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NONLINEAR CONTRACTIONS AND FIXED POINTS IN COMPLETE
DISLOCATED AND b-DISLOCATED METRIC SPACES

Elida Hoxha®, Kastriot Zoto? and Panda Sumati Kumari®

Abstract. In this paper, we continue the study of complete dislocated and b-dislocated
metric spaces and established some common fixed point theorems for one and two
mappings. Our results generalizes and extend some existing results in the literature in a
class effectively larger such as b-dislocated metric spaces, where the self distance for a
point may not be equal to zero.

1. INTRODUCTION

The concept of b -metric space was introduced by Bakhtin [4] and extensively used
by Czerwik in [10]. After that, several interesting results about the existence of a fixed
point for single-valued and multi-valued operators inb-metric spaces have been
obtained. Recently there are a number of generalizations of metric space. Some of them
are the notions of dislocated metric spaces and b -dislocated metric spaces where the
distance of a point in the self may not be zero. These spaces was introduced and studied
by Hitzler and Seda [5], Nawab Hussain et.al [7]. Also in [7] are presented some
topological aspects and properties of b-dislocated metrics. Subsequently, several
authors have studied the problem of existence and uniqueness of a fixed point for
single-valued and set-valued mappings and different types of contractions in these
spaces.

The purpose of this paper is to unify and generalize some recent results in the setting

of dislocated and b -dislocated metric spaces using a class of continuous functions G, .

2. PRELIMINARIES

Definition 2.1 [6]. Let X be a nonempty set and a mapping d; : X x X —[0,0) is called
a dislocated metric (or simply d, -metric) if the following conditions hold for any
X, Y,2e X

i. Ifdj(x,y)=0,then x=y

i di(x,y)=d;(y, %)
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i, dj(x,y)<d(x,2)+d|(z,y)
The pair (X,d,) is called a dislocated metric space (ord -metric space for short). Note
that when x =1y, d|(x,y) may notbe0.

Example 2.2. If X =R, then d(x,y) =/ x|+]|y| defines a dislocated metric on X .

Definition 2.3 [6]. A sequence (x,) in d; -metric space (X,d,) is called:
(1) a Cauchy sequence if, for givene >0, there exists nyeN such that for all

m,n >ng, we have d; (X, X,) <& or lim d;(x,,Xy,) =0,
—>00

(2) convergent with respect to d; if there exists x € X such thatd, (x,,x) >0 asn — .
In this case, Xis called the limit of (x,,) and we write x, — X .

A d|-metric space X is called complete if every Cauchy sequence in X converges to a
pointin X .

Definition 2.4[8]. Let X be a nonempty set and a mapping by : X x X —[0,) is
called a b -dislocated metric (or simply by -dislocated metric) if the following
conditions hold for any x,y,ze X and s>1:

a. If by(x,y)=0,then x=1y,

b. by (%, ¥)=bg(y. %),

C. by(x,y)<s[by(x,z)+by(z, y)I.

The pair (X,by) is called a b -dislocated metric space. And the class of b -dislocated
metric space is larger than that of dislocated metric spaces, since a b -dislocated metric
is a dislocated metric when s=1.

In [8] was showed that each by -metric on X generates a topology Thy whose base is
the family of open by -balls By, (x,&)={ye X :by(x,y) <&}

Also in [8] are presented some topological properties of by -metric spaces

Definition 2.5. Let (X,by) be a by -metric space, and (x,,) be a sequence of points in
X . Apoint xe X is said to be the limit of the sequence (x,) if lim by (x,.X)=0 and
nN—oo

we say that the sequence (X,) is by -convergent to X and denote it by x, — x as
n—o0.

The limit of a by -convergent sequence in a by -metric space is unique [8, Proposition
1.27].
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Definition 2.6. A sequence (x,) ina by -metric space (X,by) is called a by -Cauchy
sequence iff, given &>0, there exists nge N such that for all n,m>ng, we have

by (Xn, Xm) <& or lim by (x,,Xy,)=0. Every by -convergent sequence in a by -metric
n,m—oo

space is a by -Cauchy sequence.

Remark 2.7. The sequence (x,) ina by -metric space (X,by) is called a by -Cauchy

sequence iff lim by (xy, %y, p) =0 forall peN”
n,m—oo

Definition 2.8. A by -metric space (X,by) is called complete if every by -Cauchy
sequence in X is by -convergent.
In general a by -metric is not continuous, as in Example 1.31 in [8] showed.

