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Abstract. In this paper we generalize the potential inequality which

was introduced in [6] and extended to the class of naturally defined

convex functions in [1]. The generalization is achieved by replacing

the 1st order Taylor expansion of a convex function in the proof of

the potential inequality with the n-th order Taylor expansion of an

(n + 1)-convex function.

Furthermore, by using methods developed in [4] and [2] we construct

several families of n-exponentially convex functions by making use of

linearity of the generalized potential inequality.

1. Introduction

Potential inequality, introduced by Rao and Šikić in [6], is a very gen-
eral inequality that holds for kernels that satisfy the maximum principle
(see next section), an important property from the potential theory that
is satisfied by many classical kernels. Rao and Šikić proved the inequality
only for a special class of convex and concave functions, which was later
extended to the naturally defined class of convex (and concave) functions
by Elezović, Pečarić and Praljak in [1]. The latter form of the potential
inequality is given in the following theorem (Theorem 5 in [1])

Theorem 1 (The potential inequality for convex functions). Let g : (0,+∞)
→ R be a convex function, g′ its right-continuous derivative and N (x, dy)
a positive kernel on X which satisfies the strong maximum principle on R
with constantM . Let f ∈ R, x ∈ X and z > 0 be such that z ≤ (Nf)(x)/M
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and denote by Bz the set

Bz =
{
y ∈ X : (Nf)(y) ≥ z

}
. (1)

Then

g
( 1
M

(Nf)(x)
)
− g(z) ≤ 1

M
N [f+g′(Nf)1Bz ](x)

+
1
M
g′(z)N [f − f+1Bz ](x)− zg′(z).

In addition to the maximum principle, another crucial step in the proof
of the potential inequality is an integration by parts which gives the 1st
order Taylor expansion of the convex function with the remainder in its
integral form. In this paper we will generalize the potential inequality by
replacing the 1st order Taylor expansion of the convex function with the
n-th order Taylor expansion of an (n + 1)-convex function. Furthermore,
the differences generated by the generalized potential inequality are linear
functionals and, by using methods developed in [3], [2] and [4], we construct
several families of exponentially convex functions.

2. Generalized potential inequality

We will first introduce the notation and the set up. We say that N (x, dy)
is a (positive) kernel on X if N : X × B(X) → [0,+∞] is a mapping such
that, for every x ∈ X , A �→ N (x, A) is a σ-finite measure, and, for every
A ∈ B(X), x �→ N (x, A) is a measurable function. For a measurable
function f , the potential of f with respect to N at a point x ∈ X is

(Nf)(x) =
∫

X

f(y)N (x, dy),

whenever the integral exists. The class of functions that have the potential
at every point is denoted by POT (N ).

For a measure μ on (X,B(X)), a measurable set C ∈ B(X) and k ∈ N0

we will denote by N̂k
Cμ the measure defined by

(N̂k
Cμ)(dy) =

∫
C
N (x,X)kN (x, dy)μ(dx).

If C = X we will omit the subscript, i. e. N̂kμ will denote the measure
N̂k

Xμ.

Definition 1. Let N be a positive kernel on X and R ⊂ POT (N ). We
say that N satisfies the strong maximum principle on R (with constant
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M ≥ 1) if

(Nf)(x) ≤Mu+N [f+1{(Nf)≥u}](x) (2)

holds for every x ∈ X , f ∈ R and u ≥ 0.

�
We will also make use of the divided differences. Let g be a real-valued

function on an interval I ⊂ R. The divided difference of order n of the
function g at distinct points z0, z1, . . . , zn ∈ I is defined (see [5]) recursively
by

[zi]g = g(zi), i = 0, . . . , n

and

[z0, z1, . . . , zn]g =
[z1, . . . , zn]g − [z0, . . . , zn−1]g

zn − z0
.

The value [z0, . . . , zn]g is independent of the order of the points z0, . . . , zn.
The definition may be extended to include the case in which some (or all)
of the points coincide by assuming z0 ≤ z1 ≤ . . . ≤ zn and letting

[z, . . . , z︸ ︷︷ ︸
j−times

]g =
g(j−1)(z)
(j − 1)!

provided that f (j−1)(z) exists.
A function g is said to be n-convex, n ≥ 0, if the n-th order divided

difference satisfies

[z0, . . . , zn]g ≥ 0, for all choices of distinct points z0, . . . , zn ∈ I.

