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GENERALIZED POTENTIAL INEQUALITY AND
EXPONENTIAL CONVEXITY
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Abstract. In this paper we generalize the potential inequality which
was introduced in [6] and extended to the class of naturally defined
convex functions in [1]. The generalization is achieved by replacing
the 1st order Taylor expansion of a convex function in the proof of
the potential inequality with the n-th order Taylor expansion of an
(n + 1)-convex function.

Furthermore, by using methods developed in [4] and [2] we construct
several families of n-exponentially convex functions by making use of
linearity of the generalized potential inequality.

1. INTRODUCTION

Potential inequality, introduced by Rao and Siki¢ in [6], is a very gen-
eral inequality that holds for kernels that satisfy the maximum principle
(see next section), an important property from the potential theory that
is satisfied by many classical kernels. Rao and Siki¢ proved the inequality
only for a special class of convex and concave functions, which was later
extended to the naturally defined class of convex (and concave) functions
by Elezovi¢, Pecari¢ and Praljak in [1]. The latter form of the potential
inequality is given in the following theorem (Theorem 5 in [1])

Theorem 1 (The potential inequality for convex functions). Let g : (0, 4+00)
— R be a convex function, g’ its right-continuous derivative and N(x,dy)
a positive kernel on X which satisfies the strong mazimum principle on R
with constant M. Let f € R, x € X andz > 0 be such that z < (N f)(z)/M
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and denote by B, the set

B.={ye X:(NH)(y) > 2} )
Then
95N P@) = 9(2) < NN )18
b (INT — Fr15)(x) — 20/(2)

In addition to the maximum principle, another crucial step in the proof
of the potential inequality is an integration by parts which gives the 1st
order Taylor expansion of the convex function with the remainder in its
integral form. In this paper we will generalize the potential inequality by
replacing the 1st order Taylor expansion of the convex function with the
n-th order Taylor expansion of an (n + 1)-convex function. Furthermore,
the differences generated by the generalized potential inequality are linear
functionals and, by using methods developed in [3], [2] and [4], we construct
several families of exponentially convex functions.

2. GENERALIZED POTENTIAL INEQUALITY

We will first introduce the notation and the set up. We say that N(x, dy)
is a (positive) kernel on X if N : X x B(X) — [0, +00] is a mapping such
that, for every x € X, A +— N(x, A) is a o-finite measure, and, for every
A € B(X), v — N(z,A) is a measurable function. For a measurable
function f, the potential of f with respect to N at a point x € X is

(Nf)(z) = /X )Nz, dy),

whenever the integral exists. The class of functions that have the potential
at every point is denoted by POT (N).

For a measure p on (X, B(X)), a measurable set C € B(X) and k € Ny
we will denote by N’éu the measure defined by

(W) (dy) = /C N (e, X) N (z, dy) pu(de).

If ¢ = X we will omit the subscript, i. e. N k11 will denote the measure
Nfou.

Definition 1. Let N be a positive kernel on X and R € POT(N). We
say that N satisfies the strong maximum principle on R (with constant
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M >1)if
(Nf)(x) € Mu+ N[f Ly pzal() (2)

holds for every x € X, f € R and u > 0.

O
We will also make use of the divided differences. Let g be a real-valued
function on an interval I C R. The divided difference of order n of the

function ¢ at distinct points 2, 21, . . ., 2z, € I is defined (see [5]) recursively
by

[zilg=9(z), i=0,...,n

and
. [Zlv ) Zn]g — [z()v sy Zn—l]g
[zo,zl,...,zn]g— .
Zn — 20
The value [z, . . ., z,]g is independent of the order of the points zy, . . ., 2.

The definition may be extended to include the case in which some (or all)
of the points coincide by assuming 25 < z1 < ... < z, and letting

[2,...,2]g G=1)

j—times

provided that fU=1(z) exists.
A function g is said to be n-convex, n > 0, if the n-th order divided
difference satisfies

[20,.-.,2n]g > 0, for all choices of distinct points zo, ..., z, € I.

