite sequence of smaller powers. Thus E(α) ∪ {ε}
would be larger than E(α), which is in contradiction with the maximality
of E(α). Consequently, |E(α)| ≥ |ωα| (|E(α)| and |ωα| mean the cardinality
of E(α) and ωα, respectively).

Corollary 7. The set E(α) = {εκ| εκ < ωα}, i.e., the set of all ε-
numbers εκ such that εκ less than the initial number ωα is a well-ordered
set of the ordinal type ωα and thus has the power of ωα.

Proof. For each κ < ωα, clearly, εκ < ωα. And this is a one-to-one
correspondence between the set (0, ωα) = {κ| κ < ωα} and the set E(α).
Moreover, if κ′ < κ′′ < ωα, then εκ′ < εκ′′ , i.e., the ordinal type (0, ωα)
is the same as E(α). Since by Corollary 6, |E(α)| ≥ |ωα|, we obtain that
|E(α)| = |ωα|.

Corollary 8. Every initial number ωα is an ε-number.
Proof. Clearly, ωα = lim

εκ∈E(α)

εκ and thus, by Definition 17, it is an

ε-number.
Remark 19. The assertion of Corollary 8 was given in [56] and proved

in the particular case ω1. It is well-known that each initial number ωα has
a form ωα = ωλ for some ordinal λ (see, e.g., [36], Chap. VIII, §3, Theorem
9), but usually no one points out that λ = ωα.

Corollary 9. The well-ordered proper class of all ε-numbers is isomor-
phic to On.

The Proof is similar to that for Corollary 7. �
Remark 20. The limit power E(0,ωκ)(γ), κ ≥ 1, in Definition 18 should

be better called the quantified power, because actually we quantify expo-
nents by ω-sequences of the same exponents: 1 < γ < ω, then ω, then ε2,
ε3,..., εω ,..., just to simplify the algorithm of transfinite recursion. We could
do the same thing by a continued exponentials process, e.g., E(0,ω1)(2):
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E(0,2)(2) = 22,..., E(0,n)(2) = 22..
.2

,...E(0,ω)(2) = 22..
.

= ω = ε1;

E(0,ω+1)(2) = ω2, E(0,ω+2)(2) = ω22
,... E(0,ω2)(2) = ω22..

.

= ωω = εε1
1 ;

E(0,ω2+1)(2) = ωω2
, E(0,ω+2)(2) = ωω22

,... E(0,ω3)(2) = ωω22
..

.

= ωωω
,...,

E(0,ωn)(2) = ωω
..

.ω

,...E(0,ω2)(2) = ωωωω..
.

= ε
ε
ε
ε1..

.

1
1

1 = ε2;
.................................
E(0,ω2+1)(2) = ε2

2, E(0,ω2+2)(2) = ε22

2 ,..., E(0,ω2+ω)(2) = ε22..
.

1 = εω
2 ,

E(0,ω2+ω+1)(2) = εω2

2 , E(0,ω2+ω+2)(2) = εω22

2 ,...E(0,ω22)(2) = εε2
2 ;

.................................

E(0,ω3)(2) = ε
ε
ε
ε..

.

2
2

2
2 = ε3;

.................................

E(0,ωω)(2) = ε
ε
ε
ε..

.

4
3

2
1 = εω;

..................................

E(0,ω1)(2) = ε
ε..

.ε
ε..

.ε
..

.

α

ω+1
ω

2
1 = 2E(1,ω1)(2) = 2ω1 = ω1, where 1 ≤ α < ω1.

There is a similar process in the case α = ωλ, λ ≥ 2, i.e., in the calcula-
tion of E(0,ωλ).

Proposition 21. For an arbitrary ordinal number α > 0 and any
1 < γ < ω, E(0,α)(γ) can be expressed by the following unique formula:

E(0,α)(γ) = γE(1,α)(γ) = ε
ε..

.
ε
ε..

.
ε
γ..

.γ

ηn

η2
η1

η1
η1 , (77)

where εη1 > εη2 > ... > εηn are ε-numbers, η1 > η2 > ... > ηn > 0 are
ordinal numbers, and the quantization of them, and of γ in the exponents
is given by β1, β2, ..., βn, βn+1, respectively, 0 ≤ βi < ω, i = 1, 2, ..., n, n+1.

Proof. By Cantor’s normal form of α, it may be represented uniquely
as

α = ωη1β1 + ωη2β2 + ... + ωηnβn + βn+1, (78)

where η1, η2, ..., ηn is a descending sequence of ordinal numbers > 0 and
natural numbers β1, β2, ..., βn, βn+1 are ≥ 0 (see, e.g., [36], Chap. VII, §7,
Theorem 2). Then, by Theorem 4 and Remark 20, we obtain (77). �
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Proposition 22. For every ordinal number γ ≥ 2, the hyper-skand
E(0,Ω)(γ) is the greatest ε-class-number, i.e.,

E(0,Ω)(γ) = γE(1,Ω)(γ) = lim
α∈On

εα = εΩ = Ω = γΩ. (79)

Proof. It is clear that for each ordinal number α > 0, E(α,Ω)(γ) is equal
to E(0,Ω)(γ). In other words, the skand E(0,Ω)(γ) is self-similar, because
each remainder (α, Ω) as an ordered class is equal to (0, Ω), i.e., (α, Ω) and
(0, Ω) are isomorphic as ordered classes, in particular, for α = 1. Since, by
Corollary 9, the class of all ε-numbers has of the same ordinal type as Ω

we obtain that lim
α∈On

εα = lim
α∈On

α = Ω and consequently, γΩ = γ
lim

α∈On
εα

=

lim
α∈On

γεα = lim
α∈On

εα = Ω, i.e., Ω satisfies (43), and thus Ω is an ε-class-

number. �

12. Applications to generalized real fractions
Likewise, we denote here a transfinite α-sequence xα0, xα0+1, ..., xα′, ...,

where α0 ≤ α′ < α < Ω and xα′ ∈ UΩ, as a special skand

X(α0,α) = {xα0, {xα0+1, {...{xα′, {...}}}}} (80)

as a descending sequence of two-elements sets X(α0,α) � X(α1,α) � ... �
X(α′,α) � ..., where X(α′,α) = {xα′ , X(α′+1,α)}, α0 ≤ α′ < α.

Let α be an ordinal of the 2nd type, i.e. that having no predecessor;
in particular, 0 is an ordinal of the 2nd type; its form α = ων, where
ν ≥ 0, is known. Recall also that ordinals of the 1st type are those having
predecessors. (We have already used other terminology above as a limit
ordinal number and an ordinal number which is not a limit number; an
ordinal of the 2nd type and of the 1st type are shorter, and we now prefer
the latter terminology.)

Consider now for a fixed α = ων, ν ≥ 1, the set Aα of all special skands
(henceforth, in short: skands) X(0,α) whose components Xα′ = 0 or Xα′ = 1
and as above we do not differ individuals 0 and 1 with their singletons {0}
and {1} as it demands the definition of Xα′: we simplify a notation without
losting the sense of matter.

We endow Aα with the following lexicographic linear ordering: X(0,α) <

Y(0,α) iff there is an α′, 0 ≤ α′ < α, such that Xα′ = 0 and Yα′ = 1 and at
whichever βth place, β < α′, the elements are equal; i.e., Xβ = Yβ . If in
addition Xβ = 1 and Yβ = 0, for all β > α′, then for such pairs only, there
are no skands Z(0,α) in Aα with X(0,α) < Z(0,α) < Y(0,α). We call those
pairs of neighboring skands twins. We shall identify them and denote the
obtained new element in the canonical form, i.e., of a greater Y(0,α), not
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forgetting that there is a different form of it, i.e., of a smaller X(0,α), and
using it when it is convenient.

