ISSN 0351-336X UDC: 517.987

THE SPECIAL ROLE OF THE g -FUNCTIONS

Dhurata Valera¹, Ivi Dylgjeri²

Abstract. The class of g-functions by the g-generator of the system of pseudo-operations, apply a special role on functional equations and their solutions. More properties may be found in this class and by some elementary g-functions are given further studies to the entropy of \oplus - (decomposable) measure.

1. Introduction

The function corresponding to a function f introduced by the g-calculus (called g-functions and denote by f_g in general and then g-function for special case) are derived as solutions of some functionals equations using several results of Aczél [1]. To the creation of function are shown the role of the consistent sistem of pseudo-arithmetical operations generating by generator g, by obtain directly the rational function [2], [3] but g-Transform is a further development of g-calculus [5], [6], [9], [12], [17]. That is why are introduce some elementary function as solutions of corresponding functional equations [2], [6], [20]. A wide class of some elementary modified function (f_g) is investegated [2] and some rules for crossings into different parameterized classes of functional equations is obtained.

The study of entropy and further the g-entropy for \oplus -decomposable probability measure are encouraged more by the role of g-function and found links by g-Transform [2], [3], [16]. Reasonable, is raised the issue of the modification of the measure by g-Transform and the some relation between m_g and P_g are given.

2. MODIFICATION OF FUNCTIONS BY g -TRANSFORM

2.1. MODIFICATION OF FUNCTION AND SOME IMPORTANT g -FUNCTIONS

Two binary operation (\oplus, \odot) on $[0, +\infty]$ are respectively, pseudo-addition and pseudo-multiplication corresponding to the pseudo-addition \oplus (introduced first on

 $[0,+\infty]$ interval and then to the whole extended real line $[-\infty,+\infty]$), if and only if there is a generator g (a continuous monotone strictly increasing unbounded odd function) $g:]-\infty,+\infty]\to]-\infty,+\infty]$, such that $g(0)=0_{\oplus}$, $g(1)=1_{\odot}$, $g(+\infty)=+\infty$ so for all $x,y\in[-\infty,+\infty]$ it is $x\oplus y=g^{-1}(g(x)+g(y))$ and $x\odot y=g^{-1}(g(x)\cdot g(y))$, with the convention $0\cdot(+\infty)=0$ [2], [4], [7], [6], [9], [16].

If the generator g is increasing (decreasing), then the pseudo-operation \oplus , through it's generator g induces the usual order (opposite to the usual order), on the interval $[-\infty, +\infty]$ in the following way: $x \le y$ if and only if $g(x) \le g(y)$. We will work with the real function f, which is continuous on [a,b[and [a,b[$\subseteq]-\infty, +\infty[$.

The pseudo-arithmetical operation (\bigcirc, \bigcirc) are introduce on $[-\infty, +\infty]$ in [9], [16] as pseudo-operations consistent with the pseudo-addition by formulas:

$$x \ominus y = g^{-1}(g(x) - g(y))$$
 and $x \oslash y = g^{-1}(g(x)/g(y))$.

Definition 2.1 ([2]). Let f be a function on $]a,b[\subseteq]-\infty,+\infty[$ and the function g be a generator of the consistent system of pseudo-arithmetical operations $\{\oplus,\odot,\ominus,\ominus,\oslash\}$. The function f_g given by $f_g(x)=g^{-1}(f(g(x)))$ for every $x\in(g^{-1}(a),g^{-1}(b))$ is said to be g-function corresponding to the function f.

Definition 2.2 ([2]). Let f be a function on $]a,b[\subseteq]-\infty,+\infty[$ and the function g be a generator of the consistent system of pseudo-arithmetical operations $\{\oplus,\odot,\ominus,\ominus\}$. The function f_g given by $f_g(x,y)=g^{-1}(f(g(x),g(y)))$, for every $x,y\in(g^{-1}(a),g^{-1}(b))$ is said to be g -function corresponding to the function f.

Definition 2.3 ([2]). A continuous function f_g such that is a solution of the functional equations $f_g(x) \oplus f_g(y) = f_g(x \odot y)$ and $f_g(g^{-1}(a)) = 1$, where $a > 0, a \ne 1$ will be called g-logarithmic function and denoted by $f_{g-a,\log}$.

Definition 2.4 ([2]). A continuous function f_g such that is a solution of the functional equations $f_g(x) \odot f_g(y) = f_g(x \oplus y)$ and $f_g(1) = g^{-1}(a)$, where $a > 0, a \ne 1$ will be called *g-exponencial* functions and denoted by $f_{g-a,\exp}$.

Definition 2.5 ([2]). A continuous function f_g such that is a solution of the functional equations $f_g(x) \odot f_g(y) = f_g(x \odot y)$ where $r > 0, x \in (0, +\infty)$ will be called *g-power* functions and denoted by $f_{g-r,power}$.

This function is given by $f_{g-r,\text{power}}(x) = g^{-1}((g(x))^r)$, r > 0 where $x \in [0, +\infty[$.

Theorem 2.6 ([2]). For every $x \in]0, +\infty[$ it holds $f_{g-a,\log}(x) = g^{-1}(\log_a g(x))$.

Theorem 2.7 ([2]). For every $x \in]-\infty, +\infty[$ it holds $f_{g-a, \exp}(x) = g^{-1}(a^{g(x)})$.

Theorem 2.8 ([2]). The $f_{g-a,\exp}$ is an inverse function of a $f_{g-a,\log}$.