If a function g is (n + 1)-convex, n > 1, then the derivatives g(¥) exist
for 1 <k <n—1, while for k = n the right sided derivative gin) exists and
it is right-continuous and non-decreasing (see [5], Theorem 1.41). We will
denote this right sided derivative simply by g™ and dg(™ will denote the
positive measure generated by g™,

Theorem 2 (Generalized potential inequality). Let g : (0, +00) — R be an
(n+1)—convex function and N (z,dy) a positive kernel on X which satisfies
the strong maximum principle on R with constant M. Let f € R, x € X
and z > 0 be such that z < (N f)(x)/M < +oo and let the set B, be defined
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by (1). Then
T n—1
9 (NH@) — 9() < %{N[(fﬂ"g(")(Nf)le](x)

- g<”><z>N[<f+>”1Bz1<x>} + 30 (VD) — 29 (e)
i=1

Proof. The n-th order Taylor expansion of the function g is

n

9(r) ~ 9(z) = 3 5 — 2)igV(2) + Ra(2), (3)

=1

where the remainder R, in its integral form is given by

1 T
Ro(2) = o [ (= 0 g™ w).
Inserting 7 = 7(z) = ;(Nf)(z) in (3) and using the strong maximum

principle under the integral of the remainder, since dg(™(u) is a positive
measure, we get

g9(r(x)) —g(2) <

1@ "1 o
A N npsa]"dg™ @) + ) =(r(z) — 2)'gD(2). (4)

1
— il
We can bound the integral on the right hand side of the last inequality
by applying, respectively, Jensen’s inequality, Fubini’s theorem and the fact
that (f+)”1{Nqu} is a nonnegative function from the third to the fifth line
below

7(z)
NIfflnpsn]” dg'™ (u)

z

7(x) .
:/ [/Xf+(y)1{(Nf)Zu}(y)N(l‘,dy)] dg(”)(u)

7(x) n—1
S/Z (/XN(x,dy)> (/Xf+(y)n1{NfZ“}(y)nN(.l‘,dy)) 46 ()
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= N(z, X)”—l/

X

()
[ / 1(n sy (¥) dg(”)(U)] FH(y)"N(z, dy)

< N(z, X)”—l/

X

“+o0
[ / 1(n sy (¥) dg(”)(U)] FH(y)"N(z, dy)

= N X [ [i (D)~ ) 150N ey

= Nz, X)" { NI(FH)" g (N )1s)(@) = g (NI 18, () .

Finally, combining the last inequality with (4) finishes the proof. O

Let us further denote the set

B=|JB.={ze X :(Nf)(z)>0}.
z>0

The integral version of the generalized potential inequality is obtained

by integrating the inequality from Theorem 2 with respect to the variable

Corollary 3. Let the assumptions of Theorem 2 hold for a function z :
B — (0,40), i. e. z(x) < (Nf)(x)/M for x € B. Then, for C C B,
C € B(X), and a finite measure p on (X, B(X)), the following inequality
holds

/C (9(%(Nf)(x)) - Q(Z(w))>u(da:)
< nulwn /C (/B f+(y)n9(”)((Nf)(y))N($ady)>N(x,X)”—lu(dx)

z(z)

B n!]l\J” /C ( /B Fry)"N (ﬂ%dy))g(”)(z(x))N(x,X)"—lu(da:)
2(x)

=305 LGV @) s @)l

=1
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In particular, for C = B, and the constant function z(x) = z we get

| oGO D@)ulde) ~ g(2)n(E.)

< i 1@ D)) (5 )

(
B.

“(;,Mn / FH@)" (N ) (da)+ Y 7 Z,( )/ %(Nf)(x)—z)zu(dx).
=1

Proof. Integrating the generalized potential inequality with respect to the
measure pu we get

1
| <9(M<Nf><x>) ~9(=(x) ) u(de)
/N x, X)"™ 1N[(f+)n (n) (Nf)le( J(x)u(da:)

n'M”
- i [ V@ X g NI s ) da)

35 LG oo e,

which is the first inequality.