Definition 18. By Rα|[0,1] = [0(0,α), 1(0,α)] we denote the quotient set
Aα/∼ of Aα (∼ identifies each pair of twins as one element) with the quo-
tient linear ordering and call it a generalized real number (more precisely,
fractional) unit interval of the power 2|α|.

Here 0(0,α) and 1(0,α) are minimal and maximal elements (integers) of
Rα|[0,1], i.e., skands with 0 and 1 at all places, respectively.

Definition 19. By Qα|[0,1] we denote the subset of Rα|[0,1] of all skands
X(0,α) which are eventually 0 or 1.

In particular, we distinguish in Qα|[0,1] dyadic fractions, i.e. 1
2α′ as X(0,α)

such that Xα′−1 = 1 and Xβ = 0 for all β �= α′−1, for each ordinal number
α′ of the 1st kind, 1 ≤ α′ < α, (which is a twin to Y(0,α) with Yβ = 0 for
0 ≤ β < α′, and Yβ = 1, for α′ ≤ β < α) and also 1

2α′ as X(0,α) such that
Xβ = 0, for 0 ≤ β < α′, and Xβ = 1 for all β ≥ α′, for each ordinal number
α′ of the 2nd kind, 0 ≤ α′ < α. In other words, in short, 1

2α′ are skands
X(0,α) which are eventually 1.

Proposition 23. Rα|[0,1] and Qα|[0,1] are the dense linear orderings and
Qα|[0,1] is dense in Rα|[0,1].

The Proof is an immediate consequence of Definitions 18 and 19 to-
gether with the definition of the ordering on Aα/∼.

Theorem 5. The space Rα|[0,1] is continuous: i.e., every non-empty
subset S of Rα|[0,1] has a smallest upper bound M(0,α) = sup S and a great-
est lower bound m(0,α) = inf S in Rα|[0,1].

Proof. If there exists a maximal element max S in S, then sup S =
max S, if there exists a minimal element min S in S, then inf S = min S.

Consider now the case when S has no maximal element and prove that
there exists M(0,α) = sup S in Rα|[0,1], i.e., M(0,α) ∈ Rα|[0,1] such that for
all X(0,α) ∈ S we have X(0,α) < M(0,α) and for each Y(0,α) ∈ Rα|[0,1] such
that Y(0,α) < M(0,α) there is Z(0,α) ∈ S such that Y(0,α) < Z(0,α).

Indeed, there exists the smallest ordinal α1 ≥ 0 such that there is an
element X1

(0,α) ∈ S with X1
α1

= 1 and for every X(0,α) ∈ S, Xβ = 0, for each
0 = α0 ≤ β < α1 (if α1 = 0, then conditions Xβ = 0, β < α1, are absent).
Otherwise, S should be {0(0,α)} or the empty set ∅, which is impossible by
assumption.

We shall define M(0,α) ∈ Rα|[0,1] by induction on its non-trivial compo-
nents, putting at the beginning Mα1 = 1 and Mβ = 0, for each 0 ≤ β < α1,
and then define the following subset S1 = S \ {X(0,α)| X(0,α) ∈ S, X(0,α) <

X1
(0,α)} of S = S0.
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Since S has no maximal element and X1
(0,α) ∈ S, there exists the smallest

ordinal α2 > α1 such that there is an element X2
(0,α) > X1

(0,α) in S1 with
X2

α2
= 1, and for every X(0,α) ∈ S1, Xβ = 0, for each α1 < β < α2.

We continue to define M(0,α) for the next series of indexes by putting
Mα2 = 1 and Mβ = 0, for each α1 < β < α2, and define now S2 =
S1 \ {X(0,α)| X(0,α) ∈ S1, X(0,α) < X2

(0,α)}.
Suppose that, for each 1 ≤ k ≤ n < ω, we have already found the

smallest ordinal αk > αk−1 and elements Xk
(0,α) > Xk−1

(0,α)
such that Xk

αk
= 1

and in addition for every X(0,α) ∈ Sk−1 its components Xβ = 0, where
αk−1 < β < αk. Suppose also that we have already defined the next
components of M(0,α), by putting Mαk

= 1 and Mβ = 0, for each αk−1 <

β < αk, as well as the set Sk = Sk−1 \ {X(0,α)| X(0,α) ∈ Sk−1, X(0,α) <

Xk
(0,α)}. Notice that in this induction we put formally X0

(0,α) = 0(0,α).
Since Sn has no maximal element and Xn

(0,α) ∈ S, there exists the small-
est ordinal αn+1 > αn such that there is an element Xn+1

(0,α) > Xn
(0,α) in Sn

with Xn+1
αn+1

= 1 and for every X(0,α) ∈ Sn, Xβ = 0, for each αn < β < αn+1.
We put Mαn+1 = 1 and Mβ = 0, for each αn < β < αn+1, and define
Sn+1 = Sn \ {X(0,α)| X(0,α) ∈ Sn, X(0,α) < Xn+1

(0,α)
}.

Thus Sn are defined for all 0 ≤ n < ω and we can consider their in-
tersection

⋂
n

Sn. If
⋂
n

Sn = ∅, i.e., there are no more elements X(0,α) in

S with Xβ = 1, β > αn, for each 0 ≤ n < ω, then we put Mβ = 0, for
all αω ≤ β < α, where αω = lim

n
αn. Since for each 0 ≤ α′ < α, Mα′ has

been already defined, we obtain an element M(0,α) ∈ Rα|[0,1] and we claim
that it is sup S. Indeed, by construction, for every X(0,α) ∈ S, we have
X(0,α) < M(0,α). If Y(0,α) ∈ Rα|[0,1] and Y(0,α) < M(0,α), then there is a
minimal index αn, 0 ≤ n < ω, such that Yαn = 0 and Mαn = 1. Take
Xn

(0,α) ∈ S. It is clear that Y(0,α) < Xn
(0,α). Thus in this case the existence

of sup S is proved.
If

⋂
n

Sn �= ∅, then we define Sω =
⋂
n

Sn. Since Sω �= ∅ there exists the

smallest ordinal αω+1 ≥ αω such that there is an element Xω+1
(0,α)

in Sω with

Xω+1
(0,α) > Xn

(0,α), for each 0 ≤ n < ω, Xω+1
αω+1

= 1, and for every X(0,α) ∈
Sω, Xβ = 0, for each αω ≤ β < αω+1 (if αω+1 = αω, then conditions
Xβ = 0, β < αω+1, are absent). We put Mαω+1 = 1 and Mβ = 0, for each
αω ≤ β < αω+1 and define the following set Sω+1 = Sω \ {X(0,α)| X(0,α) ∈
Sω, X(0,α) < Xω+1

(0,α)
}. Then we continue our algorithm as above.

