NONLINEAR CONTRACTIONS AND FIXED POINTS IN COMPLETE DISLOCATED AND b-DISLOCATED METRIC SPACES

Elida Hoxha¹, Kastriot Zoto² and Panda Sumati Kumari³

Abstract. In this paper, we continue the study of complete dislocated and b-dislocated metric spaces and established some common fixed point theorems for one and two mappings. Our results generalizes and extend some existing results in the literature in a class effectively larger such as b-dislocated metric spaces, where the self distance for a point may not be equal to zero.

1. INTRODUCTION

The concept of b-metric space was introduced by Bakhtin [4] and extensively used by Czerwik in [10]. After that, several interesting results about the existence of a fixed point for single-valued and multi-valued operators in b-metric spaces have been obtained. Recently there are a number of generalizations of metric space. Some of them are the notions of dislocated metric spaces and b-dislocated metric spaces where the distance of a point in the self may not be zero. These spaces was introduced and studied by Hitzler and Seda [5], Nawab Hussain et.al [7]. Also in [7] are presented some topological aspects and properties of b-dislocated metrics. Subsequently, several authors have studied the problem of existence and uniqueness of a fixed point for single-valued and set-valued mappings and different types of contractions in these spaces.

The purpose of this paper is to unify and generalize some recent results in the setting of dislocated and b-dislocated metric spaces using a class of continuous functions G_4.

2. PRELIMINARIES

Definition 2.1 [6]. Let X be a nonempty set and a mapping $d_l: X \times X \rightarrow [0, \infty)$ is called a dislocated metric (or simply d_l-metric) if the following conditions hold for any $x, y, z \in X$:

i. If $d_l(x, y) = 0$, then $x = y$

ii. $d_l(x, y) = d_l(y, x)$

2010 Mathematics Subject Classification. Primary: 47H10 Secondary: 55M20
Key words and phrases. dislocated metric, b-dislocated metric, fixed point, contraction.
iii. \(d_I(x,y) \leq d_I(x,z) + d_I(z,y) \)

The pair \((X, d_I)\) is called a dislocated metric space (or \(d\)-metric space for short). Note that when \(x = y\), \(d_I(x,y)\) may not be 0.

Example 2.2. If \(X = R\), then \(d(x,y) = |x| + |y|\) defines a dislocated metric on \(X\).

Definition 2.3 [6]. A sequence \((x_n)\) in \(d_I\)-metric space \((X,d_I)\) is called:
1. a Cauchy sequence if, for given \(\varepsilon > 0\), there exists \(n_0 \in N\) such that for all \(m,n \geq n_0\), we have \(d_I(x_m,x_n) < \varepsilon\) or \(\lim_{n,m \to \infty} d_I(x_n,x_m) = 0\),
2. convergent with respect to \(d_I\) if there exists \(x \in X\) such that \(d_I(x_n,x) \to 0\) as \(n \to \infty\).

In this case, \(x\) is called the limit of \((x_n)\) and we write \(x_n \to x\).

A \(d_I\)-metric space \(X\) is called complete if every Cauchy sequence in \(X\) converges to a point in \(X\).

Definition 2.4 [8]. Let \(X\) be a nonempty set and a mapping \(b_d : X \times X \to [0, \infty)\) is called a \(b\)-dislocated metric (or simply \(b_d\)-dislocated metric) if the following conditions hold for any \(x,y,z \in X\) and \(s \geq 1\):

a. If \(b_d(x,y) = 0\), then \(x = y\),

b. \(b_d(x,y) = b_d(y,x)\),

c. \(b_d(x,y) \leq s[b_d(x,z) + b_d(z,y)]\).

The pair \((X, b_d)\) is called a \(b\)-dislocated metric space. And the class of \(b\)-dislocated metric space is larger than that of dislocated metric spaces, since a \(b\)-dislocated metric is a dislocated metric when \(s = 1\).

In [8] was showed that each \(b_d\)-metric on \(X\) generates a topology \(\tau_{b_d}\) whose base is the family of open \(b_d\)-balls \(B_{b_d}(x, \varepsilon) = \{y \in X : b_d(x,y) < \varepsilon\}\).

Also in [8] are presented some topological properties of \(b_d\)-metric spaces.