If a function g is (n + 1)-convex, n ≥ 1, then the derivatives g(k) exist
for 1 ≤ k ≤ n− 1, while for k = n the right sided derivative g(n)

+ exists and
it is right-continuous and non-decreasing (see [5], Theorem 1.41). We will
denote this right sided derivative simply by g(n) and dg(n) will denote the
positive measure generated by g(n).

Theorem 2 (Generalized potential inequality). Let g : (0,+∞) → R be an
(n+1)−convex function and N (x, dy) a positive kernel on X which satisfies
the strong maximum principle on R with constant M . Let f ∈ R, x ∈ X

and z > 0 be such that z ≤ (Nf)(x)/M < +∞ and let the set Bz be defined
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by (1). Then

g
( 1
M

(Nf)(x)
)
− g(z) ≤ N (x,X)n−1

n!Mn

{
N [(f+)ng(n)(Nf)1Bz ](x)

− g(n)(z)N [(f+)n1Bz ](x)

}
+

n∑
i=1

1
i!

(
1
M

(Nf)(x)− z)ig(i)(z)

Proof. The n-th order Taylor expansion of the function g is

g(τ)− g(z) =
n∑

i=1

1
i!

(τ − z)ig(i)(z) +Rn(z), (3)

where the remainder Rn in its integral form is given by

Rn(z) =
1
n!

∫ τ

z
(τ − u)n dg(n)(u).

Inserting τ = τ(x) = 1
M (Nf)(x) in (3) and using the strong maximum

principle under the integral of the remainder, since dg(n)(u) is a positive
measure, we get

g(τ(x))− g(z) ≤

≤ 1
n!Mn

∫ τ (x)

z
N [f+1{Nf≥u}]n dg(n)(u) +

n∑
i=1

1
i!

(τ(x)− z)ig(i)(z). (4)

We can bound the integral on the right hand side of the last inequality
by applying, respectively, Jensen’s inequality, Fubini’s theorem and the fact
that (f+)n1{Nf≥u} is a nonnegative function from the third to the fifth line
below∫ τ (x)

z
N [f+1{Nf≥u}]n dg(n)(u)

=
∫ τ (x)

z

[∫
X

f+(y)1{(Nf)≥u}(y)N (x, dy)

]n

dg(n)(u)

≤
∫ τ (x)

z

(∫
X
N (x, dy)

)n−1(∫
X
f+(y)n1{Nf≥u}(y)nN (x, dy)

)
dg(n)(u)
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= N (x,X)n−1

∫
X

[∫ τ (x)

z
1{Nf≥u}(y) dg(n)(u)

]
f+(y)nN (x, dy)

≤ N (x,X)n−1

∫
X

[∫ +∞

z
1{Nf≥u}(y) dg(n)(u)

]
f+(y)nN (x, dy)

= N (x,X)n−1

∫
X
f+(y)n

[
g(n)

(
(Nf)(y)

)
− g(n)(z)

]
1Bz(y)N (x, dy)

= N (x,X)n−1
{
N [(f+)ng(n)(Nf)1Bz ](x)− g(n)(z)N [(f+)n1Bz ](x)

}
.

Finally, combining the last inequality with (4) finishes the proof. �

Let us further denote the set

B =
⋃
z>0

Bz =
{
x ∈ X : (Nf)(x) > 0

}
.

The integral version of the generalized potential inequality is obtained
by integrating the inequality from Theorem 2 with respect to the variable
x.

Corollary 3. Let the assumptions of Theorem 2 hold for a function z :
B → (0,+∞), i. e. z(x) ≤ (Nf)(x)/M for x ∈ B. Then, for C ⊂ B,
C ∈ B(X), and a finite measure μ on (X,B(X)), the following inequality
holds

∫
C

(
g
( 1
M

(Nf)(x)
)
− g(z(x))

)
μ(dx)

≤ 1
n!Mn

∫
C

( ∫
Bz(x)

f+(y)ng(n)((Nf)(y))N (x, dy)
)
N (x,X)n−1μ(dx)

− 1
n!Mn

∫
C

( ∫
Bz(x)

f+(y)nN (x, dy)
)
g(n)(z(x))N (x,X)n−1μ(dx)

+
n∑

i=1

1
i!