Since each step of our inductive construction enlarges the index αν ,
1 ≤ ν, at least by 1, we shall exhaust all of 0 ≤ α′ < α and obtain an
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element M(0,α) ∈ Rα|[0,1] such that Xν
(0,α) < M(0,α), for each ν ≥ 1. Since⋂

ν
Sν = ∅ (otherwise, M(0,α) should be an elements of

⋂
ν

Sν and thus the

greatest element of S) we conclude that M(0,α) = sup S. Indeed, for each
X(0,α) ∈ S, X(0,α) < M(0,α) and if Y(0,α) ∈ Rα|[0,1] and Y(0,α) < M(0,α), then
there is the smallest ordinal αν condidered above such that Yαν = 0 and
Mαν = 1. Take Xν

(0,α) ∈ S and by construction Y(0,α) < X(0,α). �
The proof of the existence of inf S in the case when S has no minimal

element is absolutely similar. We omit details, but there is another proof of
it. Putting S∗ = {1(0,α) − X(0,α)| X(0,α) ∈ S}, we obtain S∗ ⊂ Rα|[0,1] and
S∗ has no maximal element. By the above proof, there exists a smallest
upper bound M(0,α) of S∗. If we put m(0,α) = 1(0,α) − M(0,α), then it is a
greatest lower bound of S. (For the meaning of 1(0,α) −X(0,α) see the next
paragraph.) �

Theorem 6. The covering dimension of a topological space Rα|[0,1] in
the order topology is equal to 1, i.e., dim Rα|[0,1] = 1.

Proof. It is well known that every linearly ordered space X is heredi-
tarily normal ([11] Bourbaki, [1948]).

For every normal space X dim X ≤ Ind X ([57] Vedenissoff, [1939]).
For every space Y the properties dim Y = 0 and Ind Y = 0 are equiv-

alent and have as their consequence the normality of Y ([2] Chap. II, §3,
Proposition 3, p. 170).

It is also known that if every hereditarily normal space X is a union of
two spaces Y and Z such that Ind Y = 0 and Ind Z = 0, then Ind X ≤ 1
([35] Katětov, [1951]).

Putting Y = Qα|[0,1] and Z = Rα|[0,1] \ Y , we notice that since Y and
Z are dense in themselves and in Rα|[0,1], we conclude that ind Y = 0
and ind Z = 0; therefore, they are hereditarily disconnected ([30] Haus-
dorff, [1914]), and being linearly ordered, are strongly zero-dimensional
([31] Herrlich, [1965]), which is equivalent to Ind Y = 0 and Ind Z = 0 ([23]
Engelking, [1977]). Then for Rα|[0,1] = Y ∪ Z we obtain Ind Rα|[0,1] ≤ 1.

Clearly, since Rα|[0,1] is continuous then ind Rα|[0,1] = 1 and hence,
by 1 = ind Rα|[0,1] ≤ Ind Rα|[0,1] = 1 and dim Rα|[0,1] ≤ Ind Rα|[0,1], we
obtain a desired equality dim Rα|[0,1] = 1. Otherwise, if dim Rα|[0,1] = 0,
then Ind Rα|[0,1] = 0, which is false, because Ind Rα|[0,1] = 1. �

The nature of the 1-dimensional manifold Rα|[0,1] (a generalized real
number unit interval) which comes from the real number unit interval
Rω|[0,1] is illustrated by the following figures, where α = ω · 2. The first
figure is a bifurcation of a rational number, for a example, x = 1

2 :
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Fig. 2

and the second figure is a bifurcation of an irrational number, for example,
1
π :
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�= 0, 01101...; 111...

0, 01101...; 111...

Fig. 3
We can also demonstrate a canonical embedding iω·2ω : Rω|[0,1] → Rω·2|[0,1]

which preserves the linear ordering, given by iω·2ω (X(0,ω)) = Y(0,ω·2), where
Yβ = Xβ, 0 ≤ β < ω, and Yβ = 0, ω ≤ β < ω · 2.

Moreover, for each α = ω · ν and β = ω · μ, where ν ≤ μ, there is
a canonical embedding iβα : Rα|[0,1] → Rβ|[0,1] which preserves the linear
ordering, given by iβα(X0,α) = Y(0,β), where Yγ = Xγ , 0 ≤ γ < α, and
Yγ = 0, α ≤ γ < β.

We can also formally consider the case where α = Ω = ω · Ω and the
rational skands X(0,Ω), which are eventually 0 or 1, form a proper class
QΩ|[0,1] in NBG−. As to RΩ|[0,1], i.e., the union of rational and irrational
skands X(0,Ω), it is not an object in NBG− because irrational skands are
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elements of a super-class and outside of NBG−-type theory. Nevertheless,
one can consider a canonical embedding iΩα : Rα|[0,1] → RΩ|[0,1] which
preserves the linear ordering, given by iΩα (X(0,α)) = Y(0,Ω), where Yγ = Xγ ,
0 ≤ γ < α, and Yγ = 0, α ≤ γ < Ω. Moreover, QΩ|[0,1] =

⋃
α<Ω

iΩα (Rα|[0, 1]),

where α = ω · ν, 1 ≤ ν < Ω.
One can also prove that QΩ|[0,1] and RΩ|[0,1] are dense in themselves;

QΩ|[0,1] is dense in RΩ|[0,1] and RΩ|[0,1] is continuous. It is also clear that
ind QΩ|[0,1] = 0 and ind RΩ|[0,1] = 0; therefore, they are hereditarily dis-
connected, and being linearly ordered, are strongly zero-dimensional, which
is equivalent to Ind Y = 0 and Ind Z = 0. Then for RΩ|[0,1] = Y ∪ Z
we obtain Ind RΩ|[0,1] ≤ 1. Clearly, since RΩ|[0,1] is continuous, then
ind RΩ|[0,1] = 1 and hence, by 1 = ind RΩ|[0,1] ≤ Ind RΩ|[0,1] = 1 and
dim RΩ|[0,1] ≤ Ind RΩ|[0,1], we obtain a desired equality dim RΩ|[0,1] = 1.
Otherwise, if dim RΩ|[0,1] = 0, then Ind RΩ|[0,1] = 0, which is false, because
Ind RΩ|[0,1] = 1.

Unfortunately, all these natural arguments cannot be applied, because
all references are to results valid only for topological spaces which are sets,
and there are no similar results (even definitions of topology, dimensions,
normality, etc.) for point proper classes, and it is not clear how to pass this
gap. We are in a situation where something is evident, but there are no
resources to prove it. We can only formulate the following conjecture.

Conjecture 3. RΩ|[0,1] is a maximally dense one-dimensional contin-
uum whose elements (mostly hyper-classes) are limits of QΩ|[0,1], i.e., limits
of Ω-sequences whose terms are sets. �

13. Additive and multiplicative operations on generalized frac-
tions

In the next paragraph we shall formally extend for each ordinal α = ων,
1 ≤ ν ≤ Ω, the closed unit Rα|[0,1] to the set (hyper-class in the case
ν = Ω) Rα of generalized real numbers which is a one-dimensional linearly
ordered continuous dense homogeneous point set (a dense homogeneous
point manifold in the sense of Cantor). Unfortunately, only for ν = 1,
i.e. α = ω, Rω is supplied with addition and multiplication which are
associative, commutative and distributive; moreover, Rω = R is the field
of real numbers. If ν > 1, then it is not easy to completely define addition
and multiplication in Rα, although it has been tried in [6]. We introduce
here our version, which is different both in notations and in intention from
that in [6].

For ordinal numbers there is a commutative and associative natural sum
and a natural product in the sense of Hessenberg ([32], 591-594); i.e., if
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ordinal numbers ξ and η are represented in the form of normal expansion
ξ = ωξ1n1 + ωξ2n2 + ... + ωξrnr and η = ωξ1m1 + ωξ2m2 + ... + ωξrmr,
respectively, where ξ1 > ξ2 > ... > ξr are ordinal numbers, n1, n2, ..., nr

and m1, m2, ..., mr are integers ≥ 0, then by definition the natural sum is
the following ordinal number:

ξ ⊕ η = ωξ1(n1 + m1) + ωξ2(n2 + m2) + ... + ωξr(nr + mr). (81)

In order to define the natural product α � β of the ordinal numbers α
and β one multiplies their normal expansions as if they were polynomials of
variable ω; multiplying two powers of number ω, one forms the natural sum
of the exponents and arranges the terms obtained from the multiplication
according to decreasing exponents.