Definition 2.5. Let \((X, b_d)\) be a \(b_d\)-metric space, and \((x_n)\) be a sequence of points in \(X\). A point \(x \in X\) is said to be the limit of the sequence \((x_n)\) if \(\lim_{n \to \infty} b_d(x_n,x) = 0\) and we say that the sequence \((x_n)\) is \(b_d\)-convergent to \(x\) and denote it by \(x_n \to x\) as \(n \to \infty\).

The limit of a \(b_d\)-convergent sequence in a \(b_d\)-metric space is unique [8, Proposition 1.27].
Definition 2.6. A sequence \((x_n)\) in a \(b_d\)-metric space \((X, b_d)\) is called a \(b_d\)-Cauchy sequence iff, given \(\varepsilon > 0\), there exists \(n_0 \in N\) such that for all \(n, m > n_0\), we have \(b_d(x_n, x_m) < \varepsilon\) or \(\lim_{n, m \to \infty} b_d(x_n, x_m) = 0\). Every \(b_d\)-convergent sequence in a \(b_d\)-metric space is a \(b_d\)-Cauchy sequence.

Remark 2.7. The sequence \((x_n)\) in a \(b_d\)-metric space \((X, b_d)\) is called a \(b_d\)-Cauchy sequence iff \(\lim_{n \to \infty} b_d(x_n, x_{n+p}) = 0\) for all \(p \in N^*\).

Definition 2.8. A \(b_d\)-metric space \((X, b_d)\) is called complete if every \(b_d\)-Cauchy sequence in \(X\) is \(b_d\)-convergent.

In general a \(b_d\)-metric is not continuous, as in Example 1.31 in [8] showed.

Example 2.9. Let \(X = R^+ \cup \{0\}\) and any constant \(\alpha > 0\). Define the function \(d_l : X \times X \to [0, \infty)\) by \(d_l(x, y) = \alpha(x + y)\). Then, the pair \((X, d_l)\) is a dislocated metric space.

Lemma 2.10. Let \((X, b_d)\) be a \(b\)-dislocated metric space with parameter \(s \geq 1\). Suppose that \((x_n)\) and \((y_n)\) are \(b_d\)-convergent to \(x, y \in X\), respectively. Then we have
\[
\frac{1}{s} b_d(x, y) \leq \lim \inf_{n \to \infty} b_d(x_n, y_n) \leq \lim \sup_{n \to \infty} b_d(x_n, y_n) \leq s^2 b_d(x, y)
\]
In particular, if \(b_d(x, y) = 0\), then we have \(\lim_{n \to \infty} b_d(x_n, y_n) = 0 = b_d(x, y)\). Moreover, for each \(z \in X\), we have
\[
\frac{1}{s} b_d(x, z) \leq \lim \inf_{n \to \infty} b_d(x_n, z) \leq \lim \sup_{n \to \infty} b_d(x_n, z) \leq s b_d(x, z)
\]
In particular, if \(b_d(x, z) = 0\), then we have \(\lim_{n \to \infty} b_d(x_n, z) = 0 = b_d(x, z)\).

Some examples in the literature show that in general a \(b\)-dislocated metric is not continuous.

Example 2.11. If \(X = R^+ \cup \{0\}\), then \(b_d(x, y) = (x + y)^2\) defines a \(b\)-dislocated metric on \(X\) with parameter \(s = 2\).

3. MAIN RESULT

We consider the set \(G_4\) of all continuous functions \(g : [0, \infty)^4 \to [0, \infty)\) with the following properties:
a) \(g \) is non-decreasing in respect to each variable

b) \(g(t, t, t, t) \leq t, t \in [0, \infty) \)

Some examples of these functions are as follows:
\[
\begin{align*}
g_1 & : g(t_1, t_2, t_3, t_4) = \max\{t_1, t_2, t_3, t_4\} \\
g_2 & : g(t_1, t_2, t_3, t_4) = \max\{t_1 + t_2 + t_3 + t_4\} \\
g_3 & : g(t_1, t_2, t_3, t_4) = \left[\max\{t_1 t_2 t_3 t_4\}\right]^\frac{1}{2} \\
g_4 & : g(t_1, t_2, t_3, t_4) = \left[\max\{t_1^p, t_2^p, t_3^p, t_4^p\}\right]^\frac{1}{p}, p > 0.
\end{align*}
\]

Theorem 3.1. Let \((X, d)\) be a complete \(b\)-dislocated metric space with parameter \(s \geq 1\) and \(T, S : X \to X\) two mappings satisfying the following contractive condition
\[
sd(Sx, Ty) \leq c \left[d(x, y), d(x, Sx), d(y, Ty), \frac{d(x, Sx)d(y, Ty)}{1 + d(x, y)} \right] \tag{1}
\]
for all \(x, y \in X\) where \(g \in G_4\) and \(0 \leq c < 1\). Then \(T\) and \(S\) have a unique common fixed point and if \(u\) is a common fixed point of \(S\) and \(T\), then \(d(u, u) = 0\).