∫
C
(

1
M

(Nf)(x)− z(x))ig(i)(z(x))μ(dx).
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In particular, for C = Bz and the constant function z(x) ≡ z we get

∫
Bz

g
( 1
M

(Nf)(x)
)
μ(dx)− g(z)μ(Bz)

≤ 1
n!Mn

∫
Bz

f+(x)ng(n)((Nf)(x))(N̂n−1
Bz

μ)(dx)

−g
(n)(z)
n!Mn

∫
Bz

f+(x)n(N̂n−1
Bz

μ)(dx)+
n∑

i=1

g(i)(z)
i!

∫
Bz

(
1
M

(Nf)(x)−z)iμ(dx).

Proof. Integrating the generalized potential inequality with respect to the
measure μ we get∫

C

(
g
( 1
M

(Nf)(x)
)
− g(z(x))

)
μ(dx)

≤ 1
n!Mn

∫
C

N (x,X)n−1N [(f+)ng(n)(Nf)1Bz(x)
](x)μ(dx)

− 1
n!Mn

∫
C

N (x,X)n−1g(n)(z(x))N [(f+)n1Bz(x)
](x)μ(dx)

+
n∑

i=1

1
i!

∫
C

(
1
M

(Nf)(x)− z(x))ig(i)(z(x))μ(dx).

which is the first inequality.
The second inequality follows by taking C = Bz and z(x) ≡ z and

by applying Fubini’s theorem on the first two integrals of the right hand
side. �

Corollary 4. Under the assumptions of Corollary 3, for p ∈ R\{0, 1, . . . , n}
the following inequalities hold:

1
p(p− 1) · · · (p− n)

∫
Bz

(Nf)p(x)μ(dx) ≤

Mp−n

n!(p− n)

∫
Bz

f+(x)n(Nf)p−n(x)(N̂n−1
Bz

μ)(dx)

− (zM)p−n

n!(p− n)

∫
Bz

f+(x)n(N̂n−1
Bz

μ)(dx)

+
n∑

i=0

zp−iMp

i!(p− i)(p− i− 1) · · · (p− n)

∫
Bz

(
1
M

(Nf)(x)− z)iμ(dx)
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and

1
p(p− 1) · · · (p− n)

∫
Bz

(Nf)p(x)μ(dx) ≤

Mp−n

n!(p− n)

[∫
Bz

(f+)pd(N̂n−1
Bz

μ)

]n
p
[∫

Bz

(Nf)pd(N̂n−1
Bz

μ)

]1−n
p

− (zM)p−n

n!(p− n)

∫
Bz

f+(x)n(N̂n−1
Bz

μ)(dx)

+
n∑

i=0

zp−iMp

i!(p− i)(p− i− 1) · · · (p− n)

∫
Bz

(
1
M

(Nf)(x)− z)iμ(dx).

Proof. The first inequality is obtained by applying the second inequality
from Corollary 3 for (n+ 1)-convex functions

gp(z) =
1

p(p− 1) · · · (p− n)
zp, (5)

for p ∈ R\{0, 1, . . .n}, and rearranging.
The second inequality follows from the first by applying Hölder’s in-

equality on the first integral of the right hand side for the pair of conjugate
exponents p/n and p/(p− n). �

If Theorem 2 holds for z > 0, then it holds for every z′, 0 < z′ ≤ z.
Letting z′ → 0, if the function g satisfies certain properties, we can get
further inequalities.

In the following theorem we will assume that either g(n) is nonnegative,
or that for every x ∈ B there exists a function hx ∈ L1(N (x, ·)) such
that |(f+)ng(n)(Nf)| ≤ hx. In either case, by the monotone convergence
theorem in the former and by the dominated convergence theorem in the
latter, we have

lim
z↘0

N [(f+)ng(n)(Nf)1Bz ] = N [(f+)ng(n)(Nf)1B]

since (f+)ng(n)(Nf)1Bz → (f+)ng(n)(Nf)1B pointwise, when z → 0.
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Corollary 5. Under the assumptions of Theorem 2, if g(i)(0+) is finite for
i = 0, 1, . . . , n, then for every x ∈ B we have

g
( 1
M

(Nf)(x)
)
≤ N (x,X)n−1

n!Mn

{
N [(f+)ng(n)(Nf)1B](x)

− g(n)(0+)N [(f+)n1B ](x)

}
+

n∑
i=0

1
i!M i

(Nf)(x)ig(i)(0+).