By the definition 2.3 and 2.4 the g-logarithmic and g-exponencial function respectively are given by the formulas:

$$f_{g-a,\log}(x) = g^{-1}(\log_a(g(x)))$$
 and $f_{g-a,\exp}(x) = g^{-1}(a^{g(x)})$

so

$$f_{g-a,\exp}(f_{g-a,\log}(x)) = g^{-1}(a^{g(f_{g-a,\log}(x))}) = g^{-1}(a^{g(g^{-1}(\log_a g(x)))})$$
$$= g^{-1}(a^{\log_a g(x)}) = g^{-1}(g(x)) = x.$$

Also, conversely we can write:

$$f_{g-a,\log}(f_{g-a,\exp}(x)) = g^{-1}(\log_a g(f_{g-a,\exp}(x))) = g^{-1}(\log_a g(g^{-1}(a^{g(x)})))$$
$$= g^{-1}(\log_a a^{g(x)}) = g^{-1}(g(x)) = x.$$

From the two equations we have:

$$f_{g-a,\exp}(f_{g-a,\log}(x)) = f_{g-a,\log}(f_{g-a,\exp}(x)) = x$$
.

By Theorem 4 and Corollary 1 in [2] can generalize the conditions of theorem 4 for some values $\alpha, \lambda \in]-\infty, +\infty[$ and $\alpha \neq \lambda \neq 1$. Easily are controllable the following assertions.

Theorem 2.9. Let g be be a generator of the consistent system of pseudo-arithmetical operations $\{\oplus, \odot, \ominus, \oslash\}$. Let f and h be continuous function on $]a,b[\subseteq]-\infty,+\infty[$ and

 $\alpha, \lambda \in]-\infty, +\infty[$ are constants. Then for every $x \in]g^{-1}(a), g^{-1}(b)[$ we have:

1.
$$(\alpha + f)_g = g^{-1}(\alpha) \oplus f_g = \oplus (g^{-1}(\alpha), f_g)$$

2.
$$(\alpha \cdot f)_g = g^{-1}(\alpha) \odot f_g = \odot (g^{-1}(\alpha), f_g)$$

3.
$$(\alpha \cdot f + \lambda \cdot h)_{g} = (g^{-1}(\alpha) \odot f_{g}) \oplus (g^{-1}(\lambda) \odot h_{g}) = (\alpha \cdot f)_{g} \oplus (\lambda \cdot h)_{g}$$

4.
$$[\alpha \cdot (f+h)]_g = g^{-1}(\alpha) \odot (f_g \oplus h_g) = \odot (g^{-1}(\alpha), (f_g \oplus h_g))$$

5.
$$(\alpha \cdot f - \lambda \cdot h)_g = (g^{-1}(\alpha) \odot f_g) \odot (g^{-1}(\lambda) \odot h_g)$$

6.
$$[\alpha \cdot (f-h)]_g = g^{-1}(\alpha) \odot (f_g \odot h_g) = \odot (g^{-1}(\alpha), (f_g \odot h_g))$$

7.
$$\left(\frac{\alpha \cdot f}{\lambda \cdot h}\right)_g = \left(g^{-1}(\alpha) \odot f_g\right) \oslash \left(g^{-1}(\lambda) \odot h_g\right), \ \alpha \neq \lambda \neq 1, \ \lambda \neq 0$$

8.
$$(f \cdot h)_g = f_g \odot h_g = \odot (f_g, h_g)$$

9.
$$(f^n)_g = \bigcup_{i=1}^n f_g$$

10.
$$(\sum_{i=1}^{n} f)_g = \bigoplus_{i=1}^{n} f_g$$

11.
$$(\sum_{i=1}^{n} f_i)_g = \bigoplus_{i=1}^{n} (f_i)_g$$

For certain values of α, λ ($\alpha = \lambda = 1$ or $\alpha = \lambda \neq 1$) we have again the conditions of Theorem 4, [2]:

$$\begin{split} &\alpha=\lambda=1,\quad (f+h)_g=f_g\oplus h_g=\oplus \, (f_g,h_g)\\ &\alpha=\lambda\neq 0\;,\;\; (\frac{f}{h})_g=f_g\oslash h_g\;;\;\; (\frac{1}{h})_g=g^{-1}(1)\oslash h_g=1\oslash h_g\;, \text{(if g-normed)}\\ &\alpha=1,\;\; (1+f)_g=g^{-1}(1)\oplus f_g=1\oplus f_g\;,\; \text{(if g-normed)}\\ &\alpha=1,\;\;\; (1-f)_g=g^{-1}(1)\ominus f_g=1\ominus f_g\;,\; \text{(if g-normed)} \end{split}$$

3. LINEAR AND PSEUDO-LINEAR FUNCTIONAL EQUATIONS

3.1. FUNCTIONAL EQUATIONS AND THEIR PARAMETERIZED BY g-TRANSFORM

$$(c \cdot f)_g(x) = \begin{cases} f_g(x), & \text{if } c = 1, g - \text{normed}, \\ c \cdot f(x) & \text{if } g - \text{id}, \\ g^{-1}(c) \odot f_g(x), & \text{for } c - \text{other} \end{cases}$$

$$f_g(x) = 1 \odot f_g(x) = g^{-1}(1) \odot f_g(x) \overset{(g - TR), g - \text{normed}, c = 1}{\Leftrightarrow} g^{-1}(c) \odot f_g(x)$$

$$-f_g(x) = (-f)_g(x) = g^{-1}(-1) \odot f_g(x) \overset{(g - TR), g - \text{normed}, c = -1}{\Leftrightarrow} g^{-1}(c) \odot f_g(x)$$

