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ON MONOASSOCIATIVE GROUPOIDS

Gorgi Cupona*, Naum Celakoski**, Snezana [lié ***

Abstract

The subject of this paper is the variety (denoted by Mass)
of monoassociative groupuoids, i.e. groupoids in which every cyclic
subgroupoid is a subsemigroup. A description of [ree objects in
Mass is given. Using a convenient definition of injective groupoids
in Mass, it is shown that a groupoid H is free in Mass ifft H is
injective in Mass and the set of prime elements in I generates i,
{This property is named Bruck Theorem for Mass.) Neither of the
classes Massin (injective objects in Mass) and Massfr (free objects
in Mass) is hereditary. A characterization of free subgroupuoids
of a groupoid H € Massfr is obtained. It is shown that every
gronpoid H € Massfr with a two-clement basis has a subgroupoid
@ € Massfr with an infinite basis.

1. Preliminaries

A groupoid is a pair (¢ = (G,+). where G is a nonempty set and 7”7
is a mapping (z,y) — 2y, from G? into G. G is said to be injective iff:

(Ya,y,u,v € G)(ey = uv = (x,y) = (u.v)). (1.1)
An element a € GG is prime! in G iff « ¢ GG, where

GG = {zy | 2,y € G}. (1.2)

' The notions as subgroupoid, semigroup, variety of groupoids ... have usual

meanings.
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The following statement is well known (for example; [1; L.1.5]).

Proposition 1.1(Bruck Theorem). A groupoid F = (F,-) is abso-
lutely free (i.c. free in the variety of groupoids) ifl the following conditions
hold:

a) F' is injective.
b) The set B of primes in F is nonempty and generates [,

Below we assume that F is a given absolutely free groupoid with the
basis 3. The length |v|, the set P(v) of parts and the content cu(v) of an
element » € I', are defined as follows:

|b] = 1.- [tu] = |t] + |u|;  P(b) = {b}, P(tu) = {tu} U P(t)U P(u);
cn(b) = {b}. cn(tu) = cn(t)Ucn(u). (1.3)

forany be B, t,ue I'. ;

We will also use an absolutely free groupoid E = (F,-) with a once-
element basis {e}, assuming that FF'N F = (). Flements of I/ will be denoted
by f.g,h,... and will be called (groupoid) powers. It should be noted that
(1.3) makes meaningful notions "the length | f|” and "the set P(f) of parts”
of an element f € F.

If G is a groupoid, then each f € E induces a transformation f< :
(+ — (7 defined by: )

f_C_!(x) = if?.r(f)}
where ¢, : FE — ( is the homomorphism from £ into G such that
z(€) = . Therefore:
Gpy=a, (fh)%x)= fEa) h% ). (L.4)

£

forany f.h € £,z € G. (We will usually write f(2) instead of f&{z) when
we work with a fixed groupoid .)

The following statement is clear.

Proposition 1.2. Il G is a groupoid and a € (7, then {f(a) | f € I}
is the subgroupid of &G generated by a. O

In the following sections we will use a subset D of I/ defined as follows:

D= {e" | n € N}. (1.5)
where N is the set of positive integers and
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The fact that F is injective implies that F’ has the following property:
Vhyu€ F, myne N) ("™ = o™l =t = u & m = n). (1.7)
If GG is a groupoid, and b € G is such that
(Vee G, neN)(n>2=b#c"), (1.8)

then we say that b is a base element (or, shortly: a base) in G.

2. Monoassociative groupoids

We say that a groupoid G = (G, 1) is monoassociative iff, for any a € (7,
the subgroupoid @ of G generated by a is associative, i.e. a subsemigroup
of G. (The class of monoassociative groupoids will be usually denoted by
Mass.)

The proofs of the following statements are obvious corollaries from the
definition of Mass.

Proposition 2.1. ' € Mass ifffor any f € F and ¢ € G, the following
equation

f(z) = 2!/ (2.1)
holds in G. O
Proposition 2.2. If G € Mass, then

T

M
&£

€ = g™t (™) = 2™". (2.2)
foranyz € G,m,ne N. 0O

Proposition 2.3. If G is a groupoid, then the following statements
are equivalent:

(a) G € Mass.
(b) G is a union of subsemigroups of G.