The second inequality follows by taking C = B, and z(x) = z and
by applying Fubini’s theorem on the first two integrals of the right hand
side. 0

Corollary 4. Under the assumptions of Corollary 3, forp € R\{0,1,...,n}
the following inequalities hold:

1
plp—1)---(p—n) / (NF)P()pdr) <

MP—T ’ . . .
nl(p—n) Jp. FH@)" (NP (@) (N ) (de)

B (zM)P—™
nl(p —n) Jp,

FH(@)" (N ) (de)

PP 1 i
3 R Ty ) Y uta)

=0
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and

1
plp—1)---(p—n) / (NP @) <

-n R s R 1-3
o [ / Z(f*)pd(Ngjlu)] [ / Z(Nf)pd(Nféjlu)]
(zM)Pm

_ + ()" vn—1 T
piimen ) ARACORG wOICD

n

PEMP 1 .
t2 Mp—Dp—i—1)---(p—n) /BZ(M(Nf)(x) = 2)'p(dz).

=0

Proof. The first inequality is obtained by applying the second inequality
from Corollary 3 for (n + 1)-convex functions

1
gp(z):p(p—l)“'(p—n)zp’ (5)

for p € R\{0,1,...n}, and rearranging.

The second inequality follows from the first by applying Holder’s in-
equality on the first integral of the right hand side for the pair of conjugate
exponents p/n and p/(p — n). O

If Theorem 2 holds for z > 0, then it holds for every 2/, 0 < 2/ < z.
Letting 2 — 0, if the function g satisfies certain properties, we can get
further inequalities.

In the following theorem we will assume that either g(”) is nonnegative,
or that for every x € B there exists a function h, € L'(N(zx,-)) such
that |(fT)"g™(Nf)| < he. In either case, by the monotone convergence
theorem in the former and by the dominated convergence theorem in the
latter, we have

lim N{(F)"g ™ (N F)15.] = N[(F)"9"™ (N 1)1s]

since (fT)"g™ (N f)1p, — (f1)"g"™ (N f)1p pointwise, when z — 0.
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Corollary 5. Under the assumptions of Theorem 2, ifg(i)(O—l—) is finite for

1=0,1,...,n, then for every x € B we have
N X n—1
9(37(NN@) < %Ti{fvufﬂ”g%vf)m ()

— 9" (O+H)N[(f7)"15])( }+ZZ,MZ (N f)(@)'g™(0+).

Furthermore, if 1 is a finite measure on (X, B(X)), then the following
inequality holds

| sGrVN@)ntdn) < [P @)V ) )
(n |
ST / @) (Vg™ ) (de) + ZQZ'MZ /,3Nf><a:>m<dx>.

Proof. The first inequality follows from Theorem 2 by letting z — 0 and
rearranging. The second inequality follows by integrating the first with
respect to the measure p over the set B and applying Fubini’s theorem on
the first two integrals of the righ hand side. OJ

Corollary 6. Under the assumptions of Corollary 5, for p > n the follow-
g inequalities hold:

/ (N 1)P()(d) <
B

pp—1)---(p—n+1)MP"
n!

/Bf+(x)”(Nf)p_"(x)(Nfé_lu)(dw)

and

/ (N F)P(a)p(dr) <
B

p(p—l)"'(p—nJrl)Mp‘”[
n!

n 1-2
[ / (Nf)pd(Nfé‘lu)] |
B

Proof. The first inequality holds since functions g, given by (5) for p > n
satisfy the assumptions of Corollary 5 with g(i)(O—f—) =0fori=0,1,...,n
The second inequality follows from the first by applying Holder’s inequality

/ (FHPA(NE )

z

on the right hand side integral with the pair of conjugate exponents p/n
and p/(p —n). O
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Example 7 (Application to a Hardy-type kernel). Let X = (0, 4+00) and
let the kernel N (z,dy) = G(z,y) dy be given by its density

1, ify<u,
G(z,y) = -
(@) { 0, otherwise.