Table 1: Parameterized Linear and Pseudo-Linear Functional Equation by g-Transform

Cl	Linear Functional Equation $(\boldsymbol{L}.\boldsymbol{F}.\boldsymbol{Eq}\boldsymbol{f})$	Parameterized of $(L.F.Eqf)$ and
	and pseudo-linear Functional Equation	$(\boldsymbol{L}.\boldsymbol{F}.\boldsymbol{Eq}f_g)$ by g-Transform and their
	$(L.F.Eqf_g)$	solutions
I	$c \cdot f(x+y) = c \cdot f(x) + c \cdot f(y)$	$(L.F.Eqc\cdot f)^{((+,+),\cdot,c,a)}$
II	f(x+y) = f(x) + f(y)	$(L.F.Eqf)^{((+,+),\cdot,1,a)}$
III	$f_g(x \oplus y) = f_g(x) \oplus f_g(y)$	$(PL.F.Eq f_g)^{((\oplus, \oplus), \bigcirc, 1, g^{-1}(a))}$
IV	$(c \cdot f)_g(x \oplus y) = (c \cdot f)_g(x) \oplus (c \cdot f)_g(y)$	$(PL.F.Eq (c \cdot f)_g)^{((\oplus, \oplus), \bigcirc, g^{-1}(c), g^{-1}(a))}$

3.2. Some applications for $f(x) = \log_a x$

$$\begin{split} h_g(x) &= (\log_a x^{-1})_g = (\log_a \frac{1}{x})_g = (c \cdot f)_g(x) = (-f)_g(x) \\ &= g^{-1}(\log_a (g(g^{-1}(\frac{g(g^{-1}(1))}{g(x)})))) = g^{-1}(\log_a g(1 \odot x)) = f_{g-a,\log}(1 \odot x) \end{split}$$

$$h_g(x) = (\log_a x^c)_g = (c \cdot f)_g(x) = \begin{cases} f_{g-a,\log}(x), & \text{if } c = 1, g - \text{normed} \\ f_{g-a,\log}(1 \ominus x), & \text{if } c = -1, g - \text{normed} \\ g^{-1}(c) \odot f_{g-a,\log}(x), & \text{for } c - \text{other} \end{cases}$$

$$h_g(x) = (\log_a x^{cx})_g = c \cdot (x \cdot f)_g(x) = \begin{cases} x \odot f_{g-a,\log}(x), & \text{if } c = 1, g - \text{normed} \\ x \odot f_{g-a,\log}(1 \odot x), & \text{if } c = -1, g - \text{normed} \\ g^{-1}(c) \odot x \odot f_{g-a,\log}(x), & \text{or } c - \text{other}. \end{cases}$$

3.3. RELATIONS BETWEEN CLASSES OF (L.F.Eq.) AND (PL.F.Eq.) BY $g ext{-}TRANSFORM$ AND PARAMETERS

• Relations between f-solutions and f_g -pseudo-solutions by g-Transform ([2]):

$$\begin{pmatrix} f(x) = a \cdot x \\ f(x) = \log_a x \\ f(x) = a^x \\ f(x) = x^r \end{pmatrix} \stackrel{(g-TR)}{\Rightarrow} \begin{pmatrix} f_g(x) = g^{-1}(a) \odot x \\ f_{g-a,\log}(x) = g^{-1}(\log_a g(x)) \\ f_{g-a,\exp}(x) = g^{-1}(a^{g(x)}) \\ f_{g-r,power}(x) = g^{-1}((g(x))^r) \end{pmatrix}$$

• Relations between (*L.F.Eq.*) and (*PL.F.Eq.*) by *g*-Transform

$$\begin{pmatrix} c \cdot f(x+y) = c \cdot f(x) + c \cdot f(y) \\ c \cdot f(x+y) = c \cdot f(x) + c \cdot f(y) \\ c \cdot f(x+y) = c \cdot f(x) \cdot f(y) \\ c \cdot f(x+y) = c \cdot f(x) \cdot f(y) \end{pmatrix} \overset{(g-TR)}{\Rightarrow} \begin{pmatrix} (c \cdot f)_g(x \oplus y) = (c \cdot f)_g(x) \oplus (c \cdot f)_g(y) \\ (c \cdot f)_g(x \odot y) = (c \cdot f)_g(x) \oplus (c \cdot f)_g(y) \\ (c \cdot f)_g(x \odot y) = g^{-1}(c) \oplus (f_g(x) \oplus f_g(y)) \\ (c \cdot f)_g(x \odot y) = g^{-1}(c) \oplus (f_g(x) \oplus f_g(y)) \end{pmatrix}$$