Furthermore, if μ is a finite measure on (X,B(X)), then the following
inequality holds∫

B
g
( 1
M

(Nf)(x)
)
μ(dx) ≤ 1

n!Mn

∫
B
f+(x)ng(n)((Nf)(x))(N̂n−1

B μ)(dx)

− g(n)(0+)
n!Mn

∫
B

f+(x)n(N̂n−1
B μ)(dx) +

n∑
i=0

g(i)(0+)
i!M i

∫
B

(Nf)(x)iμ(dx).

Proof. The first inequality follows from Theorem 2 by letting z → 0 and
rearranging. The second inequality follows by integrating the first with
respect to the measure μ over the set B and applying Fubini’s theorem on
the first two integrals of the righ hand side. �

Corollary 6. Under the assumptions of Corollary 5, for p > n the follow-
ing inequalities hold:∫

B
(Nf)p(x)μ(dx) ≤

p(p− 1) · · · (p− n+ 1)Mp−n

n!

∫
B
f+(x)n(Nf)p−n(x)(N̂n−1

B μ)(dx)

and∫
B

(Nf)p(x)μ(dx) ≤

p(p− 1) · · · (p− n+ 1)Mp−n

n!

[∫
Bz

(f+)pd(N̂n−1
Bz

μ)

]n
p
[∫

B
(Nf)pd(N̂n−1

B μ)

]1−n
p

.

Proof. The first inequality holds since functions gp given by (5) for p > n

satisfy the assumptions of Corollary 5 with g(i)(0+) = 0 for i = 0, 1, . . . , n.
The second inequality follows from the first by applying Hölder’s inequality
on the right hand side integral with the pair of conjugate exponents p/n
and p/(p− n). �
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Example 7 (Application to a Hardy-type kernel). Let X = (0,+∞) and
let the kernel N (x, dy) = G(x, y) dy be given by its density

G(x, y) =

{
1, if y ≤ x,

0, otherwise.

The kernel N satisfies the maximum principle with constant M = 1 (see
[6]),

F (x) = (Nf)(x) =
∫ x

0
f(y)dy

and

N (x,X) =
∫ +∞

0

G(x, y) dy =
∫ x

0

dy = x.

For a nonnegative function f the set B is equal to

B = {x ∈ X : (Nf)(x) > 0} = {x ∈ (0,+∞) : F (x) > 0} = (b,+∞),

where b = ess inf {y : f(y) > 0}.
Further, let νi(dx) = λi(x)dx, i = 1, 2, be two σ-finite measures with

densities λi that satisfy

λ2(x) = λ1(x)1−
p
n

[ ∫ +∞

x
yn−1λ1(y)dy

] p
n
. (6)

The measure N̂n−1
B ν1 satisfies

(N̂n−1
B ν1)(dx) =

∫ +∞

b

N (y, X)n−1N (y, dx)λ1(y)dy =

=
∫ +∞

b

yn−1
[ ∫ y

0

dx
]
λ1(y)dy =

∫ +∞

0

[ ∫ +∞

max(b,x)

yn−1λ1(y)dy
]
dx,

i. e.

d(N̂n−1
B ν1)(x) =

∫ +∞

max(b,x)
yn−1λ1(y)dy.

Due to (6), we see that for x ∈ B

d(N̂Bν1)(x) = λ
1−n

p

1 (x)λ
n
p

2 (x). (7)

Applying the first inequality from Corollary 6 with μ = ν1, equality (7) and
Hölder’s inequality with the pair of conjugate exponents p/n and p/(p−n)
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we get∫
B
F (x)pλ1(x) dx

≤ p(p− 1) · · · (p− n+ 1)
n!

∫
B
f(x)nF (x)p−n(N̂n−1

B ν1)(dx)

=
p(p− 1) · · · (p− n+ 1)

n!

∫
B
f(x)nλ2(x)

n
pF (x)p−nλ1(x)

1−n
p dx

≤ p(p− 1) · · · (p− n+ 1)
n!

[∫
B
f(x)pλ2(x) dx

]n
p
[∫

B
F (x)pλ1(x) dx

]1−n
p

,

i. e.[∫
B
F (x)pλ1(x) dx

]n
p

≤ p(p− 1) · · ·(p− n+ 1)
n!

[∫
B
f(x)pλ2(x) dx

]n
p

.