The kernel N satisfies the maximum principle with constant M = 1 (see

6),
F(z) = (Nf)(z) = /0 fy)dy

and
400

N(z, X) = G(x,y)dyz/ dy = x.
0 0

For a nonnegative function f the set B is equal to
B={ze X :(Nf)(z)>0}={x € (0,+00): F(z) >0} = (b, +0),

)
where b = ess inf {y : f(y) > 0}.
Further, let v;(dx) = A
densities A; that satisfy

i(x)dz, i = 1,2, be two o-finite measures with

3k

D

Ao(z) = Ag(z)' [/+°° v A(y)dy| " (6)

The measure Ng_lul satisfies

. +o0
(N~ 1w (de) = N(y, X)" "N (y, dz)\(y)dy =
b
+00 1 Y +00 400 1
= [t [ = [ iy
b 0 0 max(b,z)
i e.
Grn—1 oo 1
@ = [
Due to (6), we see that for x € B
N 1-n n
AN ) (@) = A} * (@)A] (o). (7)

Applying the first inequality from Corollary 6 with u = 14, equality (7) and
Holder’s inequality with the pair of conjugate exponents p/n and p/(p —n)
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we get
/ P(2)P\ (z) do
B
Smp—U-ég—n+1{éf@ypuywuq¢%nwm
2= D=t D payaata)E R M) de
n! B
(p—1)--(p—n+1) v
<=l /B F(2)P () da:] /B Fa)PA (x) da:]
/ F(x)PA () da:] ! < pip—1)-- 'gp —n+1) / f(z)PAa(x) da:] ’
B n: B
The densities
Pk
M(z) = 7k and Ao(z) = m,

with k& > n, satisfy condition (6) and, in this case, the last inequality is
equivalent with

1

[/ e R F(z)P dw] ’ <K [/ PR f ()P dw] ) (8)
B B

_aplp—1)--(p—n+1)
K= \/ nl(k —n) '

hSA

where

When p = k > 1, the optimal constant in (8) is given by Hardy’s inequality
and equals p/(p—1). This optimal constant is attained for n = 1, while for
n > 1 the constant K is strictly greater than the optimal.

O

Remark 8. When both f and —f satisfy the maximum principle, then
the absolute value |f| satisfies a similar condition, proven by Rao and Sikié
(see [6]),

|Nf|§2Mu—|—N[|f|-1{|Nf|Zu}], for every u > 0. (9)

p

9
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In that case, by using (9) instead of the maximum principle, one can
prove the generalized potential inequality for absolute values: if x € X and
z > 0 are such that z < |N f(z)|/(2M) < 400, then

T n—1
g(ﬁ Nf(@)]) —g(2) < %{N[|f|”g(”)(|Nf|)1BZ](x)

- g(”)(Z)N[Iflnlgz](x)} + Y 2N @) - 29 (),
=1

where B, = {y € X : [N f(y)| > z}.

Replacing the number z with a function that satisfies
2(x) < |Nf(2)]/(2M) < +oc for every x € B = {x € X : [Nf(x)| > 0}
and integrating with respect to the variable x one gets the integral version
of the last inequality, for C C B, C € B(X),

/c (9(557 N7 @)) = g(x(a) Jutda)
< W/C (/ |f(y)|ng(n)(|Nf(y)|)N(x,dy))N(;r’X)n—lu(dx)

Bz(z)

- WL(/ |f(y)|nN($ady))Q(")(z(x))N(x,X)”—lu(dx)

Bz(z)
300 [ aAN I =)g et ).
22l Jo'2M
In particular, for C = B, and the constant function z(z) = z we get

[, o(GaIN @utan) ~ gu(B.

< W /B [£(@) "™ (IN £ (@) (V2 ) (do)

_ng!(QJ\(J))” /;Z|f(x)|n(Ng:1“)(dx)+;g ! )/Bz(ﬁle(x)l—Z)zu(dw)-

7!