$$\begin{pmatrix} (c \cdot f)_g(x \oplus y) = (c \cdot f)_g(x) \oplus (c \cdot f)_g(y) \\ (c \cdot f)_g(x \odot y) = (c \cdot f)_g(x) \oplus (c \cdot f)_g(y) \\ (c \cdot f)_g(x \oplus y) = g^{-1}(c) \odot (f_g(x) \odot f_g(y)) \\ (c \cdot f)_g(x \odot y) = g^{-1}(c) \odot (f_g(x) \odot f_g(y)) \end{pmatrix}^{g-\text{normed}, c=1} \begin{pmatrix} f_g(x \oplus y) = f_g(x) \oplus f_g(y) \\ f_g(x \odot y) = f_g(x) \oplus f_g(y) \\ (\odot g^{-1}(c)) \end{pmatrix}^{g-\text{normed}, c=1} \begin{pmatrix} f_g(x \oplus y) = f_g(x) \oplus f_g(y) \\ f_g(x \odot y) = f_g(x) \oplus f_g(y) \\ f_g(x \odot y) = f_g(x) \odot f_g(y) \\ f_g(x \odot y) = f_g(x) \odot f_g(y) \end{pmatrix}^{g-\text{normed}, c=1} \begin{pmatrix} f_g(x \oplus y) = f_g(x) \oplus f_g(y) \\ f_g(x \odot y) = f_g(x) \oplus f_g(y) \\ f_g(x \odot y) = f_g(x) \odot f_g(y) \end{pmatrix}^{g-\text{normed}, c=1} \begin{pmatrix} f_g(x \oplus y) = f_g(x) \oplus f_g(y) \\ f_g(x \odot y) = f_g(x) \oplus f_g(y) \\ f_g(x \odot y) = f_g(x) \oplus f_g(y) \\ f_g(x \odot y) = f_g(x) \oplus f_g(y) \end{pmatrix}^{g-\text{normed}, c=1} \begin{pmatrix} f_g(x \oplus y) = f_g(x) \oplus f_g(y) \\ f_g(x \odot y) = f_g(x) \oplus f_g(y)$$

3.4. About f -solutions of (L.F.EQ.) and f_g - pseudo-solutions of (PL.F.EQ) by g-Transform

A wide class of some elementary modified function (f_g) is investegated by showing the important role of sistem of pseudo-arithmetical operations $\{\oplus, \odot, \ominus, \oslash\}$ in treating and solving of pseudo-linear problems [2], [6], [12]. Bellow are presented the parameterized Linear and Pseudo-Linear Functional Equation with f-solution and f_g -solution respectively.

Table 2:Parameterized Linear and Pseudo-Linear Functional Equation with f and f_g solutions respectively

Cl	Linear Functional Equations $(L.F.Eqf)$ and	f -solutions of (<i>L.F.Eq.</i>) and f_g - pseudo-
	Pseudo-Linear Functional Equations $(\textit{L.F.Eq.} - f_g) \text{by } g\text{-Transform}$	solutions of (<i>PL.F.Eq.</i>) by <i>g</i> -Transform
I	$(L.F.Eqc\cdot f)^{((+,+),\cdot,c,a,-)}$	$(c \cdot f)(x) = c \cdot (a \cdot x) = c \cdot f_{a,lin}(x)$
	$(L.F.Eq f)^{((+,+),\cdot,1,a,-)}$	$f(x) = a \cdot x = f_{a,lin}(x)$
	$(PL.F.Eqf_g)^{((\oplus,\oplus),\odot,1,g^{-1}(a),-)}$	$f_g(x) = g^{-1}(a) \odot x = f_{g-g^{-1}(a),lin}(x)$
	$(PL.F.Eq (c \cdot f)_g)^{((\oplus, \oplus), \bigcirc, g^{-1}(c), g^{-1}(a), -)}$	$(c \cdot f)_g(x) = g^{-1}(c) \odot f_{g-g^{-1}(a),lin}(x)$
II	$(L.F.Eqc\cdot f_{a,\log})^{((\cdot,+),\cdot,c,a,-)}$	$(c \cdot f)(x) = \log_a x^c = c \cdot \log_a x$
	$(L.F.Eq f_{a,\log})^{((\cdot,+),\cdot,l,a,-)}$	$f(x) = \log_a x$
	$(PL.F.Eqf_{g-a,\log})^{((\bigcirc,\oplus),\bigcirc,1,a,-)}$	$f_{g-a,\log}(x) = g^{-1}(\log_a g(x))$
	$(PL.F.Eq(c\cdot f)_{g-a,\log})^{((\bigcirc,\oplus),\bigcirc,g^{-1}(c),a,-)}$	$(c \cdot f)_{g-a,\log}(x) = g^{-1}(c) \odot f_{g-a,\log}(x)$
III	$(L.F.Eqc\cdot f_{a, \exp})^{((+,\cdot),\cdot,c,a,-)}$	$(c \cdot f)(x) = c \cdot (a^x)$
	$(L.F.Eq f_{a, exp})^{((+,\cdot),\cdot,1,a,-)}$	$f(x) = a^x$
	$(PL.F.Eq f_{g-a, exp})^{((\oplus, \bigcirc), \bigcirc, 1, a, -)}$	$f_{g-a, \exp}(x) = g^{-1}(a^{g(x)})$
	$(PL.F.Eq (c \cdot f)_{g-a, \exp})^{((\oplus, \bigcirc), \bigcirc, g^{-1}(c), a, -)}$	$(c \cdot f)_{g-a, \exp}(x) = g^{-1}(c) \odot f_{g-a, \exp}(x)$
IV	$(L.F.Eqc\cdot f_{r,power})^{((\cdot,\cdot),\cdot,c,-,r)}$	$(c \cdot f)(x) = c \cdot (x^r)$
	$(L.F.Eq f_{r,power})^{((\cdot,\cdot),\cdot,1,-,r)}$	$f(x) = x^r$
	$(PL.F.Eqf_{g-r,power})^{((\bigcirc,\bigcirc),\bigcirc,1,-,r)}$	$f_{g-r,power}(x) = g^{-1}((g(x))^r)$
	$(PL.F.Eq (c \cdot f)_{g-r,power})^{((\bigcirc,\bigcirc),\bigcirc,g^{-1}(c),-,r)}$	$(c \cdot f)_{g-r,power}(x) = g^{-1}(c) \odot f_{g-r,power}(x)$

More about $f_g(c \cdot x)$; $f_g(c+x)$; $f_g(1-x)$; $f_g(N(x))$; $f_g(a \cdot x+b)$ etc. Implemented to each functions of classes shown above, will be presented further.