Proof. Let \(x_0\) be an arbitrary point in \(X\). Define the sequence \((x_n)\) as follows:
\[
x_1 = S(x_0), x_2 = T(x_1), \ldots, x_{2n} = T(x_{2n-1}), x_{2n+1} = S(x_{2n}), \ldots
\]
if we assume that for some \(n \in N\), \(x_{2n+1} = x_{2n}\) then \(x_{2n} = x_{2n+1} = Sx_{2n}\) and also using the contractive condition of theorem we will have that \(x_{2n+1} = x_{2n}\) is a fixed point of \(T\).

Then we assume that for \(n \in N\), \(x_{2n+1} \neq x_{2n}\). By condition (1) we have:
\[
sd(x_{2n+1}, x_{2n+2}) = sd(Sx_{2n}, Tx_{2n+1})
\]
\[
\leq cg\left[d(x_{2n}, x_{2n+1}), d(x_{2n}, Sx_{2n}), d(x_{2n+1}, Tx_{2n+1}), \frac{d(x_{2n}, Sx_{2n})d(x_{2n+1}, Tx_{2n+1})}{1 + d(x_{2n}, x_{2n+1})}\right]
\]
\[
= cg\left[d(x_{2n}, x_{2n+1}), d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n+2}), \frac{d(x_{2n}, x_{2n+1})d(x_{2n+1}, x_{2n+2})}{1 + d(x_{2n}, x_{2n+1})}\right]
\]
\[
\leq cd(x_{2n+1}, x_{2n}).
\]

Thus
\[
d(x_{2n+1}, x_{2n+2}) \leq \frac{c}{s} d(x_{2n}, x_{2n+1}) \tag{2}
\]

Similarly by condition (1) we have:
\[
sd(x_{2n}, x_{2n+1}) = sd(Tx_{2n-1}, Sx_{2n})
\]
\[
= sd(Sx_{2n}, Tx_{2n-1})
\]
\[
\leq cg\left[d(x_{2n}, x_{2n-1}), d(x_{2n}, Sx_{2n}), d(x_{2n-1}, Tx_{2n-1}), \frac{d(x_{2n}, Sx_{2n})d(x_{2n-1}, Tx_{2n-1})}{1 + d(x_{2n}, x_{2n-1})}\right]
\]
\[
= cg\left[d(x_{2n}, x_{2n-1}), d(x_{2n}, x_{2n-1}), d(x_{2n-1}, x_{2n}), \frac{d(x_{2n}, x_{2n-1})d(x_{2n-1}, x_{2n})}{1 + d(x_{2n}, x_{2n-1})}\right]
\]
\[
\leq cd(x_{2n-1}, x_{2n}).
\]

Thus
\[
d(x_{2n}, x_{2n+1}) \leq \frac{c}{s} d(x_{2n-1}, x_{2n}) \tag{3}
\]
Generally by conditions (2), (3) and denoting \(k = \frac{\xi}{s} \), we have
\[
d(x_{2n+1}, x_{2n+2}) \leq kd(x_{2n}, x_{2n+1}) \leq \ldots \leq k^2d(x_0, x_1) \text{ for } n \in \mathbb{N}.
\]
Since \(0 \leq k < 1 \), taking limit for \(n \to \infty \) we have
\[
d(x_{2n+1}, x_{2n+2}) \to 0. \tag{4}
\]
Now, we prove that \((x_n)\) is a \(b_d \)-Cauchy sequence, and to do this let be \(m,n > 0 \) with \(m > n \), and using definition 2.4 (c) we have
\[
b_d(x_n, x_m) \leq s[b_d(x_n, x_{n+1}) + b_d(x_{n+1}, x_m)]
\]
\[
\leq sb_d(x_n, x_{n+1}) + s^2b_d(x_{n+1}, x_{n+2}) + s^3b_d(x_{n+2}, x_{n+3}) + \ldots
\]
\[
\leq sk^n b_d(x_0, x_1) + s^2k^{n+1} b_d(x_0, x_1) + s^3k^{n+2} b_d(x_0, x_1) + \ldots
\]
\[
= sk^n b_d(x_0, x_1) [1 + sk + (sk)^2 + (sk)^3 + \ldots]
\]
\[
\leq \frac{sk^n}{1-sk} b_d(x_0, x_1).
\]
On taking limit for \(n,m \to \infty \) we have \(b_d(x_n, x_m) \to 0 \) as \(ks < 1 \). Therefore \((x_n)\) is a \(b_d \)-Cauchy sequence in complete \(b \)-dislocated metric space \((X, b_d)\). So there is some \(u \in X \) such that \((x_n)\) dislocated converges to \(u \). Therefore the subsequences \(\{Sx_{2n}\} \to u \) and \(\{Tx_{2n+1}\} \to u \). Since \(T,S : X \to X \) are continuous mappings we get: \(Su = u \) and \(Tu = u \). Thus, \(u \) is a common fixed point of \(T \) and \(S \).