(c) G is a union of cyclic subsemigroups of G. O

Proposition 2.4. Mass is a variety of groupoids and:

{f(z)=21| f € E} (2.3)

is an axiom system for this variety. O
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3. Free monoassociative groupoids

Assuming that B is a nonempty set, and F an absolutely free groupoid
with the basis B, we are looking for a groupod B = (R.#*) with the following
properties:

(1) Bl Ric 1
(i)t € R = P(l) C R;
(i) tyu,tu € R =1 5u~—tu

(iv) R is a free groupoid in Mass with the basis B.
Proposition 2.1 suggests the following set R as a candidate for the
carrier of the desired groupoid R:

R={te F|(Yfe E\D,z€F) f(x) ¢ P(1)}. (3.1)

The following properties of R are obvious corollaries of (3.1).
Proposition 3.1. (a) R satisfies (i) and (ii).
(MteF&mneN, n>2=1"1" ¢ R.

(c)teF & mmeN, m22,n>2= (" ¢ R.

() {t,u} CR&tug R=(Fa e Rom > 1,n22)tu=aa". O

Now we will describe conditions under which t"* € R.

Proposition 3.2. If 1 € F and n > 2, then:
i"e R < te R&t isabasein £.

Proof. Assume that { € R and ¢ is a base in /. By Proposition 3.1
(d), 1* € R. Assuming that ¥ € R, also by Proposition 3.1 (d), we obtain
i+t — hle B

Conversely, " € R, by Proposition 3.1 (a), (d), implies: ¢ € R and t1i
a base element in F'. O

Now we define an operation * on K. as follows. If 7, u € R, then:

t, tu e R,
R = (3.2)

41 y
amt e =a™a, mneN, n>2.
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Proposition 3.3. R = (R,#) is a groupod which satisfies the condi-
tions (iii) and (iv).

Proof. 1) By (3.2) and Proposition 3.2, R is a groupoid that B is the
set of primes in K, and the least generating subset of R, as well. Moreover
we have:

a

[t*u| = [t] + |u| = |tu], (3.3)

en(t*u) = cn(t)Ucen(u), (3.4)
for any t,u € R.
2)Ifte R, ne N, fe E, then t7, f.(t) are defined as follows:

=, 12 =Pt (3.5)
ex(t) =1, (fifa)o(t) = (fru(t)) * (f2,(1)). (3.6)

By (3.2).(3.5), (3.6) and Proposition 3.2, we obtain that for any ¢ € R
is a base in F, and any m,n € N, f € I/, the following equations hold:

2=, A=t (3.7)
(t‘m Jli =y tn‘i.r.'.1 f*(fm ] e rm|f| (38)
Finally, from (3.7) and (3.8), by Proposition 2.1, we obtain that

It € Mass.

3) It remains to show that R is free in Mass with the basis B.
Let G € Mass, A : B — (i, and ¢ be the homomorphism from I into
G, which extends A. Then, for any t.u € R, we have:

{mmnzwummx tue R,
w(t*u)=

e(a™M) = p(a)pla)* = p(t)e(u), tu=a™a™, m,neN, n>2,

and this implies that the restriction v = ¢|R of ¢ on R is a homomorphism
from R into G, which extends A. 0O
The following properties of B can be also easily shown.