The densities

λ1(x) = x−k and λ2(x) =
xp−k

(k − n)p/n
,

with k > n, satisfy condition (6) and, in this case, the last inequality is
equivalent with[ ∫

B
x−kF (x)p dx

]1
p

≤ K

[∫
B
xp−kf(x)p dx

] 1
p

, (8)

where

K = n

√
p(p− 1) · · ·(p− n + 1)

n!(k− n)
.

When p = k > 1, the optimal constant in (8) is given by Hardy’s inequality
and equals p/(p−1). This optimal constant is attained for n = 1, while for
n > 1 the constant K is strictly greater than the optimal.

�

Remark 8. When both f and −f satisfy the maximum principle, then
the absolute value |f | satisfies a similar condition, proven by Rao and Šikić
(see [6]),

|Nf | ≤ 2Mu+N
[
|f | · 1{|Nf |≥u}

]
, for every u ≥ 0. (9)
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In that case, by using (9) instead of the maximum principle, one can
prove the generalized potential inequality for absolute values: if x ∈ X and
z > 0 are such that z ≤ |Nf(x)|/(2M)< +∞, then

g
( 1
2M

|Nf(x)|
)
− g(z) ≤ N (x,X)n−1

n!(2M)n

{
N [|f |ng(n)(|Nf |)1B̄z

](x)

− g(n)(z)N [|f |n1B̄z
](x)

}
+

n∑
i=1

1
i!

(
1

2M
|Nf(x)| − z)ig(i)(z),

where B̄z =
{
y ∈ X : |Nf(y)| ≥ z

}
.

Replacing the number z with a function that satisfies
z(x) ≤ |Nf(x)|/(2M)< +∞ for every x ∈ B̄ = {x ∈ X : |Nf(x)|> 0}
and integrating with respect to the variable x one gets the integral version
of the last inequality, for C ⊂ B̄, C ∈ B(X),∫

C

(
g
( 1
2M

|Nf(x)|
)
− g(z(x))

)
μ(dx)

≤ 1
n!(2M)n

∫
C

(∫
B̄z(x)

|f(y)|ng(n)(|Nf(y)|)N (x, dy)
)
N (x,X)n−1μ(dx)

− 1
n!(2M)n

∫
C

( ∫
B̄z(x)

|f(y)|nN (x, dy)
)
g(n)(z(x))N (x,X)n−1μ(dx)

+
n∑

i=1

1
i!

∫
C
(

1
2M

|Nf(x)| − z(x))ig(i)(z(x))μ(dx).

In particular, for C = B̄z and the constant function z(x) ≡ z we get∫
B̄z

g
( 1
2M

|Nf(x)|
)
μ(dx) − g(z)μ(B̄z)

≤ 1
n!(2M)n

∫
B̄z

|f(x)|ng(n)(|Nf(x)|)(N̂n−1
B̄z

μ)(dx)

− g(n)(z)
n!(2M)n

∫
B̄z

|f(x)|n(N̂n−1
B̄z

μ)(dx)+
n∑

i=1

g(i)(z)
i!

∫
B̄z

(
1

2M
|Nf(x)|−z)iμ(dx).

3. Exponential convexity

We will first construct linear functionals nonnegative on the set of (n+1)-
convex functions by applying the generalized potential inequality, and its
various forms, derived in the previous section. We then use the methods
developed in [3] to generate new families of n-exponentially convex and
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exponentially convex functions by evaluating these functionals on families
of functions satisfying similar properties.

Let us define linear functionals Ak, k = 1, . . . , 6, by

A1(g) =
N (x,X)n−1

n!Mn

{
N [(f+)ng(n)(Nf)1Bz ](x)− g(n)(z)N [(f+)n1Bz ](x)

}

+
n∑

i=1

1
i!

(
1
M

(Nf)(x)− z)ig(i)(z)− g
( 1
M

(Nf)(x)
)
+ g(z),

A2(g) =
1

n!Mn

∫
Bz

f+(x)ng(n)((Nf)(x))(N̂n−1
Bz

μ)(dx)

− g(n)(z)
n!Mn

∫
Bz

f+(x)n(N̂n−1
Bz

μ)(dx) +
n∑

i=1

g(i)(z)
i!