(Notice that instead of ω we can consider any ordinal number γ > 1 as
a basis of normal expansion of ξ with 0 ≤ ni < γ, 1 ≤ i ≤ r, see [36], Chap.
XII, §7, e.g., γ = 2; we use shall it below.)

Thus, the problem of the existence of the desired algebraic operations
on Rα concerns only generalized real fractions of Rα|[0,1].

So addition “+”, subtraction “−”, multiplication “·” and division “/” are
not defined for all generalized real fractions X(0,α) and Y(0,α) in Rα|[0,1] but
are defined for some of them. Here are typical cases of such a possibility:

1). For every X(0,α), Y(0,α) ∈ Rα|[0,1], such that Xα′ ≤ Yα′ , 0 ≤ α′ < α,
we put Y(0,α) − X(0,α) = Z(0,α), where Zα′ = Yα′ − Xα′, 0 ≤ α′ < α. E.g.,
X(0,α)−X(0,α) = 0(0,α) or, for each X(0,α) ∈ Rα|[0,1], 1[0,1]−X(0,α) is always
well defined.

If Y(0,α) = 1
2α′ and X(0,α) = 1

2α′′ , 0 ≤ α′ < α′′ < α, the subtraction
1

2α′ − 1
2α′′ is well defined. Indeed, in the case when α′, α′′ are ordinal numbers

of the 2nd kind 1
2α′ − 1

2α′′ = Z(0,α), where Zβ = 1, for α′ ≤ β < α′′, and
Zβ = 0, for β < α′ or β ≥ α′′; in the case when α′, α′′ are ordinal numbers
of the 1st kind 1

2α′ − 1
2α′′ = Z(0,α), where Zβ = 1, for α′ < β ≤ α′′, and

Zβ = 0, for β ≤ α′ or β > α′′; and at last in the case when α′ is an ordinal
of the 1st kind and α′′ is an ordinal of the 2nd kind 1

2α′ − 1
2α′′ = Z(0,α),

where Zβ = 1, for α′ < β < α′′, and Zβ = 0, for β ≤ α′ or β ≥ α′′. (Note
that we use another notation in an appropriate case for twins.)

We will say that the interval [X(0,α), Y(0,α)] is of length 1
2α′ , if Y(0,α) −

X(0,α) = 1
2α′ , 0 ≤ α′ < α.

2). We can define X(0,α) + Y(0,α) in the case where, for each 0 ≤ α′ < α,
Xα′ and Yα′ are both 0, or one of them is 1 and another one is 0. Then the
result is Z(0,α) = X(0,α) + Y(0,α) such that Zα′ = Xα′ + Yα′ , 0 ≤ α′ < α. In
particular, if Z(0,α) = Y(0,α)−X(0,α), then X(0,α)+Z(0,α) = Z(0,α)+X(0,α) =
Y(0,α).
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If α′ is an ordinal of the 1st kind, then 1
2α′ + 1

2α′ = 1
2α′−1 , 0 ≤ α′ < α;

and if 1 ≤ α′ < α′′ < α, are arbitrary ordinal numbers of the 1st kind, then
1

2α′ + 1
2α′′ = 1

2α′′ + 1
2α′ is Z(0,α) such that Zβ = 1, for β = α′, α′′; otherwise

Zβ = 0. If 0 ≤ α′′ < α is an ordinal of the 2nd kind and 0 ≤ α′ < α′′ < α

is an ordinal of the 1st kind, then 1
2α′ + 1

2α′′ = 1
2α′′ + 1

2α′ = Z(0,α) such that
Zβ = 1, for β = α′ and β ≥ α′′; otherwise, Zβ = 0.

On the other hand, there are no magnitudes in Rα|[0,1] such as 1
2α′ + 1

2α′ ,
for every 0 ≤ α′ < α which is an ordinal number of the 2nd kind, because
there is no ordinal number α′ − 1; as well as 1

2α′ + 1
2α′′ , if α′ is an ordinal

number of the 2nd kind and α′ < α′′.
Moreover, we can define addition X(0,α) + Y(0,α) in all cases which avoid

the addition of components of the latter cases when sums of dyadic fractions
do not exist.

3). For 1 ≤ α′ < α, where α′ is an ordinal number of the 1st kind,∑
α′≤β<α′+ω

1
2β = 1

2α′−1
− 1

2α′+ω
, where by an infinite sum we understand

the supremum of finite sums, if of course they are well defined. Indeed,
1

2α′ + 1
2α′+1

+ ... + 1
2α′+n

+ ... = sup
n

( 1
2α′ + 1

2α′+1
+ ...+ 1

2α′+n
) = sup

n
[( 1

2α′−1
−

1
2α′ )+ ( 1

2α′+1
− 1

2α′ )+ ...+( 1
2α′+n−1

− 1
2α′+n

)] = sup
n

( 1
2α′−1

− 1
2α′+n

) = 1
2α′−1

−
inf
n

1
2α′+n

= 1
2α′−1

− 1
2α′+ω

.

4). We also put 1
2α′′ · 1

2α′ = 1
2α′′ L

α′ , 0 ≤ α′, α′′ < α.
5). Each X(0,α) ∈ Rα|[0,1] can be divided by 2. Indeed, it is an immediate

consequence of the following propositions.
Theorem 7 Each X(0,α) ∈ Rα|[0,1], in particular, 0 = 0(0,α) and 1 =

1(0,α) with 0 and 1 in all places, respectively, can be represented by the
following formula:

X(0,α) =
∑

0≤α′<α

F (α′)
2α′+1

, (82)

where the summation is taken over all ordinals 0 ≤ α′ < α, and F (α′)
is equal to the element of the component Xα′ of X(0,α). In particular, for
0 ≤ α0 < α, we obtain the following formula:

1
2α0

=
∑

α0≤α′<α

1
2α′+1

=
1

2α0+1
+

1
2α0+2

+ ...+
1

2ω+1
+ ...+

1
2α′+1

+ ... (83)

The Proof is an immediate consequence of the above definitions.
Thus, we can divide each X(0,α) ∈ Rα|[0,1] by 2, changing each term 1

2β

in (82) by 1
2β+1 and adding summands 1

2ωη+1 , if Xβ = 1, α′ ≤ β < α′ + ων,
for some 0 ≤ α′ < α, where α′, is an ordinal number of the 2nd kind such
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that α′ +ων < α, 1 ≤ η < ν, and the sum of all changed terms is the result
Z(0,α) = X(0,α)/2 = X(0,α) · 1

2 . �
Lemma 6. Each interval [X(0,α), Y(0,α)] of length 1

2α′ , 0 ≤ α′ < α, can
be halved.

Proof. In fact, Y(0,α) − X(0,α) = 1
2α′ or Y(0,α) = X(0,α) + 1

2α′ = X(0,α) +
1

2α′+1 + 1
2α′+1 . Consequently, Y(0,α) − 1

2α′+1 = X(0,α) + 1
2α′+1 and hence

[X(0,α), X(0,α)+ 1
2α′ ]∪[Y(0,α)− 1

2α′ , Y(0,α)] = [X(0,α), Y(0,α)]. Moreover, lengths
of [X(0,α), X(0,α)+ 1

2α′
+1

] and [Y(0,α)− 1
2α′+1 , Y(0,α)] are equal to 1

2α′+1 = 1
2α′ · 12 .