3. EXPONENTIAL CONVEXITY

We will first construct linear functionals nonnegative on the set of (n+1)-
convex functions by applying the generalized potential inequality, and its
various forms, derived in the previous section. We then use the methods
developed in [3] to generate new families of n-exponentially convex and
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exponentially convex functions by evaluating these functionals on families
of functions satisfying similar properties.
Let us define linear functionals Ag, £k =1,...,6, by

N(z, X)*!

Ai(g) = T

{N[(fﬂ”g(”)(Nf)le](x) - g<”><z>N[<f+>”1Bz]<x>}
+3 %(%(Nf)(a:) ~2)ig(z) — g (17 (N )()) + 9(2).

1) = i [, 17 (@) (Vg ) )
(n . n (z‘)(z) 1 .
L / P + 35 [ v -
Z (M(Nf)( ) () + g()(B.),
N(va)n ! +\n ,(n) (n) +\n
Ay(g) = TSN (N ) 18] ) — g 04N 18] (@)
+ZZ,MZ (N F)@)'gD(04) ~ 957 (NH)(@)),
o) = mi [ FH@ N D) o)~ [ gV D @)tdo)
(n (l ,
R e / 7 (@) (R ) ) +Zg 2 [ pteyaan)
T n—1
As(g) = %{N[Iflng(”)(lel)lgz](x) - g(n)(Z)N[|f|n1§Z]($)}

n

30 NI = 20 ) oINS + o),

=1

/ DG (N F(@)) (V) (do)

M)"
9(” 2) . g< ) i
_ )/ (VL) (d Z / (577 V@) = 2)'u(da)

/ 9 (7N F@) ) de) + g(=)u(B).
B.
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The linear functionals A; depend on the choice of a function f, kernel
N, measure p and points z and z, but we consider them given and omit
from the notation. Also, we assume that a particular choice of f, N, u, x
and z satisfies the assumptions of Theorem 2 (for k = 1), Corollary 3 (for
k = 2), Corollary 5 (for k = 3 or 4) and Remark 8 (for k =5 or 6).

We continue this section with few basic notions and results on exponen-
tial convexity that we will use.

Definition 2. A function ¢ : I — R is n-exponentially convex in the

S e (B 2 o

i,j=1
holds for all choices §; e Rand z; € I,i=1,....n.
A function ¥ : I — R is n-exponentially convex if it is n-exponentially

Jensen sense on I if

convex in the Jensen sense and continuous on I.

Definition 3. A function ¢ : I — R is exponentially convex in the Jensen
sense on [ if it is n-exponentially convex in the Jensen sense for every n € N.

A function ¥ : I — R is exponentially convex if it is exponentially convex
in the Jensen sense and continuous on /.

Definition of positive semi-definite matrices and some basic algebra gives
us the following proposition

Proposition 9. If 1 is an n-exponentially conver in the Jensen sense on

N1k
1, then for every choice of x; € I, 1 =1, ...,n, the matrix [1&(%)} -
Z7-]:
is a positive semi-definite matriz for oll k € N, k < n. In particular, for
N1k

all k € N, det [w(’”%’”fﬂ _ >0forallk<n.

Z7-]:
Remark 10. It is known that ¥ : I — R is log-convex in the Jensen sense
if and only if

r+y
o2 (o) + 2080 (L) + B2U(y) 2 0

holds for every o, 6 € Rand z,y € I. It follows that a function is log-convex
in the Jensen sense if and only if it is 2-exponentially convex in the Jensen

sense. Moreover, a function is log-convex if and only if it is 2-exponentially
convex.