Example 2.9. Let X =R*U{0} and any constant «>0. Define the function
dj: XxX —>[0,00) by dj(x,y)=a(x+y). Then, the pair (X,d;) is a dislocated
metric space.

Lemma 2.10. Let (X,by) be a b -dislocated metric space with parameter s >1. Suppose
that (x,) and (y,) are by -convergentto x,y e X , respectively. Then we have

sizbd(x, y) < lim inf by (X,, yp) < lim supbd(xn,yn)gszbd (x,y)
n—o N—o0
In particular, if by(x,y)=0, then we have lim by (x,,y,)=0=Db4(X,y) . Moreover,
n—o0

foreach ze X , we have
Lby (x,2) < lim inf by (X,,2) < lim supby (x,,2) < sby (x,2)
s N—o0 N—o0

In particular, if by (x,z)=0, then we have lim by(x,,z)=0=by(x,2).
nN—oo

Some examples in the literature shows that in general a b -dislocated metric is not
continuous.

Example 2.11. If X =R* U{0}, then by (x,y) = (x+ y)2 defines a b -dislocated metric
on X with parameter s=2.

3. MAINRESULT

We consider the set G, of all continuous functions g :[O,oo)4 —[0,0) with the
following properties:
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a) g isnon-decreasing in respect to each variable
b) g(t,t,t,t) <t,t €[0,c0)
Some examples of these functions are as follows:
911 9(t, 1,13, t4) = max{t, tr, ta, t4}
07 9(t, b, t3,t) = max{t; +tp,t, +1t3, 4 +13,t3 + 14}

1
03:9(t, 1, t3,1y) =[max{tty, trts, taly, t3t, }12

1
94 :9(ty b, t3,ty) =[max{t; ", t,P 57 t,P}]P, p> 0.

Theorem 3.1. Let (X,d) be a complete b -dislocated metric space with parameter

s>1 andT,S: X — X two mappings satisfying the following contractive condition

sd(Sx,Ty) < cgld(x, ¥),d(x $),d(y, Ty), L4 SA0T, €

for all x,yeX where geG, and 0<c<1. Then Tand S have a uniqgue common
fixed point and if u is a common fixed pointof S and T, then d(u,u)=0.
Proof. Let x, be an arbitrary point in X . Define the sequence (x,) as follows:

X =5(X0): X2 =T (X1), s Xon =T (Xon-1): X211 = S(X2n): -
if we assume that for some ne N, Xyp,1 =Xo, then Xo, =Xo,,1 = SXo,, and also using
the contractive condition of theorem we will have that X5y, ,1 = Xoy, is a fixed point of T .
Thus we assume that for ne N, X,,,1 # Xop, . By condition (1) we have:

sd (Xon 41, Xon42) = A (SXo, TXon41)

d S n d n-+ 1 n-+
SCg[d(XvaX2n+1)ld(invSXZn)’d(X2n+1vTX2n+1)v (o D20 )0 0inen. Dy 1)]

1+d(X2an2n+1)
d (X1 X141 )d (X1, Xonn)
:Cg[d(XZn’X2n+1),d(X2n’X2n+1),d(X2n+11X2n+2)l 2N 2 —— ]

1+d (X2 X2n41)
< cd(Xan+1: X2n)-

Thus
d(Xans1: Xon42) < $d(Xan, Xons1) &)
Similarly by condition (1) have:

sd (X2n ) X2n+1) =sd (TXZn—lv SXZn)
=50 (SX2n, TX2n-1)

d (Xop,S¥on)d (Xon_1,TXon..
< 0g[d (Xan: Xan1):d (Xan S¥on). 0 (Xan, 1, TXan 1)~ en-t- D))

d (Xon, Xons1)d (XZn—leZn)]
1+d (X2n.X2n-1)

= cg[d(Xan, X2n-1),d (X2n, X2n41), d (Xon_1, X2n)»

<cd (X2n—11 X2n ).
Thus

d(XZn* X2n+1) S%d(XZn—lv XZn) : 3
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Generally by conditions (2), (3) and denoting k =§ , we have

d(Xans1: Xons2) < kd (Xon, Xons) <. <k2d(xg, %) for neN.
Since 0 <k <1, taking limit for n — oo we have
d(X2n41:Xons2) 0. 4
Now, we prove that (x,) is aby -Cauchy sequence, and to do this let be m,n>0 with
m>n, and using definition 2.4 (c) we have
bd (Xn ) Xm) < s[bd (Xn’ Xn+1) +bd (Xn+1! Xm)]
< sby (Xn, Xps1) + Szbd (Xn41:Xn42) + S3bd (Xn42: Xn13) +-..
< sk"™by (X, X1) + 52k "y (Xg, %) + 5k 2y (Xg, %) + .