�
Although there are no magnitudes in Rα|[0,1] like n

2α′ , for each 2 ≤ n <

ω, where 0 ≤ α′ < α is an ordinal number of the 2nd kind, there are
magnitudes in Rα|[0,1] of multiplications 1

2β · 2α′
for some ordinals 1 ≤

β, α′ < α = ων, ν ≥ 1, e.g., 1
2ω · 2ω = 1(0,α), which is really unexpected.

Proposition 24. For each α′, α′′ ∈ On, 0 ≤ α′, α′′ < α = ων, ν ≥ 1,
the following formula

1
2α′ =

1
2α′⊕ω′′ · 2α′′

(84)

holds; in particular, 1
ω · ω = 1

2ω · 2ω = 1(0,α).

Proof. Since 1
2α′ · 1

2α′′
def
= 1

2α′⊕ω′′ it is sufficient to show that 1
2α′′ ·2α′′

= 1.
By Proposition 24, we obtain the following identities:

1 = 1
20 = 1

2 + 1
22 + 1

23 + ... = ( 1
22 + 1

23 + ...) + ( 1
22 + 1

23 + ...) =
( 1
22 + 1

23 + ...) · 2 = 1
2 · 2 = [( 1

23 + 1
24 + ...) + ( 1

23 + 1
24 + ...)] · 2 =

( 1
23 + 1

24 + ...) · 22 = 1
22 · 22 = ... = [( 1

2n+1 + 1
2n+2 + ...)+

( 1
2n+1 + 1

2n+2 + ...)] · 2n−1 = ( 1
2n+1 + 1

2n+2 + ...) · 2n−1+
( 1
2n+1 + 1

2n+2 + ...) · 2n−1 = ( 1
2n+1 + 1

2n+2 + ...) · 2n = 1
2n · 2n =

( 1
2n − 1

2ω + 1
2ω+1 + 1

2ω+2 + ...) · 2n = ... =
= ( 1

2ω − 1
2ω + 1

2ω+1 + 1
2ω+2 + ...) · 2ω =

( 1
2ω+1 + 1

2ω+2 + ...) · 2ω = 1
2ω · 2ω = ... =

= ( 1
2α′′+1

+ 1
2α′′+2

+ ...) · 2α′′
= 1

2α′′ · 2α′′
.

(85)

We also need the following lemma.
Lemma 7. For every X(0,α) < Y(0,α) in Rα|[0,1] there are X ′

(0,α) < Y ′
(0,α)

in Qα|[0,1] such that X(0,α) < X ′
(0,α), Y ′

(0,α) < Y(0,α) and Y ′
(0,α)−X ′

(0,α) = 1
2α′

for some 2 ≤ α′ < α; in particular, for each Y(0,α) there is 1
2α′ such that

1
2α′ < Y(0,α).

Proof. Since X(0,α) < Y(0,α) there exists α′, 0 ≤ α′ < α such that
Xα′ = 0, Yα′ = 1 and Xβ = Yβ , for all 0 ≤ β < α′. There is a minimal
α′′ > α′ such that Xα′′ = 0; otherwise, Xβ = 1, for all β > α′ and hence
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Xα′ should be equal to 1. Consider X ′
(0,α) such that X ′

α′′ = 1, X ′
β = Xβ,

0 ≤ β < α′′, and X ′
β = 0, β > α′′. Clearly, X(0,α) < X ′

(0,α) < Y(0,α).
Consider Y ′

(0,α) such that Y ′
α′′+1 = 1 and Y ′

β = X ′
β, 0 ≤ β ≤ α′′. Clearly,

X ′
(0,α) < Y ′

(0,α) < Y(0,α) and Y ′
(0,α) − X ′

(0,α) = 1
2α′′+1

, i.e., α′ = α′′ + 1. �
Definition 20. Let X(0,α) and Y(0,α) be two elements of Rα|[0,1] such

that X(0,α) ≤ Y(0,α) and Y(0,α) − X(0,α) is defined. Then the generalized
real number l(0,α) = Y(0,α) − X(0,α) is called a length of the closed interval
[X(0,α), Y(0,α)] and of the open interval (X(0,α), Y(0,α)).

Theorem 8. Let [X(0,α), Y(0,α)] ⊃ [X1
(0,α), Y

1
(0,α)] ⊃ ... ⊃ [Xα′

(0,α), Y
α′
(0,α)] ⊃

... be a system of embedded closed intervals of Rα|[0,1] such that inf
α′

lα
′

(0,α) =

0(0,α); then there exists a unique element Z(0,α) ∈ Rα|[0,1] such that it be-
longs to all these intervals, i.e.,

⋂
α′

[Xα′
(0,α), Y

α′
(0,α)] = Z(0,α).

Proof. By Theorem 5, there exist M̄(0,α) = sup
0≤α′<α

{Xα′
(0,α)} and m̄(0,α) =

inf
0≤α′<α

{Y α′
(0,α)} in Rα|[0,1]. Then Z(0,α) = M̄(0,α) = m̄(0,α). Otherwise, by

Lemma 7, for m̄(0,α) < M̄(0,α) in Rα|[0,1] there are X ′
(0,α) < Y ′

(0,α) in Qα|[0,1]

such that m̄(0,α) < X ′
(0,α) < Y ′

(0,α) < M̄(0,α) and Y ′
(0,α) − X ′

(0,α) = 1
2α′

for some 2 ≤ α′ < α, which is in contradiction with the assumption that
inf
α′ lα

′
(0,α) = 0(0,α), because [X ′

(0,α), Y
′
(0,α)] ⊂ [Xα′

(0,α), Y
α′
(0,α)], for each 0 ≤ α′ <

α. �
Theorem 9. Rα|[0,1] in the order topology is a compact Hausdorff space.
Proof. We already know that the linearly ordered space Rα|[0,1] is

normal. Let now γ = {Uλ} | λ ∈ Λ be an arbitrary covering of Rα|[0,1],
consisting of open intervals Uλ of Rα|[0,1]. We have to prove that there ex-
ists a finite subcovering of γ, which covers Rα|[0,1]. Suppose the contrary,
and we cannot choose such a finite subcovering. By Lemma 6, we can halve
Rα|[0,1] = [X(0,α), Y(0,α)] (evidently, X(0,α) = 0(0,α) and Y(0,α) = 1(0,α)) and
choose one [X1

(0,α), Y
1
(0,α)] of the parts that cannot be covered by finite ele-

ments of γ. Then we halve [X1
(0,α), Y

1
(0,α)] and choose one [X2

(0,α), Y
2
(0,α)] of

the parts that cannot be covered by finite elements of γ. We continue this
process and conclude that [Xω

(0,α), Y
ω
(0,α)] cannot be also covered by finite

elements of γ, otherwise, [Xn
(0,α), Y

n
(0,α)] can be covered by finite elements

of γ, which is in contradiction with our choice. We halve [Xω
(0,α), Y

ω
(0,α)]

and continue our choice for each 0 ≤ α′ < α. We have gotten a system
[X(0,α), Y(0,α)] ⊃ [X1

(0,α), Y
1
(0,α)] ⊃ ... ⊃ [Xα′

(0,α), Y
α′
(0,α)] ⊃ ... of embedded

closed intervals of Rα|[0,1] such that inf
α′ lα

′
(0,α) = 0(0,α). Then, by Theorem
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8, there exists a unique element Z(0,α) ∈ Rα|[0,1] such that it belongs to
all these intervals, i.e.,