The next theorem will enable us to construct n-exponentially convex and
exponentially convex functions.
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Theorem 11. LetQ) = {g, : p € J}, where J is an interval in R, be a family
of functions g, : (0, +00) — R such that the function p — [zo, . .., Zn41]gp s
m-exponentially convex in the Jensen sense on J for every n + 2 mutually
different points zg,...,2p41 € (0,400) and Ap(gp), for 1 < k < 6, is
well defined for every p € J (when k = 3 or 4, additional assumption is
that gg)(O—l—) is finite for every | < n and p € J). Then, the mapping
p — Ar(gp) is an m-exponentially convex function in the Jensen sense on
J. If the function p — Ag(gp) is continuous on J, then it is m-exponentially
convez on J.

Proof. For §; e Rand p; € J,i=1,...,m, we define the function

m
9W) =D &&igrir; (v)-
ij=1 2
Since p — [0, - . ., Zn+1]gp is m-exponentially convex in the Jensen sense,
we have

m
[z07 ) Zn-l—l]g = Z 515][’207 ) Zn-f—l]gp > 07
ij=1
which, in turn, implies that g is an (n + 1)-convex function on J (for k = 3
and 4 it also holds that g(0+) is finite). Therefore, by the generalized
potential inequality,

m
Ak(9) = D & Ak(gpitr;) > 0.
i.j=1 ’
We conclude that the function p — Aj(g,) is m-exponentially convex in
the Jensen sense on J. If the function p — Ag(gp) is also continuous on J,
then it is m-exponentially convex by definition. O

Immediate consequence of the previous theorem and properties of expo-
nentially convex functions is the following corollary.

Corollary 12. Let Q = {g, : p € J}, where J is an interval in R,
be a family of functions g, : (0,400) — R such that the function p —
(205 - - -, Znt+1]gp is 2-exponentially convex in the Jensen sense on J for ev-
ery n+2 mutually different points zg, .. ., zn41 € (0, +00) and let the linear
functionals Ay, 1 < k < 6, satisfy the same assumptions as in Theorem 11.
Then, the following statements hold:

(1) If the function p — Ag(gp) is continuous on J, then it is 2-exponenti-
ally convex and, thus, log-convez.
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(13) If the function p — Ai(gp) is strictly positive and differentiable on
J, then for every p,q,r,s € J, such that p <r and q < s, we have

1 q(2) < 47 (),

where

1
Ar(gp) \ P4
(Aﬁi(gi)) ,  PFU

1
(%Ak(gp)> _ ( 0)
P\ Ay ) PO

1y (Q) =

for gp, gq € Q2.

Proof. (i) This is an immediate consequence of Theorem 11 and Remark
10.

(74) By (i), the function p — Ag(gp) is log-convex on J, that is, the
function p — log Ay(gp) is convex. Therefore

log Ar(gp) — log Ak(ge) _ log Ar(gr) —log Ar(gs) (11)
pP—q o r—3s
forp<r,q<s,p#r, q#s, which implies that
WELQ) < EE(Q), K =1,...6.

The cases p = r and ¢ = s follow from (11) by taking limits p — r or
q— S. U

Next, we present several families of functions that satisfy the assumptions
of Theorem 11 and Corollary 12 and, in this way, we construct large families
of exponentially convex functions.

Example 13. Consider a family of functions 1 = {g, : p € R} given by

ePY
n-+19 p # 0
gp(y) = { pyn+1 —0
(Dl P =
Similarly as in the proof of Theorem 11, let us, for & € R and p; € R,

i=1,...,m, define the function

m
9(3/) = Z fz‘fjgpiﬂ?j (Z/)
ij=1 2
Since the function p — %gp(y) = ePY is exponentially convex (follows

from the definition), we have that

m s ?
S () = Z fifjgw(y) = <Z£i€pi'y/2) >0
2 =1

ij=1
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is an (n + 1)-exponentially convex function. Therefore

0<[20,...,2n]g = Zfzfg 205 - ]gpz+p ,
,5=1
so p — [20,...,2n]gp is m-exponentially convex in the Jensen sense for

every m. Using Theorem 11 we conclude that the mapping p — Ax(gp)
is exponentially convex in the Jensen sense. It is easy to verify that this
mapping is continuous (although the mapping p — g, is not continuous at
p = 0), so it is exponentially convex.