∫
Bz

(
1
M

(Nf)(x)− z)iμ(dx)

−
∫

Bz

g
( 1
M

(Nf)(x)
)
μ(dx) + g(z)μ(Bz),

A3(g) =
N (x,X)n−1

n!Mn

{
N [(f+)ng(n)(Nf)1B](x)− g(n)(0+)N [(f+)n1B](x)

}

+
n∑

i=0

1
i!M i

(Nf)(x)ig(i)(0+)− g
( 1
M

(Nf)(x)
)
,

A4(g) =
1

n!Mn

∫
B
f+(x)ng(n)((Nf)(x))(N̂n−1

B μ)(dx)−
∫

B
g
( 1
M

(Nf)(x)
)
μ(dx)

− g(n)(0+)
n!Mn

∫
B
f+(x)n(N̂n−1

B μ)(dx) +
n∑

i=0

g(i)(0+)
i!M i

∫
B

(Nf)(x)iμ(dx),

A5(g) =
N (x,X)n−1

n!(2M)n

{
N [|f |ng(n)(|Nf |)1B̄z

](x)− g(n)(z)N [|f |n1B̄z
](x)

}

+
n∑

i=1

1
i!

(
1

2M
|Nf(x)| − z)ig(i)(z) − g

( 1
2M

|Nf(x)|
)
+ g(z),

A6(g) =
1

n!(2M)n

∫
B̄z

|f(x)|ng(n)(|Nf(x)|)(N̂n−1
B̄z

μ)(dx)

− g(n)(z)
n!(2M)n

∫
B̄z

|f(x)|n(N̂n−1
B̄z

μ)(dx) +
n∑

i=1

g(i)(z)
i!

∫
B̄z

(
1

2M
|Nf(x)| − z)iμ(dx)

−
∫

B̄z

g
( 1
2M

|Nf(x)|
)
μ(dx) + g(z)μ(B̄z).
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The linear functionals Ak depend on the choice of a function f , kernel
N , measure μ and points x and z, but we consider them given and omit
from the notation. Also, we assume that a particular choice of f , N , μ, x
and z satisfies the assumptions of Theorem 2 (for k = 1), Corollary 3 (for
k = 2), Corollary 5 (for k = 3 or 4) and Remark 8 (for k = 5 or 6).

We continue this section with few basic notions and results on exponen-
tial convexity that we will use.

Definition 2. A function ψ : I → R is n-exponentially convex in the
Jensen sense on I if

n∑
i,j=1

ξiξjψ
(xi + xj

2

)
≥ 0

holds for all choices ξi ∈ R and xi ∈ I , i = 1, ..., n.
A function ψ : I → R is n-exponentially convex if it is n-exponentially

convex in the Jensen sense and continuous on I .

Definition 3. A function ψ : I → R is exponentially convex in the Jensen
sense on I if it is n-exponentially convex in the Jensen sense for every n ∈ N.

A function ψ : I → R is exponentially convex if it is exponentially convex
in the Jensen sense and continuous on I .

Definition of positive semi-definite matrices and some basic algebra gives
us the following proposition

Proposition 9. If ψ is an n-exponentially convex in the Jensen sense on

I, then for every choice of xi ∈ I, i = 1, ..., n, the matrix
[
ψ
(

xi+xj

2

)]k
i,j=1

is a positive semi-definite matrix for all k ∈ N, k ≤ n. In particular, for

all k ∈ N, det
[
ψ
(

xi+xj

2

)]k
i,j=1

≥ 0 for all k ≤ n.

Remark 10. It is known that ψ : I → R is log-convex in the Jensen sense
if and only if

α2ψ(x) + 2αβψ
(x+ y

2

)
+ β2ψ(y) ≥ 0

holds for every α, β ∈ R and x, y ∈ I . It follows that a function is log-convex
in the Jensen sense if and only if it is 2-exponentially convex in the Jensen
sense. Moreover, a function is log-convex if and only if it is 2-exponentially
convex.

The next theorem will enable us to construct n-exponentially convex and
exponentially convex functions.
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Theorem 11. Let Ω = {gp : p ∈ J}, where J is an interval in R, be a family
of functions gp : (0,+∞) → R such that the function p �→ [z0, . . . , zn+1]gp is
m-exponentially convex in the Jensen sense on J for every n+ 2 mutually
different points z0, . . . , zn+1 ∈ (0,+∞) and Ak(gp), for 1 ≤ k ≤ 6, is
well defined for every p ∈ J (when k = 3 or 4, additional assumption is
that g(l)

p (0+) is finite for every l ≤ n and p ∈ J). Then, the mapping
p �→ Ak(gp) is an m-exponentially convex function in the Jensen sense on
J. If the function p �→ Ak(gp) is continuous on J, then it is m-exponentially
convex on J.