4. MODIFICATION OF MEASURE BY g-TRANSFORM

4.1.
$$((\oplus -P)-m)$$

Let (X, \mathcal{A}, m) be a \oplus - measure space. Let m be a fixed \oplus - probability measure. Let X be a non-empty set and let \mathcal{A} be a σ -algebra of subsets of X, [5], [8], [9], [13], [14].

Definition 4.1.1. A set function $m: \mathcal{A} \to [0, +\infty]$ will be called a \oplus - probability measure $((\oplus -P)-m)$ if for any sequence $(A_i)_{n\in\mathbb{N}}$ of pairwise disjoints sets from \mathcal{A} holds:

P1.
$$m(\emptyset) = 0$$
, $m(A) = 1$

P2.
$$m(\bigcup_{i=1}^{\infty} A_i) = \bigoplus_{i=1}^{\infty} m(A_i)$$

So shall write $\bigoplus_{i=1}^n a_i = a_1 \oplus a_2 \oplus \ldots \oplus a_n$ and $\bigoplus_{i=1}^\infty a_i = \sup_n (\bigoplus_{i=1}^n a_i)$. If \oplus is an idempotent operation $(\oplus -ID)$, then disjointness of sets and condition (1) can be omitted.

Definition 4.1.2 ([3]). A finite collection $\mathbf{B} = \{B_1, B_2, ..., B_n\} \subset \mathcal{A}$, is said to be a \oplus -measurable partition of X iff it satisfies the following conditions:

C1.
$$B_i \cap B_j = \emptyset$$
, $i \neq j$, $i, j = 1, 2, ..., n$,

C2.
$$\bigoplus_{i=1}^n B_i = X$$
.

Definition 4.1.3. A finite collection $\mathbf{B}_g = \{g(B_1), g(B_2), ..., g(B_n)\} \subset \mathcal{A}$, is said to be a $g - \oplus$ -measurable partition of X iff it satisfies the following conditions:

C1.
$$g(B_i) \cap g(B_j) = \emptyset$$
, $i \neq j$, $i, j = 1, 2, ..., n$,

C2.
$$\bigoplus_{i=1}^n g(B_i) = X$$
.

 $g(B_i \cup B_j) = g(B_i) \cup g(B_j)$ because g is a continuous monotone strictly increasing unbounded odd function.

Remark 4.14. If finite collection $\mathbf{B} = \{B_1, B_2, ..., B_n\} \subset \mathcal{A}$ is a \oplus -measurable partition then $\bigoplus_{i=1}^n m(B_i) = 1$ because $1 = m(X) = m(\bigcup_{i=1}^n B_i) = \bigoplus_{i=1}^n m(B_i)$.

Remark 4.1.5 ([3]). If finite collection $\mathbf{B}_g = \{g(B_1), g(B_2), ..., g(B_n)\} \subset \mathcal{A}$ is a $g - \oplus$ -measurable partition then $\bigoplus_{i=1}^n m(g(B_i)) = 1$ because:

$$1 = m(X) = m(\bigcup_{i=1}^{n} g(B_i)) = \bigoplus_{i=1}^{n} m(g(B_i)).$$

Example 4.1.6. For function $f(m(A)) = m(A) \cdot \log_a(m(A))$ compute f_g .

$$\begin{split} f_g(m(A)) &= g^{-1}(g(m(A)) \cdot \log_a(g(m(A)))) = g^{-1}(g(m(A)) \cdot g(g^{-1}(\log_a(g(m(A)))))) \\ &= g^{-1}(g(m(A)) \cdot g(f_{g-a,\log}(m(A)))) = m(A) \odot f_{g-a,\log}(m(A)) \\ f_g(m(A)) &= g^{-1}(g(m(A)) \cdot \log_a(g(m(A)))) = g^{-1}(f(g(m(A)))) \\ &= g^{-1}(f(P(A))) = g^{-1}((P(A) \cdot \log_a(P(A))) \end{split}$$

So:

- $f(P(A)) = P(A) \cdot \log_a(P(A)) = g(f_g(m(A))) = g(m(A) \odot f_{g-a,\log}(m(A)))$
- $f_g(m(A)) = g^{-1}(P(A) \cdot \log_a(P(A))) = m(A) \odot f_{g-a,\log}(m(A))$
- $\bullet \quad g(f_g(m(A))) = g(m(A) \odot f_{g-a,\log}(m(A))) = P(A) \cdot \log_a(P(A))$

4.2. RELATIONS BETWEEN ENTROPY AND g-ENTROPY BY g-FUNCTION

Following the example above and the definition of entropy immediately established relations between *entropy* and *g-entropy* by *g-Transform* [3], [8], [11], [15], [18], [19].