= sk”bd (X, X )[L+ 8K + (k)2 + (sK)3 +...]

s 1 sk bd (Xo, Xl)
On taking limit for n,m —cowe have by (X, Xm) —0 as ks<1. Therefore (x,) is a
by -Cauchy sequence in complete b-dislocated metric space (X,by). So there is some
ue X such that (x,) dislocated converges to u. Therefore the subsequences
{S%n}—u and {Tx,,,4}—u. Since T,S: X — X are continuous mappings we get:

Su=u and Tu=u. Thus, U isacommon fixed pointof T and S .
If consider that T is continuous and S not continuous we have that Tu=u. Using the
contractive condition of theorem we have,

d (u,Su)d (Xan41.TXon .
S0 (S0, Togn,1) < COIA(U, Xpn,2), A1, SU), 6 (Xg 1, Tigny), 2S00 Uant V)

d(u,Su)d (Xan41.X2n+
< cgld (U Xn 1), 0 (U, Su), 0 (Xan 1, Trgnen), g Clpznsady

Taking in upper limitas n — oo, using lemma 2.10, property of g and result (4) we get
s<d(u, Su) < cg[0,d(u,Su),0,0].
This inequality implies d(u, Su) <cd(u,Su) that means d(u,Su)=0. Thus Su=u and

u is a fixed pointof S .
If consider (c) we have that, uis a common fixed point of Sand T . Using the
contractive condition of theorem, we obtain
sd(u,u) =sd(Su,Tu)
<cg[d(u,u),d(u,u),d(u,u),

=cd(u,u).

d(u,u)d(u, u):I
1+d(u,u)

The inequality above implies that d(u,u) <kd(u,u).So d(u,u)=0, since0<k =2

Uniqueness. Let suppose that u and v are two common fixed points of T;S. From
condition (1) we have:
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sd(u,v) =sd(Su,Tv)
<cg[d (u,v),d(u,Su),d(v,Tv),%] (5)

=cg[d(u,v),d(u,u),d(v,v), d(111+3)(i(\\//)v)]
Replacing v=u in (5) we get:

sd(u,u) < cg[d (u,u),d(u,u),d(u, u),%] <cd(u,u),

i.e. d(u,u)s%d(u,u):kd(u,u). Since0<k <1 we obtain d(u,u)=0. Similarly
replacing u=v in (5), we obtain d(v,v)=0. Again from (5) have d(u,v)<kd(u,v)
since 0<k <1 get d(u,v) =0, which implies u=V . Thus fixed point is unique.

Corollary 3.2. Let (X,d) be a complete b -dislocated metric space with parameter

s>1and T,S: X — X two mappings satisfying the following contractive condition
sd(Sx, Ty) <cg[d(x, y),d(x,Sx),d(y,Ty)]

for all x,ye X where geGz and 0<c<1. Then Tand S have a unique common

fixed point and if u is a common fixed point of S and T, then d(u,u)=0.

Corollary 3.3. Let (X,d) be a complete dislocated metric space and T,S: X — X two
mappings satisfying the following contractive condition

d(Sx,Ty) <cgld(x, y),d(x, $0),d(y, Ty), LGP0I,

for all x,yeX where geG, and 0<c<1. Then T and S have a uniqgue common
fixed point and if u is a common fixed pointof S and T, thend(u,u)=0.

The following example supports our theorem.