Proof. For ξi ∈ R and pi ∈ J, i = 1, . . . , m, we define the function

g(y) =
m∑

i,j=1

ξiξjg pi+pj
2

(y).

Since p �→ [z0, . . . , zn+1]gp is m-exponentially convex in the Jensen sense,
we have

[z0, . . . , zn+1]g =
m∑

i,j=1

ξiξj[z0, . . . , zn+1]gp ≥ 0,

which, in turn, implies that g is an (n+ 1)-convex function on J (for k = 3
and 4 it also holds that g(0+) is finite). Therefore, by the generalized
potential inequality,

Ak(g) =
m∑

i,j=1

ξiξjAk(g pi+pj
2

) ≥ 0.

We conclude that the function p �→ Ak(gp) is m-exponentially convex in
the Jensen sense on J. If the function p �→ Ak(gp) is also continuous on J,
then it is m-exponentially convex by definition. �

Immediate consequence of the previous theorem and properties of expo-
nentially convex functions is the following corollary.

Corollary 12. Let Ω = {gp : p ∈ J}, where J is an interval in R,
be a family of functions gp : (0,+∞) → R such that the function p �→
[z0, . . . , zn+1]gp is 2-exponentially convex in the Jensen sense on J for ev-
ery n+2 mutually different points z0, . . . , zn+1 ∈ (0,+∞) and let the linear
functionals Ak, 1 ≤ k ≤ 6, satisfy the same assumptions as in Theorem 11.
Then, the following statements hold:

(i) If the function p �→ Ak(gp) is continuous on J, then it is 2-exponenti-
ally convex and, thus, log-convex.
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(ii) If the function p �→ Ak(gp) is strictly positive and differentiable on
J, then for every p, q, r, s ∈ J, such that p ≤ r and q ≤ s, we have

μk
p,q(Ω) ≤ μk

r,s(Ω),

where

μk
p,q(Ω) =

⎧⎪⎨
⎪⎩
(

Ak(gp)
Ak(gq)

) 1
p−q

, p 
= q

exp
( d

dp
Ak(gp)

Ak(gp)

)
, p = q.

(10)

for gp, gq ∈ Ω.

Proof. (i) This is an immediate consequence of Theorem 11 and Remark
10.

(ii) By (i), the function p �→ Ak(gp) is log-convex on J, that is, the
function p �→ logAk(gp) is convex. Therefore

logAk(gp)− logAk(gq)
p− q

≤ logAk(gr) − logAk(gs)
r − s

(11)

for p ≤ r, q ≤ s, p 
= r, q 
= s, which implies that

μk
p,q(Ω) ≤ μk

r,s(Ω), k = 1, ..., 6.

The cases p = r and q = s follow from (11) by taking limits p → r or
q → s. �

Next, we present several families of functions that satisfy the assumptions
of Theorem 11 and Corollary 12 and, in this way, we construct large families
of exponentially convex functions.

Example 13. Consider a family of functions Ω1 = {gp : p ∈ R} given by

gp(y) =

{
epy

pn+1 , p 
= 0
yn+1

(n+1)! , p = 0

Similarly as in the proof of Theorem 11, let us, for ξi ∈ R and pi ∈ R,
i = 1, ..., m, define the function

g(y) =
m∑

i,j=1

ξiξjg pi+pj
2

(y).

Since the function p �→ dn+1

dyn+1 gp(y) = epy is exponentially convex (follows
from the definition), we have that

g(n+1)(y) =
m∑

i,j=1

ξiξjg
(n+1)
pi+pj

2

(y) =
( m∑

i=1

ξie
piy/2

)2

≥ 0
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is an (n+ 1)-exponentially convex function. Therefore

0 ≤ [z0, . . . , zn]g =
m∑

i,j=1

ξiξj[z0, . . . , zn]g pi+pj
2

,

so p �→ [z0, . . . , zn]gp is m-exponentially convex in the Jensen sense for
every m. Using Theorem 11 we conclude that the mapping p �→ Ak(gp)
is exponentially convex in the Jensen sense. It is easy to verify that this
mapping is continuous (although the mapping p �→ gp is not continuous at
p = 0), so it is exponentially convex.