Proposition 3.4. If t € R, then { is a base element in Riff tis a base
element in F. 0O

Propositon 3.5. If u € R, then there exists a unique pair
(t,k) € R x N such that t is a base in R and v = (¥(=t*). O

We say that t is the base, and k is the exponent of u in R. In the case
k > 2, the equation . = v+ w holds in Riff v =t", w =1, and r + s = k.
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Proposition 3.6. If u € R is a base element and u € R\ B, then
there is a unique pair (v,w) € R? such that u = v * w(= vw) ; moreover, v
and w have different bases. 0O

Proposition 3.7. If t,u,v € R. then:
(a) t*u=wux+t iff t and u have the same base.
(b) (t*u)*v=1t*(ux*v) iff t, v. and v have the same base. 0

Proposition 3.8. If B = {0} is a one element set. then
R={b"|n > 1}. and b™ % b = b +". (Therefore, R is isomorphic with
the additive semigroup of positive integers.) O

4. Tnjective objects in the variety of monoassociative groupoids

Looking for a convenient class of "injective groupoids™ in a variety V of
groupoids we choose as axioms of such a class corresponding properties of
free objects in V that are "near” the statement (1.1). In the case of Mass.
such statements are Proposition 3.5 and Proposition 3.6, and that is why
we give the following definition.

We say that a groupoid H € Mass is injective in Mass, i.e. it is in
Massin, iff it satisfies the following conditions:

(i) For any @ € I there is a unique pair (b, k) € H x N such that a = b*
and b is a base in H. (We say that b is the base and k is the exponent of a
in H, and write b = 3(a), k = £(a).)

(ii) Let a € H be not prime in H.
(ii.1) IT b = 3{a) and =(a) > 2, then
a=cd= B(c)=p(d)=b & z(e)+ ¢(d) = e(a).)

(ii.2) If e.d € Il are such that J(c) # B(d), then d(ed) = ed, and:
ed =cld = (e,d) = (', d').

As corollaries of the given definition and Propositions 3.5-3.7, we ob-
tain the following poperties of Massin.

Proposition 4.1. The class of free groupoids in Mass (shortly:
Muassfr) is a subclass of Massin. 0O

Proposition 4.2. A groupoid H € Massin contains only one

base element iff Il is isomorphic to the additive semigroup ol positive inte-
garg,, O
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Proposition 4.3. Fach H € Massin is infinite. O

Proposition 4.4. [very groupoid H € Massin contains infinitely
mauny subgroupoids that are not injective.

Namely, if b is a base in H. then for any i > 2. Q; = {b" |n>i}isa
subgroupoid of H and Q. ¢ Massin. O

Proposition 4.5. Massfr is a proper subclass of Massin.

Proof. Let A be an infinite set and let H = A x N. Instead of
(a.n) € H we will write a™. and moreover, a instead of a'. The fact that
A is infinite implies that A, H and

C={(a"b")|a,be A, a #b, m,ne N},)
have the same cardinality. Let @ : " — H be an injective mapping and
define a groupoid H = (H,e) as follows:

(Va,be A, a# b, mneN) a™ea" =a™™",  a™eb" = p(a™, b").

Then H € Massin.

Namely, a = B{a*). k = ¢(a*). for each « € A, & € N. And.
if @",b" € H, a # b, then a™ o b = @(a™,b") is a base that is not
prime in H. The injectiveness of ¢ implies that the condition (ii) of
the definition holds as well. Then, H \ im(¢p) is the set of primes in .

Therefore, if ¢ is bijective, then the set of primes in } is empty. and then
I ¢ Massfr. O

Praoposition 4.6. If II € Massin is such that there exist at least twa
distinct base elements in /. then the set of base elements in H is infinite.

Proof. Let b, ¢ be base elements in H and b # ¢. Then. {b¥c |k > 1)}
is an infinite set of base elements in H. 0O

As a corollary we obtain the following.

Proposition 4.7. If Il € Massin, then the following conditinons are
equivalent:

{a) H is commutative;

(b) H is associative;

(c) H is isomorphic to the additive semigroup of positive integers;
(d) There is only one bhase element in H;

(e) H € Massfr with one-element basis. 0O
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Below we assume that H € Massin, @ is a subgroupoid of H and the
following notation:

B(H)={Bla)|a€ H}, C=QnA(H),
D={beBH)\Q|(EaeQ)b=pa)},

rp = min{k | b* € Q}, where b€ D.

Proposition 4.8. If D =, then @ € Massin.

Proof. This is a consequence from the definition of Massin. O

Proposition 4.9. If D # (), then the following statements are true.