If consider that \(T \) is continuous and \(S \) not continuous we have that \(Tu = u \). Using the contractive condition of theorem we have,
\[
(sd(Su, Tx_{2n+1})) \leq cg \left[d(u, x_{2n+1}), d(u, Su), d(x_{2n+1}, Tx_{2n+1}), \frac{d(u, Su)d(\varepsilon_{2n+1}, Tx_{2n+1})}{1+d(u, x_{2n+1})} \right]
\]
\[
\leq cg \left[d(u, x_{2n+1}), d(u, Su), d(x_{2n+1}, Tx_{2n+1}), \frac{d(u, Su)d(\varepsilon_{2n+1}, x_{2n+2})}{1+d(u, x_{2n+1})} \right].
\]
Taking in upper limit as \(n \to \infty \), using lemma 2.10, property of \(g \) and result \((4) \) we get
\[
sd(u, Su) \leq cg[0, d(u, Su), 0, 0].
\]
This inequality implies \(d(u, Su) \leq cd(u, Su) \) that means \(d(u, Su) = 0 \). Thus \(Su = u \) and \(u \) is a fixed point of \(S \).

If consider (c) we have that, \(u \) is a common fixed point of \(S \) and \(T \). Using the contractive condition of theorem, we obtain
\[
(sd(u, u)) = sd(Su, Tu)
\]
\[
\leq cg \left[d(u, u), d(u, u), d(u, u), \frac{d(u, u)d(u, u)}{1+d(u, u)} \right]
\]
\[
= cd(u, u).
\]
The inequality above implies that \(d(u, u) \leq kd(u, u) \). So \(d(u, u) = 0, \) since \(0 \leq k = \frac{\xi}{s} < 1 \)

Uniqueness. Let suppose that \(u \) and \(v \) are two common fixed points of \(T;S \). From condition (1) we have:
Replacing $v = u$ in (5) we get:

$$sd(u,v) = c g[d(u,v),d(u,u),d(v,v),\frac{d(u,u)d(v,v)}{1+d(u,v)}].$$

Replacing $v = u$ in (5) we get:

$$d(u,u) \leq c g[d(u,u),d(u,u),\frac{d(u,u)d(u,u)}{1+d(u,u)}] = cd(u,u),$$

i.e. $d(u,u) \leq \frac{c}{s} d(u,u) = kd(u,u)$. Since $0 \leq k < 1$ we obtain $d(u,u) = 0$. Similarly replacing $u = v$ in (5), we obtain $d(v,v) = 0$. Again from (5) have $d(u,v) = 0$, which implies $u = v$. Thus fixed point is unique.

Corollary 3.2. Let (X,d) be a complete b-dislocated metric space with parameter $s \geq 1$ and $T,S : X \to X$ two mappings satisfying the following contractive condition

$$sd(Sx,Ty) \leq c g[d(x,y),d(x,Sx),d(y,Ty)]$$

for all $x,y \in X$ where $g \in G_3$ and $0 \leq c < 1$. Then T and S have a unique common fixed point and if u is a common fixed point of S and T, then $d(u,u) = 0$.