Example 3.4. Let X =[0,1] and d(x,y)=x+Yy, forall x,ye X . Itisclearthat d isa
dislocated metric on X . We define the self mappings S,T: X — X as follows

{%x, x €[0,1) {%x, x €[0,2)
Sx = X and Tx = X

5 Xx=1 3 x=1.
Note that S and T are discontinuous maps. Now we will show that the contractive
condition of 3.3 is satisfied for constant ce<[0,1) and taking the function
gty 1, t3, 1) = max{ty, t,,t3,t,}. We have the following cases:
Case 1. Note that for all x,y €[0,1), we have
d(Sx,Ty) =d(Z. D) =2+L <L(x+y)=L1d(xy)

Case 2. Note that for x=y =1, we have
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d(Sx,Ty):d(Sl,Tl):d( )%+% =%-2=%d(x,y).
Case 3. for x[0,1) and y =1, we have

d(xTy) =d(%. D=5 +5 <3 x+D=1d(x.y).

Case 4. Forall ye[0,1) and x=1, we have
5+6
d(Sx,Ty)=d@ D =t+L=2F <1+y)=1d(xy).
Thus all conditions of corollary 3.3 are satisfied and x =0 is a unique common fixed
pointof S and T .

Also we note that this theorem is not available in a usual metric space if
d(x,y)=|x—y]| and in b-metric space d(x,y) :|x—y|2 because if consider points
x=1y=1 we will have

d(31,T1):|l |_ >cd(1,1) =0

d(SLTY =i-1P=3)? =L >cd@1)=0.

So the contractive condition is failed in two cases.

Corollary 3.5. Let (X,d) be a complete dislocated metric space and S: X — X a self-
mapping satisfying the following contractive condition

d(Sx,Sy) < cgld(x, ¥),d(x,99,d(y, Sy), L300y

for all x,ye X where geG, and 0<c<1. Then, S has a unique fixed point and
d(uu)=0
Example 3.6. Let X =[0,10] and d(x, y):%(x+ y), for allx,y e X . It is clear that

d is a dislocated metric on X and (X,d) is complete. Also d is not a metric on X .
We define the self-mapping S: X — X by

Xx-1,x=0
SX =
0 ,x=0

and take the function g(t,ty,t3,t4) =max{t;,t,t3,t4,} and also choose the constant
= %. For x,y e{0,1,....,10}, we have the following cases.

Case 1. For x=y =0 have d(Sx,Sy)=d(0,0)=0

Case 2. If x=y>0, then

d(Sx,Sy) =d(x-Lx-1) =x-1<Fx=d(xy).

Case 3. If x>y=0,then

d(Sx,Sy) =d(x—-1,0) =%(x—1)s%§ Sd(x,
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Case 4. If x>y >0, then
d(Sx,Sy) =d(x-Ly-D)=1(x+y-2) <21 (x+y)=2d(xy).

Thus all conditions of theorem are satisfied and S has a unique fixed pointin X . Also
we note that for x=1 and y =10 the contractive condition is failed in the usual metric.

Theorem 3.7. Let (X,d) be a complete b -dislocated metric space and T,S: X — X
two self-mappings satisfying the condition:
sd (Sx, Ty) < cmax{d (x, y) +d(x,Sx),d(x,Sx) +d(y,Ty),

d(x,Sx)d (y.Ty)
d(x,y)+d(y, ). d(y, V) + =300y 3

forall x,ye X and 0<2c<1.Then T and S have a unique common fixed point in

X.
Proof. This theorem is corollary of theorem 3.1 if we use the function g, €G,.

Theorem 3.8. Let (X,d) be a complete b -dislocated metric space and T,S: X — X
two self mappings satisfying the condition:

sPd P (Sx,Ty) < cmax{d P (x, y),d P(x,Sx),d P(y,Ty), (%)p},

forall x,ye X and 0<c<1.Then T and S have a unique common fixed pointin X .
Proof. This theorem is taken as a corollary of theorem 1, if we use the function g, €G, .

Theorem 3.9. Let (X,d) be a complete b -dislocated metric space and T,S: X — X
two self-mappings satisfying the condition:

d(x,Sx)d(y,
%07 (Sx.Ty) < cmax{d (% y)d (x, 56,0 (% S (y,Ty). d(x,y)d (. Ty).d (v, Ty) e

forall x,ye X and 0<2c<1.Then T and S have a unique common fixed pointin X .
Proof. This theorem is corollary of theorem 1, if we use the function g3 € G, .

Remark 3.10. Results of the above theorems and corollaries are extended and unified of
some classical fixed point results in metric spaces and generalization of results of the
authors [1,2,9,10,18,19] and other results in dislocated metric spaces.
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