Definition 4.2.1 ([3]). Let $B = \{B_1, B_2, ..., B_n\} \subset A$ is a \oplus -measurable partition of X. Then g-entropy is defined by

$$H_{a,m}^{(\oplus,\bigcirc)}(B) = -\bigoplus_{i=1}^n h_g(m(B_i))$$

where

$$h_g(m(B)) = \begin{cases} 0, & \text{if } m(B_i) = 0 \\ m(B_i) \odot f_{g-a,\log}(m(B_i)) & \text{if } m(B_i) \neq 0 \end{cases}$$

and

$$f_{g-a,\log}(m(B_i)) = g^{-1}(\log_a(g(m(B_i))))$$

is the *g-logarithmic* function.

Theorem 4.2.2 ([3], [4], [13], [16]). Let a $(\oplus -P)$ -decomposable measure m on the measurable space (X, A) be of type (NSA). Then there exist such an induced probability measure P on A that $m = g^{-1} \circ P$ where g is the normalized additive generator of $\oplus = \oplus_S (\oplus_S - t$ -conorm) and

$$H_{a,m}^{(\oplus,\odot)}(B) = g^{-1}(H_{a,p}^{(+,\cdot)}(B))$$

for every \oplus – *measurable* partition **B**.

The quantity $H_{a,p}^{(+,\cdot)}(\boldsymbol{B})$ is an entropy of the partition \boldsymbol{B} on the probability space $(\boldsymbol{X},\mathcal{A},P)$, i.e.

$$H_{a,p}^{(+,\cdot)}(B) = -\sum_{i=1}^{n} h(P(B_i)),$$

Where

$$h(P(B)) = \begin{cases} 0, & \text{if } P(B_i) = 0\\ P(B_i) \cdot \log_a P(B_i) & \text{if } P(B_i) \neq 0 \end{cases}$$

Proof. We have

$$\begin{split} H_{a,p}^{(+,\cdot)} &= -\sum_{i=1}^{n} P(B_{i}) \cdot \log_{a}(P(B_{i})) = -\sum_{i=1}^{n} h(P(B_{i})) = -\sum_{i=1}^{n} g(h_{g}(m(B_{i}))) \\ &= -\sum_{i=1}^{n} (g \circ m)(B_{i}) \cdot \log_{a}((g \circ m)(B_{i})) \\ &= -\sum_{i=1}^{n} g(m(B_{i})) \cdot g(g^{-1}(\log_{a}(g(m(AB_{i}))))) \\ &= -\sum_{i=1}^{n} g(m(B_{i})) \cdot g(f_{g-a,\log}(m(B_{i}))) \\ &= -\sum_{i=1}^{n} g(g^{-1}(g(m(B_{i})) \cdot g(f_{g-a,\log}(m(B_{i})))) \\ &= -\sum_{i=1}^{n} g(m(B_{i}) \odot f_{g-a,\log}(m(B_{i}))) \\ &= -g(\bigoplus_{i=1}^{n} m(B_{i}) \odot f_{g-a,\log}(m(B_{i}))) \\ &= g(-\bigoplus_{i=1}^{n} m(B_{i}) \odot f_{g-a,\log}(m(B_{i}))) = g(H_{a,m}^{(\bigoplus, \bigcirc)}(B)). \end{split}$$

The rest of theorem is proving is the text [3].

•
$$H_{a,m}^{(\oplus,\bigcirc)}(B) = g^{-1}(H_{a,p}^{(+,\cdot)}(B))$$
 or $g(H_{a,m}^{(\oplus,\bigcirc)}(B)) = H_{a,p}^{(+,\cdot)}(B)$

•
$$H_{a,m}^{(\oplus, \bigcirc)}(A) = -\bigoplus_{i=1}^{n} m(A_i) \odot f_{g-a,\log}(m(A_i)) = g^{-1}(H_{a,p}^{(+,\cdot)}(A))$$

$$H_{2,m}^{(\oplus,\bigcirc)}(A) = -\bigoplus_{i=1}^{n} m(A_i) \odot f_{g-2,log}(m(A_i)) = g^{-1}(H_{2,p}^{(+,\cdot)}(A))$$

$$= SH_m^{(\oplus,\bigcirc)}(A) = SH_p^{(+,\cdot)}(A)$$

•
$$SH_m^{(\oplus,\bigcirc)}(A) = H_{2,m}^{(\oplus,\bigcirc)}(A) = g^{-1}(H_{2,p}^{(+,\cdot)}(A)) = g^{-1}(SH_p^{((+,\cdot))}(A))$$

Example 4.2.3 ([11], [18], [19], [20]). Change of base for logarithmic function $(a \rightarrow b)$: $\log_b P(B) = \log_b a \cdot \log_a P(B)$

$$\begin{split} \log_b g(m(B)) &= (\log_b a) \cdot (\log_a g(m(B))) \\ \log_b g(m(B)) &= (g(g^{-1}(\log_b a))) \cdot (g(g^{-1}(\log_a g(m(B)))) \\ g^{-1}(\log_b g(m(B))) &= g^{-1}((g(g^{-1}(\log_b a))) \cdot (g(g^{-1}(\log_a g(m(B))))) \end{split}$$