Corollary 3.3. Let (X,d) be a complete dislocated metric space and $T,S : X \to X$ two mappings satisfying the following contractive condition

$$d(Sx,Ty) \leq c g[d(x,y),d(x,Sx),d(y,Ty),\frac{d(x,Sx)d(y,Ty)}{1+d(x,y)}],$$

for all $x,y \in X$ where $g \in G_4$ and $0 \leq c < 1$. Then T and S have a unique common fixed point and if u is a common fixed point of S and T, then $d(u,u) = 0$.

The following example supports our theorem.

Example 3.4. Let $X = [0,1]$ and $d(x,y) = x + y$, for all $x,y \in X$. It is clear that d is a dislocated metric on X. We define the self mappings $S,T : X \to X$ as follows

$$Sx = \begin{cases} \frac{1}{8} x, & x \in [0,1) \\ \frac{1}{6}, & x = 1 \end{cases}$$ and $$Tx = \begin{cases} \frac{1}{5} x, & x \in [0,1) \\ \frac{1}{3}, & x = 1 \end{cases}.$$ Note that S and T are discontinuous maps. Now we will show that the contractive condition of 3.3 is satisfied for constant $c \in (0,1)$ and taking the function $g(t_1,t_2,t_3,t_4) = \max\{t_1,t_2,t_3,t_4\}$. We have the following cases:

Case 1. Note that for all $x,y \in [0,1)$, we have

$$d(Sx,Ty) = d\left(\frac{1}{8} x, \frac{1}{5} y\right) = \frac{1}{8} + \frac{1}{5} \leq \frac{1}{5} (x + y) = \frac{1}{5} d(x,y)$$

Case 2. Note that for $x = y = 1$, we have

$$d(Sx,Ty) = d\left(\frac{1}{8} x, \frac{1}{5} y\right) = \frac{1}{8} + \frac{1}{5} \leq \frac{1}{5} (x + y) = \frac{1}{5} d(x,y)$$
Nonlinear contractions and fixed points in complete dislocated metric spaces

\[d(Sx, Ty) = d(S1, T1) = d(\frac{1}{6}, \frac{1}{3}) = \frac{1}{6} + \frac{1}{3} = \frac{1}{2} = \frac{1}{4} \cdot 2 = \frac{1}{4} d(x, y). \]

Case 3. For \(x \in [0, 1) \) and \(y = 1 \), we have

\[d(Sx, Ty) = d(\frac{x}{6}, \frac{1}{3}) = \frac{x}{6} + \frac{1}{3} \leq \frac{1}{3} (x + 1) = \frac{1}{3} d(x, y). \]

Case 4. For all \(y \in [0, 1) \) and \(x = 1 \), we have

\[d(Sx, Ty) = d(\frac{1}{6}, \frac{y}{3}) = \frac{1}{6} + \frac{y}{3} = \frac{5 + 6y}{30} \leq \frac{1}{4} (1 + y) = \frac{1}{4} d(x, y). \]

Thus all conditions of corollary 3. are satisfied and \(x = 0 \) is a unique common fixed point of \(S \) and \(T \).

Also we note that this theorem is not available in a usual metric space if \(d(x, y) = |x - y| \) and in \(b \)-metric space \(d(x, y) = |x - y|^2 \) because if consider points \(x = y = 1 \) we will have

\[d(S1, T1) = |\frac{1}{6} - \frac{1}{3}| = \frac{1}{6} > cd(1, 1) = 0 \]

and

\[d(S1, T1) = |\frac{1}{6} - 1|^2 = (\frac{1}{6})^2 = \frac{1}{36} > cd(1, 1) = 0. \]

So the contractive condition is failed in two cases.

Corollary 3.5. Let \((X, d)\) be a complete dislocated metric space and \(S : X \to X \) a self-mapping satisfying the following contractive condition

\[d(Sx, Sy) \leq c g[d(x, y), d(x, Sx), d(y, Sy), \frac{d(x, Sx) + d(y, Sy)}{1 + d(x, y)}] \]

for all \(x, y \in X \) where \(g \in G_4 \) and \(0 \leq c < 1 \). Then, \(S \) has a unique fixed point and \(d(u, u) = 0 \).

Example 3.6. Let \(X = [0, 10] \) and \(d(x, y) = \frac{1}{2} (x + y) \), for all \(x, y \in X \). It is clear that \(d \) is a dislocated metric on \(X \) and \((X, d)\) is complete. Also \(d \) is not a metric on \(X \).