For this family of functions, u’;q(Ql) from (10) becomes

1
Ak (gp) \ P—a
) (3) " p7a
_ Ay (id- n
Hpg(1) = ¢ exp %ﬁ—%) p=q#0
exp ﬁ*ﬁ%fﬁ’)» p=q=0,

where id(y) = y is the identity function.

Example 14. Let Qo = {g, : p € I;} be a family of functions defined by

771 p¢{0,1,...,n}
9p(¥) :{ p(p 1) (p—n)

1 .
%7 b= 6{0,1,,77/},

where I, = (0,400) for £ = 1,2,5 and 6, and I = (n,+o00) for k = 3
dan 1

dy:—fl(y) = e~y is exponentially convex
(follows from the definition) and, arguing as in Example 13, we get that

and 4. The mapping p —

the mappings p — Ag(gp), 1 < k < 6, are exponentially convex. In this
case, the functions (10) are equal to

1
A(gp) \ 71
(ﬁdﬂ : p#4q
A
i () = exp (1)t s ) p =g ¢ (0,1, m),
exp <(—1) n'Az(kg?ggp Ek 0 — p> p=qe{0,1,...,n}.

Example 15. Let Q3 = {g, : p € (0, +00)} be a family of functions given
by

p_y
oy, PFEL
gp(y) = { (ynlflp) B
i P=L
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m+1
Since p — Cilyn—ff’(y) = p~ Y is the Laplace transform of a non-negative

function (see [7]) it is exponentially convex. Arguing as in Example 13 we
get that the mappings p — Ax(gp), 1 < k < 6, are exponentially convex.
For this family of functions, u’;q(Qg) from (10) becomes

1
Ar(gp) \ P4
) (Eﬁﬂ ) P#4q
_ Ay (id- "
um(Qg) ) <P plil(k(gig) o plﬁ?) » P=a7l,

exp | —=—5 p=gq=1.

1 Ag(id-gi1)
n+2 Ak(gl) ’

Example 16. Let Q4 = {¥, : p € (0,400)} be a family of functions
defined by

e~ UVP
9p(y) = (_\/—W

Since p — Cilyn—ff’(y) = e %P is the Laplace transform of a nonnegative
function (see [7]), it is exponentially convex. Arguing as before, we get
that p — Ar(gp), 1 < k <6, are exponentially convex functions.

For this family of functions, u];7q(Q4) from (10) becomes

1
Ap(gp) \ P4
(ﬁ@ﬂ ) P#q
Aulidgy)  n _
exp (gl — 5il) | p—g
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OBOIIIMITEHO ITIOTEHIINJAJIHO HEPABEHCTBO 1
EKCIIOHEHIIMJAJIHA KOHBEKCHOCT

Hesen Eneszosuk, Jocun [Teuapuk, Mapjau I[Ipamak

Peszuwme

Bo oBoj Tpym ro remepanm3mpame TOTEHIM]AJTHOTO HEPABEHCTBO KOE€ €
BOBeseHO Bo [6] u mpommpeHo Ha KiacaTa OPUPOJHO 1e(UHUPAHU KOHBEK-
can Gynknuu Bo [1]. Temepanmsanujara e HOCTUrHATA CO 3aMEHA BO JOKA30T
Ha MOTEHIMjaJTHOTO HEPaBEHCTBO, Ha TejmopoBara eKCcmaH3Wja OO NIPB Pen
Ha KOHBekcHa (ymkmuja co Tajnoposata ekcmamsuja ox pen n ma (n + 1)-
KOHBEKCHa ()YHKIM]ja.

Ocser Toa, KOpUCTEjiU MeTonu passueru Bo 4] u [2] korcTpyupame Hexo-
JKY GaMUIUM OX N-eKCHOHEHIN]AJIHA KOHBEKCHU (DyHKIUU, CO KOPUCTEHE Ha

JIMHEAPHOCTa HA OOMITEHOTO MOTEHIMjaJHO HEPABEHCTBO.
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