• $f_{g-b,\log}(m(B)) = g^{-1}(\log_b a) \odot f_{g-a,\log}(m(B))$

Rules for crossings in different entropy during the change of bases ($a \rightarrow b$):

$$H_{b,m}^{(\oplus,\bigcirc)}(B) = -g^{-1}(\log_b a) \odot (\bigoplus_{i=1}^n m(B_i) \odot f_{g-a,\log}(m(B_i)))$$

$$= -g^{-1}(\log_b a) \odot g^{-1}(H_{a,p}^{(+,\cdot)}(B))$$

$$H^{(\oplus,\bigcirc)}(B) = -g^{-1}(\log_b a) \odot (\bigoplus_{i=1}^n m(B_i) \odot f_{g-a,\log}(m(B_i)))$$

$$H_{b,m}^{(\oplus,\bigcirc)}(B) = -g^{-1}(\log_b a) \odot (\bigoplus_{i=1}^n m(B_i) \odot f_{g-a,\log}(m(B_i)))$$

$$= -g^{-1}(\log_b a) \odot (H_{a,m}^{(\oplus,\bigcirc)}(B))$$

•
$$SH_m^{(\oplus,\odot)}(B) = -g^{-1}(\log_b 2) \odot (H_{2,m}^{(\oplus,\odot)}(B))$$
 (Shannon entropy)

•
$$H_{b,m}^{(\oplus,\bigcirc)}(B) = -g^{-1}(\log_b a) \odot (H_{a,m}^{(\oplus,\bigcirc)}(B)) = -g^{-1}(\log_b 2) \odot (H_{2,m}^{(\oplus,\bigcirc)}(B))$$

•
$$H_{b,m}^{(\oplus,\odot)}(B) = -g^{-1}(\log_b 2) \odot SH_m^{(\oplus,\odot)}(B)$$
.

4.3. MODIFIED \oplus – MEASURE BY g – TRANSFORM

For $(\oplus -P)-m$ by definition 4.1.1, based on the definition 2.2 for *g*-function ([2], [3], [5], [14], [16]) and on the sistem of the pseudo-arithmetical operations generated by generator *g*, can modified the measure by *g*-Transform in the following form:

Definition 4.3.1. Let m be a set function $(\oplus -P) - m : \mathcal{A} \to [0, +\infty]$ and the function g be a generator of the consistent system of pseudo-arithmetical operations $\{\oplus, \odot, \odot, \odot, \odot\}$. The function m_g given by $m_g(B) = g^{-1}(m(g(B)))$, for every $B \in \{g^{-1}(B_1), \ldots, g^{-1}(B_n)\}$ is said to be $g - (\oplus -P)$ measure function (m_g) corresponding to the set function m.

Definition 4.3.2 Let P be a induced probability measure $(P = g \circ m)$ and the function g be a generator of the consistent system of pseudo-arithmetical operations $\{\oplus, \odot, \ominus, \oslash\}$. The function P_g given by $P_g(B) = g^{-1}(P(g(B)))$, for every $B \in \{g^{-1}(B_1), ..., g^{-1}(B_n)\}$ is said to be g-induced probability measure function (P_g) corresponding to the set function P $(P = g \circ m)$.

By *g-calculus* and definition of $(\oplus -P)-m$ hold:

$$m(A) \oplus m(B) = g^{-1}(g(m(A)) + g(m(B))).$$

If apply for finite collection $B_g \subset \mathcal{A}$ ($g-\oplus-measurable$ partition with conditions of definition 4.1.3) the definition of $(\oplus -P)-m$ its hold:

$$m(g(A)) \oplus m(g(B)) = m(g(A \cup B))$$
 or $m(g(A)) \oplus m(g(B)) = m(g(A) \cup g(B))$.

Proposition 4.3.3. For finite collections B and $B_g \subset A$ with conditions of definition 4.1.2 and 4.1.3 respectively, $(\oplus -P)-m$ and induced probability measure P on A satisfy the following conditions by g-Transform:

1.
$$m_g(B) = g^{-1}(P_g(B))$$

2.
$$P_g(A \cup B) = P_g(A) \oplus P_g(B)$$

3.
$$g(m_g(A \cup B)) = g(m_g(A)) \oplus g(m_g(B))$$

Easily can prove the truth of these equations by applied g-transform.

1.
$$P_g(B) = g^{-1}(P(g(B))) = g^{-1}(g(m(g(B)))) = g(g^{-1}(m(g(B))))$$

= $m(g(B)) = g(m_g(B))$

•
$$m_{\varphi}(B) = g^{-1}(P_{\varphi}(B))$$

2. For induced probability measure P, to the equation

$$P(A \cup B) = P(A) + P(B)$$

we get g-Transform both sides:

$$g^{-1}(P(g(A \cup B))) = g^{-1}(P(g(A)) + P(g(B)))$$

$$g^{-1}(P(g(A \cup B))) = g^{-1}(g(g^{-1}(P(g(A)))) + g(g^{-1}(P(g(B)))))$$

$$g^{-1}(P(g(A \cup B))) = g^{-1}(P(g(A))) \oplus g^{-1}(P(g(B)))$$

- $P_g(A \cup B) = P_g(A) \oplus P_g(B)$
- $P_g(A \cup B) = g^{-1}(P(g(A \cup B))) = g^{-1}(P(g(A) \cup g(B)))$
- 3. By the definition 4.1.1 to the equation

$$m(A \cup B) = m(A) \oplus m(B)$$

we get g-Transform both sides:

$$m_g(A \cup B) = g^{-1}(m(g(A \cup B))) = g^{-1}(m(g(A) \cup g(B)))$$

 $m_g(A \cup B) = g^{-1}(g(m_g(A)) \oplus g(m_g(B)))$

- $g(m_g(A \cup B)) = g(m_g(A)) \oplus g(m_g(B))$
- $m_g(A \cup B) = g^{-1}(g(m_g(A))) \oplus g^{-1}(g(m_g(B)))$