We define the self-mapping \(S : X \to X \) by

\[Sx = \begin{cases} x - 1, & x \neq 0 \\ 0, & x = 0 \end{cases} \]

and take the function \(g(t_1, t_2, t_3, t_4) = \max\{t_1, t_2, t_3, t_4\} \) and also choose the constant \(c = \frac{9}{10} \). For \(x, y \in \{0, 1, \ldots, 10\} \), we have the following cases.

Case 1. For \(x = y = 0 \) have \(d(Sx, Sy) = d(0, 0) = 0 \)

Case 2. If \(x = y > 0 \), then

\[d(Sx, Sy) = d(x - 1, x - 1) = x - 1 \leq \frac{9}{10} x = \frac{9}{10} d(x, y). \]

Case 3. If \(x > y = 0 \), then

\[d(Sx, Sy) = d(x - 1, 0) = \frac{1}{2} (x - 1) \leq \frac{9}{10} \frac{x}{2} = \frac{9}{10} d(x, y). \]
Case 4. If \(x > y > 0 \), then
\[
d(Sx, Sy) = d(x - 1, y - 1) = \frac{1}{2} (x + y - 2) \leq \frac{9}{10} \frac{1}{2} (x + y) = \frac{9}{10} d(x, y).
\]
Thus all conditions of theorem are satisfied and \(S \) has a unique fixed point in \(X \). Also we note that for \(x = 1 \) and \(y = 10 \) the contractive condition is failed in the usual metric.

Theorem 3.7. Let \((X, d)\) be a complete \(b \)-dislocated metric space and \(T, S : X \to X \) two self-mappings satisfying the condition:
\[
sd(Sx, Ty) \leq c \max \{d(x, y) + d(x, Sx), d(x, Sx) + d(y, Ty), \\
d(x, y) + d(y, Ty), d(y, Ty) + \frac{d(x, Sx) d(y, Ty)}{1 + d(x, y)}\}
\]
for all \(x, y \in X \) and \(0 \leq 2c < 1 \). Then \(T \) and \(S \) have a unique common fixed point in \(X \).

Proof. This theorem is corollary of theorem 3.1 if we use the function \(g_2 \in G_4 \).

Theorem 3.8. Let \((X, d)\) be a complete \(b \)-dislocated metric space and \(T, S : X \to X \) two self mappings satisfying the condition:
\[
s^p d^p (Sx, Ty) \leq c \max \{d^p (x, y), d^p (x, Sx), d^p (y, Ty), \frac{d(x, Sx) d(y, Ty)}{1 + d(x, y)}\}
\]
for all \(x, y \in X \) and \(0 \leq c < 1 \). Then \(T \) and \(S \) have a unique common fixed point in \(X \).

Proof. This theorem is taken as a corollary of theorem 1, if we use the function \(g_4 \in G_4 \).

Theorem 3.9. Let \((X, d)\) be a complete \(b \)-dislocated metric space and \(T, S : X \to X \) two self-mappings satisfying the condition:
\[
s^2 d^2 (Sx, Ty) \leq c \max \{d(x, y) d(x, Sx), d(x, Sx) d(y, Ty), d(x, y) d(y, Ty), \frac{d(x, Sx) d(y, Ty)}{1 + d(x, y)}\}
\]
for all \(x, y \in X \) and \(0 \leq 2c < 1 \). Then \(T \) and \(S \) have a unique common fixed point in \(X \).

Proof. This theorem is corollary of theorem 1, if we use the function \(g_3 \in G_4 \).

Remark 3.10. Results of the above theorems and corollaries are extended and unified of some classical fixed point results in metric spaces and generalization of results of the authors [1,2,9,10,18,19] and other results in dislocated metric spaces.

References

M. Arshad, A. Shoib, P. Vetro; *Common fixed points of a pair of Hardy Rogers type mappings on a closed ball in ordered dislocated metric spaces*, Journal of function spaces and applications, vol 2013, article id 638181

R. Yijie, L. Junlei, Y. Yanrong, *Common fixed point theorems for nonlinear contractive mappings in dislocated metric spaces*, Abstract and Applied Analysis vol 2013, article id 483059.

1) Faculty of Natural Sciences, University of Tirana, Tirana, Albania

2) Faculty of Natural Sciences, University of Gjirokastra, Gjirokastra, Albania

E-mail address: zotokastra01@yahoo.com

3) Department of Mathematics, K L University, Green Fields, A. P, India