⋂
α′

[Xα′
(0,α), Y

α′
(0,α)] = Z(0,α). Since γ is a covering

of Rα|[0,1] there exists an element Uλ ∈ γ such that Z(0,α) ∈ Uλ. Since
inf
α′

lα
′

(0,α) = 0(0,α) we conclude that there exists an ordinal number α′ < α

such that [Xα′
(0,α), Y

α′
(0,α)] ⊂ Uλ and one-element subcovering Uλ of γ covers

[Xα′
(0,α), Y

α′
(0,α)], which is in contradiction with our choice. Thus the assump-

tion that there is no finite subcovering of γ which covers Rα|[0,1] is wrong.
�

14. Generalized real numbers and generalized straight lines
Now we are going to extend Rα|[0,1], α = ων, ν ≥ 1, to the set Rα of all

generalized real numbers.
By R+

α we denote Rα|[0,1]∪(Rα|(0,1])∗, where (L)∗ is the backwards linear
ordering of L = Rα|(0,1] = Rα|[0,1]\{0(1,α)

}, and identify 1(0,α) and (1(0,α))∗

with the ordinal 1, and each ordinal 2α′
, 0 < α′ < α with ( 1

2α′ )∗ ∈ L∗ with
the obvious ordering, adding to the following already defined relations:
Y < Z for each Y �= 1(1,α) in L and each Z �= (1(0,α))∗ in (L)∗. Putting
R−

α = (R+
α )∗ and denoting (X(0,α))∗ by −X(0,α), for every X(0,α) ∈ R+

α ,
identifying 0(1,α) and −0(1,α), we define Rα = R−

α ∪ R+
α as generalized

real numbers with the obvious ordering, adding to the following already
defined relations: X(0,α) < Y(0,α), for each X(0,α) �= −0(1,α) in R−

α and each
Y(0,α) �= 0(1,α) in R+

α . It is clear that Rα is a set of the power 2|α|.
Similarly, we can extend Qα|[0,1] to the dense subordering subset Qα of

Rα and call it generalized rational numbers. Its cardinality is
∑

α′<α

2|α′|.

One can easily prove that Qα is dense in Rα; dim Qα = 0, dim (Rα \
Qα) = 0, dim Rα = 1; Rα is continuous, i.e., for every bounded set
Xα ⊂ Rα, there exists an interval [α0, α1] such that Xα ⊆ [α0, α1] has
a smallest upper bound and a greatest lower bound; every closed bounded
set is compact; each Dedekind section in Rα has no gap.

In the case α = ωκ, κ ≥ 1 we can represent Rα in a more natural form.
Definition 21. By a set R+

α of all non-negative generalized numbers we
understand an extended system of embedded curly braces

...{−α′...{−1{0{1...{α′...}}}}} (86)

filled by 0 or 1 such that for each X(−α,α) ∈ R+
α , Xα′ = 1 only for finite

number indexes, −α < α′ < 0. We consider on R+
α the lexicographic

ordering identifying twins as above. If all non-negative places are filled by
0 we have the usual ordinal numbers in Cantor’s normal form with base 2
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and the lexicographic ordering of them which coincides with the usual one.
By a set R−

α of all non-positive generalized numbers we understand the
backwards linear ordering (R+

α )∗, and denote X∗
(−α,α) ∈ (R+

α )∗ by −X(−α,α).
At last, by a set Rα of all generalized numbers we understand R−

α ∪R+
α with

the natural identification 0+
(−α,α) and 0−(−α,α) and a clear linear ordering.

Further we denote by X(−α,α) an arbitrary element of Rα which can be
positive, negative or zero.

Theorem 10. If α = ωκ, κ ≥ 1, then Rα is topologically and order
isomorphic to Rα in the sense of Definition 22.

Proof. We give only a sketch of a proof. It is enough to prove that
R+

α \ Rα|[0,1) is isomorphic to R+
α \ Rα|[0,1) in the sense of Definition 22,

because Rα|[0,1) are isomorphic in both senses: notice that Rα|(0,1] are also
isomorphic in both senses.

Since Rα|(0,1] and (Rα|(0,1])∗ are evidently topologically isomorphic it is
enough to show that (Rα|(0,1])∗ and {X(−α,α) ∈ Rα | X(−α,α) ≥ 1(−α,α)} or
Rα|(0,1] and {X(−α,α) ∈ Rα | X(−α,α) ≥ 1(−α,α)} are topologically isomor-
phic, respectively.

This isomorphism can be defined by the following transfinite induction:
the first step is to show that Rα|[ 1

2
,1] is isomorphic to Rα|[1,2]. It can be done

by putting in correspondence 1
2 to 2 and 1 to 1, respectively (we obviously

simplify the notation). By halving the intervals [12 , 1] and [1, 2] we put
their centers in correspondence to each other, i.e., 1

2 + 1
22 to 1 + 1

2 , and
do the same (i.e., halving the intervals) with each corresponding interval
[ 12 , 1

2 + 1
22 ] and [1+ 1

2 , 2] as well as [ 12 + 1
22 , 1] and [1, 1+ 1

2 ], respectively. Of
course, the limit ends will be in this natural correspondence and we continue
halving further and further, i.e., α times. It is clear that the closures of
the corresponding isomorphic sets of halving are also isomorphic and they
coincide with Rα|[ 1

2
,1] and Rα|[1,2], respectively.

We can do the same with Rα|[ 1
22

,1] and Rα|[1,22], respectively, and no-

tice that a new isomorphism restricted on Rα|[ 1
2
,1] and Rα|[1,2], respec-

tively, will coincide with the previous one. The limit isomorphism between
Rα|( 1

2ω ,1] and Rα|[1,2ω) is obvious, which we extend to the isomorphism
between Rα|[ 1

2ω ,1] and Rα|[1,2ω].
In the same manner we show that Rα|[ 1

2ω+n , 1
2ω ] and Rα|[2ω,2ω+n], 1 ≤ n <

ω, are isomorphic. (Only notice here that if α �= ωκ, κ ≥ 1, then this step
would be wrong.) And extend it to the isomorphism between Rα|[ 1

2ω2 , 1
2ω ]

and Rα|[2ω,2ω2] and hence between Rα|[ 1
2ω2 ,1] and Rα|[1,2ω2]. The further
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steps are similar. We omit the details. The resultant ordering isomorphism
between Rα in both senses will be an isomorphism, too. �

If each element of R(−α,α), α = ωξ, ξ ≥ 0, is considered as a geometric
point, then we denote this point set by L(−α,α) and call it a generalized
straight line. If ξ = 0, then we obtain a classical Euclidean line, which
as we know is uniquely defined by Hilbert’s axioms. Moreover, by one of
Euclid’s definitions: “The straight line is a line such that it is uniformly
arranged towards all its points”. It is not so in the cases where ξ > 0;
i.e. there are different kinds of points, e.g., ξ = 1 and 1

2ω and 1
2ω+1 in

R(−ω1,ω1), which have a different structure to the right of them, though the
same structure to the left. We are going to state the following conjecture.

Conjecture 4. There exists a system of axioms including a general-
ized Archimedian axiom, a generalized Cantor’s axiom of continuity, which
uniquely defines the generalized straight line L(−ωξ,ωξ), ξ ≥ 1, with an iso-
morphism ϕ : L(−ωξ,ωξ) → R(−ωξ,ωξ).