CONCLUSION

1. Relations between classes of (*L.F.Eq.*) and (*PL.F.Eq.*) by *g*-Transform

$$(L.F.Eq.-c\cdot f)^{((+,\cdot),\cdot,c,a,r)} \overset{(g-TR)}{\underset{(g-TR),g(x)=x}{\Rightarrow}} (PL.F.Eq.-(c\cdot f)_g)^{((\oplus,\bigcirc),\bigcirc,g^{-1}(c),a,r)}$$

$$(PL.F.Eq.-(c\cdot f)_g)^{((\oplus,\bigcirc),\bigcirc,g^{-1}(c),a,r)} \overset{(g-normed,c=1)}{\underset{(\bigcirc g^{-1}(c))}{\Rightarrow}} (PL.F.Eq.-f_g)^{((\oplus,\bigcirc),\bigcirc,1,a,r)}$$

$$(L.F.Eq.-c\cdot f)^{((+,\cdot),\cdot,c,a,r)} \overset{(g-TR),g-normed,c=1)}{\underset{(g-TR),g(x)=x,(\cdot c)}{\Rightarrow}} (PL.F.Eq.-f_g)^{((\oplus,\bigcirc),\bigcirc,1,a,r)}$$

- Implemented to each functions presented above the cases for $f_g(c \cdot x)$, $f_g(c + x)$, $f_g(1 x)$, $f_g(N(x))$, $f_g(a \cdot x + b)$ etc. it will be expanded more the classes of functional equations by f_g solutions.
 - 2. Modified \oplus probability measure (m_g) and induced probability measure (P_g) by g-Transform
 - $m_g(B) = g^{-1}(m(g(B)))$ and $P_g(B) = g^{-1}(P(g(B)))$
 - $m_{\varphi}(B) = g^{-1}(P_{\varphi}(B))$.

ACKNOWLEDGMENT

I would like to thank the scientific leader and the colleagues of my institution were I work for their sustention on my scientific research study, also my family for giving financial support to actualize this work.

REFERENCES

- J. Aczél, Lectures on Functional Equations and their Applications, Academic Press, New York, 1966
- [2] J. Rybárik, g-functions, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 25, 1 (1995), 29-38.
- [3] J. Rybárik, *The entropy based on pseudo-arithmetical operations*, Tatra Mauntains Math., Publ., 6 (1995), pp.157-164.
- [4] E. Pap, *An integral generated by decomposable measure*, Univ. Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20,1 (1990), pp. 135-144.
- [5] M. Sugeno, T. Murofushi, Pseudo-additive Measure and Integrals, J. Math. Appl. 122 (1987), f. 197-222.

- [6] E. Pap, g-calculus, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23,1(1993), pp. 145-156.
- [7] P. Poncet, *Pseudo-multiplication and their properties*, arXiv:1301.0761 [math.RA], 4 Jan 2013.
- [8] A. Kolesárová, *A note on the* ⊕ *measure based integrals*, Tatra Mauntains Math., Publ., 3 (1993), pp.173-182.
- [9] R. Mesiar, J. Rybárik, *Pseudo-arithmetical operations*, Tatra Mauntains Math., Publ., 2 (1993), pp. 185-192.
- [10] E. Pap, Pseudo-analysis and its applications, Tatra Mountains Math. Publ. 12 (1997), pp. 1-12.
- [11] N. Ralević, Some new properties of g-calculus, Univ. Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 24,1 (1994), pp. 139-157.
- [12] E. Pap, Application of decomposable measures on nonlinear difference equations, Novi Sad J. Math. 31, 2 (2001), pp. 89-98.
- [13] S. Weber, \perp -decomposable measures and integrals for Archimedian t-conorms \perp , J. Math. Appl.101 (1984), pp. 114-138.
- [14] Z Riečanová, About σ-additive measure and σ-maxitive measure, Math. Slovaca, 31 (1982), pp. 389-395.
- [15] A. Kolesárová, *Integration of real functions with respect to* a ⊕ − *measure*, Math. Slovaca, 46 (1996), No. 1, pp. 41-52.
- [16] E. Pap, *Pseudo-additive measures and their applications*, in: E. Pap (Ed.), Handbook of Measure Theory, Volume II. Elsevier, Amsterdam, 2002, pp. 1405-1465.
- [17] H. Ichihashi H. Tanaka, K. Asai: Fuzzy integrals based on Pseudo additions and multiplications, J.Math. Anal. Appl. 130 (1988), 354-364.
- [18] V.M. Ilić, M. S. Stanković, Generalized Shannon-Khinchin Axioms and Uniqueness Theorem for Pseudo-additive Entropies, arXiv: 1311.0323v1 [math-ph], 2 Nov 2013.
- [19] T. M. Cover, J. A. Thomas, *Elements of Information Theory*, (Entropy, Relative Entropy and Mutual Information, chapter 2) Print ISBN 0-471-06259-6 Online ISBN 0-471-20061-1, 1991.pp.12-49.
- [20] A. Ullah, Entropy, divergence and distance measures with econometric applications, Journal of Statistical Planning and Inference 49 (1996), 137-162.

¹⁾ Faculty of Natural Sciences, Department of Mathematics, "Aleksandër Xhuvani" University, Elbasan, Albania E-mail address: dhurata_valera@hotmail.com

²⁾ Graduated, Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece E-mail address: ividylgjeri90@yahoo.gr