For this family of functions, μk
p,q(Ω1) from (10) becomes

μk
p,q(Ω1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Ak(gp)
Ak(gq)

) 1
p−q

, p 
= q

exp
(

Ak(id·gp)
Ak(gp)

− n+1
p

)
, p = q 
= 0

exp
(

1
n+2

Ak(id·g0)
Ak(g0)

)
, p = q = 0,

where id(y) = y is the identity function.

Example 14. Let Ω2 = {gp : p ∈ Ik} be a family of functions defined by

gp(y) =

{
yp

p(p−1)···(p−n) , p /∈ {0, 1, . . . , n}
yj ln y

(−1)n−jj!(n−j)!
, p = j ∈ {0, 1, . . . , n},

where Ik = (0,+∞) for k = 1, 2, 5 and 6, and Ik = (n,+∞) for k = 3
and 4. The mapping p → dn+1gp

dyn+1 (y) = e(p−n−1) ln y is exponentially convex
(follows from the definition) and, arguing as in Example 13, we get that
the mappings p �→ Ak(gp), 1 ≤ k ≤ 6, are exponentially convex. In this
case, the functions (10) are equal to

μk
p,q(Ω2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
Ak(gp)
Ak(gq)

) 1
p−q

, p 
= q

exp
(
(−1)nn!Ak(g0gp)

Ak(gp) +
∑n

k=0
1

k−p

)
, p = q /∈ {0, 1, . . . , n},

exp
(

(−1)nn!Ak(g0gp)
2Ak(gp) +

∑n
k=0
k �=p

1
k−p

)
, p = q ∈ {0, 1, . . . , n}.

Example 15. Let Ω3 = {gp : p ∈ (0,+∞)} be a family of functions given
by

gp(y) =

{
p−y

(− ln p)n+1 , p 
= 1
yn+1

(n+1)!
, p = 1.
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Since p �→ dn+1gp

dyn+1 (y) = p−y is the Laplace transform of a non-negative
function (see [7]) it is exponentially convex. Arguing as in Example 13 we
get that the mappings p �→ Ak(gp), 1 ≤ k ≤ 6, are exponentially convex.

For this family of functions, μk
p,q(Ω3) from (10) becomes

μk
p,q(Ω3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Ak(gp)
Ak(gq)

) 1
p−q

, p 
= q

exp
(
−Ak(id·gp)

pAk(gp) − n+1
p ln p

)
, p = q 
= 1,

exp
(
− 1

n+2
Ak(id·g1)
Ak(g1)

)
, p = q = 1.

Example 16. Let Ω4 = {Ψp : p ∈ (0,+∞)} be a family of functions
defined by

gp(y) =
e−y

√
p

(−√
p)n+1

.

Since p �→ dn+1gp

dyn+1 (y) = e−y
√

p is the Laplace transform of a nonnegative
function (see [7]), it is exponentially convex. Arguing as before, we get
that p �→ Ak(gp), 1 ≤ k ≤ 6, are exponentially convex functions.

For this family of functions, μk
p,q(Ω4) from (10) becomes

μk
p,q(Ω4) =

⎧⎨
⎩
(

Ak(gp)
Ak(gq)

) 1
p−q

, p 
= q

exp
(
− Ak(id·gp)

2
√

pAk(gp) −
n+1
2p

)
, p = q.
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related Stolarsky type means, An. Univ. Craiova Ser. Mat. Inform. 39 (2012), 65–75.
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OBOPXTENO POTENCIJALNO NERAVENSTVO I
EKSPONENCIJALNA KONVEKSNOST

Neven Elezoviḱ, Josip Peqariḱ, Marjan Praǉak

R e z i m e

Vo ovoj trud go generalizirame potencijalnoto neravenstvo koe e
vovedeno vo [6] i proxireno na klasata prirodno definirani konvek-
sni funkcii vo [1]. Generalizacijata e dostignata so zamena vo dokazot
na potencijalnoto neravenstvo, na Tejlorovata ekspanzija od prv red
na konveksna funkcija so Tajlorovata ekspanzija od red n na (n + 1)-
konveksna funkcija.

Osven toa, koristejḱi metodi razvieni vo [4] i [2] konstruirame neko-
lku familii od n-eksponencijalni konveksni funkcii, so koristeǌe na
linearnosta na obxtenoto potencijalno neravenstvo.
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