In favour of this conjecture says the following corollary of Proposition
26:

Corollary 10. For each generalized dyadic fraction a = 1
2α′ , α′ ∈ On,

1 ≤ α′ < α = ωξ, ξ ≥ 1, and arbitrary positive generalized real number
b ∈ R+

(−ωξ,ωξ)
there exists an ordinal number ν, 1 ≤ ν < ωξ, such that

a · ν > b.
Proof. Indeed, there exists an ordinal number β, 0 ≤ β < α = ωξ, such

that 2β > [b], where [b] is an integral part of b. Putting α′′ = α′ ⊕ β, we
obtain ν = 2α′⊕β which, by Proposition 24, satisfies the desired condition,
i.e., a · ν = 1

2α′ · ν = 1
2α′ · 2α′⊕β = 1

2α′ · 2α′ � 2β = ( 1
2α′ · 2α′

) · 2β = 1 · 2β > b.
�

Note also that the geometry of such straight lines is different from the
classical one; i.e., L(−ω,ω). E.g., in the generalized plane, i.e., L2

(−ωξ,ωξ) =
L(−ωξ,ωξ)×L(−ωξ ,ωξ), ξ ≥ 1, it is not a case that each of two different points
of R2

(−ωξ,ωξ) belongs to a generalized line in R2
(−ωξ,ωξ). For example, there

are straight lines in R2
(−ωξ,ωξ) such as y = x, or y = −x, or x = const, or

y = const, but there is no line given by the following equation: y = 2x.
So for possible straight lines in R2

(−ωξ,ωξ), ξ ≥ 1, a generalized version of
Zeno’s paradox arises; however in the direction y = 2x, Zeno’s arrow does
not even exist; it is totally destroyed. �

15. Elements of a generalized calculus
Definition 22. By an α′-sequence in Rα, ω ≤ α′ ≤ α ≤ Ω, α =

ων, α′ = ων′, 1 ≤ ν, ν′ ≤ Ω, we understand a generalized skand S(0,α′)
whose components Sβ′ are elements of Rα, 0 ≤ β′ < α′. We denote it
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temporarily by Sβ′, 0 ≤ β′ < α′; in the usual way its denotation is more
complicated, i.e., {Sβ′}|β′<α′ and is called a transfinite sequence of type
α′ (see the corresponding definitions of course for transfinite sequences of
ordinal numbers [52], p. 287).

Remark 21. So, for α > ω, there are many converging α′-sequences in
Rα, ω ≤ α′ ≤ α, where α′ = ων, ν ≥ 1. Indeed, since each generalized real
number X(−α,α) ∈ Rα is the intersection of some α′-sequence of embedded
closed intervals [X(−α,α), B

β
(−α,α)] ⊃ [X(−α,α), B

β+1
(−α,α)], 0 ≤ β < α′, (a

cofinal system of closed neighborhoods on the right at X(−α,α)) and is at
the same time the intersection of some α′′-sequence of embedded closed
intervals [Aβ

(−α,α), X(−α,α)] ⊃ [Aβ+1
(−α,α), X(−α,α)], 0 ≤ β < α′′, ω ≤ α′′ ≤

α, (a cofinal system of closed neighborhoods on the left at X(−α,α)) then
Bβ

(−α,α) and Aβ
(−α,α) are such α′- and α′′-sequences, respectively. Notice

that there are elements X(−α,α) ∈ Rα for which α′ = α′′ = α (generalized
integers, generalized irrationals, some generalized rationals), but there are
elements X(−α,α) ∈ Rα for which α′ < α or α′′ < α though not at the same
time; i.e., if α′ < α, then α′′ = α or if α′′ < α, then α′ = α(e.g., 1

2ω , 1− 1
2ω ,

etc.)
Definition 23. A generalized real number X(−α,α) ∈ Rα is a limit of

α′-sequence Sβ, 0 ≤ β < α′ ≤ α, notation X(−α,α) = lim
β→α′

Sβ , if for each

open interval (A(−α,α), B(−α,α)), A−(α,α) < B(−α,α), which contains X(−α,α),
there exists an ordinal 0 ≤ β0 < α′ such that Sβ ∈ (A(−α,α), B(−α,α)), for
all β0 < β < α′.

In this case a α′-sequence Sβ , 0 ≤ β < α′ ≤ α, is called convergent and
X(−α,α) ∈ Rα is its limit. Clearly, if the α′-sequence Sβ, 0 ≤ β < α′ ≤ α,
converges to X(−α,α) ∈ Rα, then this limit is unique.

Using the classical arguments we can easily prove the following theorems.
Theorem 11. A mapping f : Rα → Rα is continuous in the ordering

topology if and only if for each element X(−α,α) ∈ Rα and every α′-sequence
Sβ, 0 ≤ β < α′ ≤ α, such that lim

β→α′ Sβ = X(−α,α), then lim
β→α′ f(Sβ) =

f(X(−α,α)).
Proof. Let f : Rα → Rα be a continuous mapping and X(−α,α) an

arbitrary element in Rα. Consider any open interval (A′
(−α,α), B

′
(−α,α))

which contains f(X(−α,α)) and find an open interval (A(−α,α), B(−α,α))
which contains X(−α,α) such that f(A(−α,α), B(−α,α)) ⊆ (A′

(−α,α), B
′
(−α,α)).

Since lim
β

Sβ = X(−α,α) there exists an ordinal number β0 such that Sβ ∈
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(A(−α,α), B(−α,α)), for all β0 < β < α′ ≤ α. Then evidently f(Sβ) ∈
(A′

(−α,α), B
′
(−α,α)), for all β0 < β < α′ ≤ α.

Conversely, suppose the opposite, i.e., for every α′-sequence Sβ, 0 ≤ β <
α′ ≤ α, such that lim

β→α′ Sβ = X(−α,α) we have lim
β→α′ f(Sβ) = f(X(−α,α));

however f is not continuous at some point X(−α,α) in R(−α,α). Evidently, f
is not continuous on the right at X(−α,α) or on the left at X(−α,α). We can
consider the first case; the second is similar. Thus, if f is not continuous
on the right at X(−α,α), then there is an open interval (A′

(−α,α), B
′
(−α,α))

which contains f(X(−α,α)) such that for every embedded closed interval
[X(−α,α), B

β
(−α,α)

], 0 ≤ β < α′ ≤ α, which is cofinal in the system of

all neighborhoods on the right at X(−α,α), we have f([X(−α,α), B
β
(−α,α)

])

is not a subset of (A′
(−α,α), B

′
(−α,α)). Choosing in each [X(−α,α), B

β
(−α,α)]

an element Sβ, such that f(Sβ) /∈ (A′
(−α,α), B

′
(−α,α)), 0 ≤ β < α′ ≤ α,

we see that lim
β→α′ Sβ = X(−α,α) but lim

β→α′ f(Sβ) �= f(X(−α,α)), which is in

contradiction with our assumption; i.e., if for an α′-sequence Sβ we have
lim

β→α′ Sβ = X(−α,α), then lim
β

f(Sβ) = f(X(−α,α)). �
Theorem 12. Let X(−α,α) and Y(−α,α) be elements of Rα. If

f : [X(−α,α), Y(−α,α)] → Rα (87)

be a continuous mapping such that f(X(−α,α)) and f(Y(−α,α)) have different
signs, i.e., − and + or + and −, respectively, then there exists an element
Z(−α,α) in Rα such that f(Z(−α,α)) = 0(−α,α).