1) For every b € D. the clement b™ is prime in Q.

2) If, for every b € D, b® € @ implies 7, | s, then Q € Massin.

3) If there are b € D and s € N such that r, does not devide s and
b® € Q. and if s is the least integer with this property, then b* is prime in
@ and @ ¢ Massin.

Proof. 1) If b" (r = r) were not prime in @, then we would have

b™ = bibJ for some b'.bi € Q, i+ j = r, and this contradicts the choice of 7.

2) Suppose that a € Q is such that b= f#(a) € D. By 1), b" (r = 7p) is
the base of a in @ and the exponent of a in @ is ¢(a)|r. Thus @ € Massin.

3) Let s =min{k € N | b* € Q and r does not devided k}. Then b* is
prime in Q. (Namely, if b* were not prime, then we would have b* = b/
for some b*,07 € Q, (i+ j =r). By 1). | 7 and r | j, which implies 7 | s, a
contradiction with the choice of s.) Thus the elements 0", b* are prime in
Q. Since (b7)* = b"* = (b*)", we have that b"+* has two distinct bases in
Q. and thus Q ¢ Massin. O

As a corollary of Propositions 4.8-4.9, we obtain.

Proposition 4.10. Q ¢ Massin iff there is b € 3(H) and r,s € N
such that 2 < r < s and b, b° are prime in (. O

5. Bruck Theorem for the variety of monoassociative groupoids

Below we show the following proposition, analogous to Proposition 1.1,
that we call Bruck Theorem for the variety of monoassociative groupoids

([4]).
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Proposition 5.1. A groupoid I € Mass is free in Mass iff the fol-
lowing two conditions are satisfied:

(a) H € Massin.
(b) The set B of primes in H generates s

Proof. If { € Massfr then, by Proposition 4.5, H € Massin, and, by
Proposition 3.3, the set B of primes generates H.
Let H € Massin and the set B of primes generates H.

If B = {b}, then H = {b™ | n > 1}, and b is the unique base element
in H and, by Proposition 4.2, H is free in Mass with the basis {b}.

It remains the case when B contains at least two distinct elements. As
in §4 we denote by 3(H) the set of bases in H. Clearly, each prime in H
belongs to 3(H), and thus B = By C A(H). By (ii) of the definition of
injectiveness, we also have By C 3(H ), where

By = {a™b" | a,b€ Byg. a #b, m,n € N}.

Assume that: By.Bj...., By are nonempty sets of bases such that
BN B; =0ifi# j. Define Byyq by:

Biyr = {¢™d" | m,n €N, c#d, {c,d} C By U...U By, {e,d} N By # 0}.
By (ii) of the definition, we have Byyy CA(H ), Biy #0 and Bry1 NB; =0,
for each i € {1,2,...,k}. Moreover, the fact that B(= Bo) generates II

implies that
ﬁ(H):U{les > 0}.

If
B} ={a’|a € B;, s € N},

then 1 # j implies B/ N B} = 0 and
H=u{B}|iz1}

Let G € Mass and A : B — (. Define a sequence of mappings
@i+ BY — @ as follows:

be By, n 2 1= po(b") = (A(B)';
c™d" € By, n > 1 = @i((c™d")°) = ((pole)™ (wold)");
¢™d" € Byy1, ¢ € Bi,d € Bj = grpa((¢™d")*) = ((pile))" (@i(d))")°.

Then, the union ¢ = UL @y is a homomorphism of H into G that extends
the given mapping A\: B— G. O
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Below we assume that H = (H,-) € Massfr, @ is a subgroupoid of /I
and B is the set of primes (i.e. B is the basis) of H.

Using the fact that any groupoid H = (H,-) € Massfr with the basis
B is isomorphic with the groupoid R constructed in §3, and the statements
(3.3) and (3.1), we can state the following

Proposition 5.2. There exist a mapping @ — |2| of H into N, and a
mapping ¢ — cn(x) of H into the set Lg of all finite nonempty subsets of
B, such that

1) [ol=1, |=y] = [z + |yl

2) cn(b) = {b}, cn(zy)=cn(z)Ucn(y),

foranybe B, z,yc H. 0O°?