Proof. If in the interval [X(−α,α), Y(−α,α)] there are no integer ordinal
numbers except X(−α,α) and Y(−α,α), then the proof is classical here and
is given by the method of our generalized dichotomy, or halving the inter-
vals of the unit one. Comp., [20], Theorem 25, p. 41. If there are such
integers, then choose one of them; let it be Z(−α,α) such that X(−α,α) <
Z(−α,α) < Y(−α,α). Clearly, f(X(−α,α)) and f(Z(−α,α)) or f(Z(−α,α)) and
f(Y(−α,α)) have different signs, and we choose that interval and denote it
by [X1

(−α,α), Y
1
(−α,α)]. We continue this transfinite process up to the first

case where there are no integer ordinal numbers except Xβ
(−α,α) and Y β

(−α,α),
1 ≤ β < α; then the proof is also classical and is given by the method of
our generalized dichotomy or halving intervals of the unit one. Since we
obtain a system of embedded closed intervals whose lengths converge to
0(−α,α), by Theorem 8, there exists a unique element Z(0,α) ∈ Rα such that
it belongs to all these intervals. By the continuous property of f , f(Z(0,α))
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has at the same time different signs, which is possible only in the case where
f(Z(0,α)) = 0(−α,α). �

One can consider other classical theorems of Mathematical Analysis in
the case of Rα since for ξ = 1 we have the usual real numbers R = Rω.

Theorem 13. Every closed interval [A(−α,α), B(−α,α)] of Rα is compact.
Proof. Without loss of generality we can assume that A(−α,α) and

B(−α,α) are positive or negative ordinals and A(−α,α) < B(−α,α). More-
over, we can restrict the proof to the case where [A(−α,α), B(−α,α)] ⊂ R+

α .
Assume now that γ is a covering of [A(−α,α), B(−α,α)] ⊂ R+

α consisting of
open sets in Rα which has no finite subcovering. Then we divide this in-
terval by the point A(−α,α) +1, i.e., [A(−α,α), B(−α,α)] = [A(−α,α), A(−α,α) +
1] ∪ [A(−α,α) + 1, B(−α,α)], the next [A(−α,α) + 1, B(−α,α)] by A(−α,α) + 2,
etc. By Theorem 9, restrictions of γ on [A(−α,α), A(−α,α) + 1], [A(−α,α) +
1, A(−α,α) + 2],...,[A(−α,α) + n, A(−α,α) + n + 1],... have finite subcoverings;
we conclude that the restrictions of γ on each [A(−α,α)+n, B(−α,α)] have no
finite subcoverings, 0 ≤ n < ω. Hence [A(−α,α) + ω, B(−α,α)] has no finite
subcovering of the restriction of γ, if of course A(−α,α) + ω < B(−α,α). If
A(−α,α) + ω = B(−α,α), then B(−α,α) is covered by one element of γ and
consequently, [A(−α,α) +n, B(−α,α)] covers by this element for some natural
n. Contradiction. So we continue this transfinite process, passing all pos-
sible limit ordinals and B(−α,α) with the same argument. If B(−α,α) is not
a limit ordinal, then the impossibility of choosing a finite subcovering from
the restriction of γ on [B(−α,α) − 1, B(−α,α)] contradicts Theorem 9. �

Theorem 14. A subspace X of Rα is a compact Hausdorff space if and
only if it is a bounded closed subset of Rα.

The Proof is classical, except with reference to Theorem 13.
Theorem 15. Every continuous image of a compact Hausdorff space is

a compact Hausdorff space.
The Proof is classical.
Theorem 16. Every bounded subset S of Rα has a smallest upper bound

M(0,α) = sup S and a greatest lower bound m(0,α) = inf S in Rα.
Proof. It is a consequence of Theorem 5.
Theorem 17. Every continuous function f defined on a compact subset

X of Rα is bounded and reaches its maximum and minimum values.
Proof. By Theorem 16, the image S = f(X) is a compact Hausdorff

space of Rα and hence, by Theorem 15, bounded. We apply Theorem 17
and obtain M(−α,α) = sup X and m(−α,α) = inf X which by compactness
of S belong to f(S). Since f : X → S is a surjection f , evidently reaches
its maximum and minimum values.
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Remark 22. If α = ωξ, where ωξ is the initial ordinal number, ξ ≥ 1,
then our Rωξ

differs from the space denoted by Rξ in [29] Hausdorff, [1908],
because for the latter dim Rξ = 0 and for the former dim Rωξ

= 1.
Theorem 18. The class QΩ is an ℵκ-universal linear ordering for all

cardinals ℵκ, κ ∈ On.
The Proof is a consequence of Mendelson’s theorem: Qκ is an ℵκ-universal

linear ordering (see [39] and [53], p. 169). �
We omit another way to construct a hierarchy of generalized real num-

bers of different powers, which are one-dimensional and continuous but dif-
ferent from these presented above, which we had originally planned to show
in the present paper. Moreover, algebraic operations would be completely
defined, as in Conway’s approach [20], but through fundamentally different
method. The field strucrure will be on that generalized real numbers and
even the completions of fields but all of then except our real numbers R

will be zero-dimensional. There is also a conjecture that Conway’s numbers,
which come from Game Theory, are subclasses of these new generalized real
numbers and all Conway’s numbers which is a Field, i.e., with a domain as
a class will have a completion which is a FIELD in a more general sense,
like a hyperclass. Since this paper is already too long, and a construction
of generalized real numbers with complete operetions is beyond the scope
of skand theory, we plan to publish the new material in another paper in
the near future.
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[30] F. Hausdorff, Grundzüge der Mengenlehre. Leipzig, 1914.

[31] H. Herrlich, Ordunungsfähigkeit total-diskontinuierlich Räume, Math. Ann.
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SKAND TEORIJA I NEJZINI PRIMENI.
(NOV POGLED MNO�ESTVATA XTO NE SE DOBRO

OSNOVANI)

J. T. Lisica

R e z i m e

Voveden e nov matematiqki objekt nareqen skand, koj vo opxt sluqaj e
mno�estvo xto ne e dobro osnovano. Skandovite so koneqna dol�ina se
se standardni dobro osnovani mno�estva a skandovite so mnogu golema
dol�ina (kako hiper-skandot od site ordinali) se hiper-klasi.

Razgledani si i sebe-sliqnite skandovi i tie ja razjasnuvaat reflek-
sivnosta na mno�estva, t.e. znaqeǌeto na relacijata X ∈ X ; posebno
sebe-slicnite skandovi razgledani kako mno�estva xto ne se dobro osno-
vani se sekogax refleksivni, no ne va�i obratno. Postoeǌeto na sebe-
sliqni skandovi doka�uva deka dobro poznatite paradoksi od teori-
jata na mno�estva voopxto ne se paradoksi i spored toa ne mora da se
fatalni za sekoja teorija na mno�estva. Znaqi doka�ana e nekonzis-
tentnostga na “mno�estvoto” na Rasel R = {X | X �∈ X} ne so pomox na
Raseloviot paradoks (kako xto e tradicionalno daden, i e pogrexen), no
so ednostaven metod na maksimalnost (univerzalnost) na R xto vraḱa
na Kantoroviot i e primenet i na drugite paradoksi od teorijata na
mno�estva.

Definirani se i voopxtenite skandovi i e demonstriran nov pogled
na voopxtenata skand-klasa od site ordinali. Specijalno, definiran
e posledniot ordinal nareqen eschaton.

Slednata primena na teorinata na skandovi e vo opisot na site
epsilon-broevi vo smisla na Kantor. Druga primena e obopxtenata
teorija na ednodimenzionalen kontinuum od proizvolen stepen i kon-
strukcija na obopxteni realni broevi kako nearhimedova prava od pro-
izvolen stepen, i voveduvaǌeto na apsoluten kontinuum i na apsolutna
prava kako hiper-klasa najbliska do klasata od mno�estva.
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