Proposition 5.3. The set P of primes in @ is nonempty and gene-
rates Q.

Proof. Assume that p € ) is such that
|p| = min{|x| | z € Q}.

Then p is a prime in Q, and thus the set I of primes in @Q is nonempty.

Denote by T' the subgroupoid of () generated by I” and assume that
for each a € @ such that |a| < k, we have a € T. (In the case |a] = 1, we
have @ € P.) Then, if d € @ is such that |d| = k + 1, we have: d € T if
de P,and if d € Q\ P, then there exist b,¢ € ¢ such that d = be. Then,
by Proposition 5.2.1), [b], |e| < k., and therefore b, ¢ € I'. which implies that
ael. O

As a corollary of Propositions 4.8-1.9, Proposition 5.1. and Proposi
tion 5.3, we obtain the following characterization of free subgroupoids of
groupoids in Massfr.

*Note that the existence of such mappings can be shown without using the
free gronpoid R. Namely, the fact that (N, +) € Mass implies that there exists a
homomorphism | | : H — N such that [b| = | for each b € B. Also, the fact that
(Lp.U) € Mass implies that there is a homomorphism en @ H — Lg. such that
cn(b) = {b} for each b € B.
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Proposition 5.4. If H € Massfr and @ is a subgroupoid of #, then
the following conditions are equivalent:

(a) Q € Massin:

(b) Q € Massfr;

(¢) There are no prime elemenents 6, 0% in @, where b is a base in H
and: 2 <r < 9 O

A corollary of Proposition 4.2 is the following

Proposition 5.5. If 4 € Massfr is with one-element basis and @ is
a subgroupoid of H, then: @ € Massfr iff @ is cyclic. O

Proposition 5.6. Let H € Massfr with the two-element basis
B = {a,b} and @ be the subgroupoid of H generated by

C = {a*b* | k € N}

Then @ € Massfr with the infinite basis (.

Proof. The assumption @ # b implies that each element ¢ € (' is a
base in H; moreover, a™b™ = a™b"™ implies m = n, i.e. the set ' is infinite.

Note that, by (3.4), (¥t € Q)(cn(t) = {a,b}), and thus ¥, bF ¢
(). 'Therefore, every ¢ € (' is prime in () and, by Proposition 5.4 (c),
Q@ € Massfr. O i
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3A MOHOACOUMJATUBHUTE I'PYITONJIN

I'opru Yynona*, Haym Henakockm**, Cuexana WMauk ™"

Pezuwme

[Mpeamer Ha oBaa paboTta e MHOryobpasmueTo (o3naueno co Mass)
0]l MOHOACOUMJaTUBHA TI'PYHOWIM. T.e. TI'PYNOMAM BO KOM CEKOj HHUK-
AWYeH moArpynoui e nojuyrpyna. Jlazer e omuc ma cinobomauTe 06-
jektu Bo Mass. KopmueTejkm coomseTna meduMHMUMjA HA IIOMMOT MH-
jekTHMBeH Tpynoui Bo Mass, ce NOKaxyBa JeKa eJen rpynowa H e
cnobonen o Mass ako n camo ako H ¢ wnjektwsBen Bo Mass m MHO-
AeCTBOTO MpoCTU eeMeHTH Bo H ro remepupa H. (OBa cBojcrso e
napeyeno Teopema na Bpak 3a Mass.) IHwuemna on wnacure Massin
(1.e. knacarta uijestusoun o6jextn Bo Mass) u Massfr (1.e. Knmacarta
ciobomu objexrun Bo Mass) He e nacnemda. llobuena e KapakTepu-
sanuja Ha cjaobomauTe moarpymouan on enes rpynowd H € Massfr n
HnoKkamaHo e Jieka cexoj rpynona I € Mass co npoenemenTtHa Haza uMma
nogarpymows QQ € Massfr co beckoneuna Oasa.
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