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FRAGMENTABILITY OF FUNCTION SPACES Cp(T )

FOR PSEUDOCOMPACT SPACES T

MITROFAN M. CHOBAN, PETAR S. KENDEROV, AND WARREN B. MOORS

Abstract. For a compact space T it is known that the space Cp(T ) (of all
continuous functions in T, endowed with the pointwise convergence topology
p) is fragmentable by a metric that majorizes p if and only if it is fragmentable
by another metric which majorizes the sup-norm topology in C(T ). We show
that this fact remains valid for pseudocompact spaces T . For pseudocompact
and for strongly pseudocompact spaces T we give characterizations of frag-
mentability of Cp(T ) by means of a topological game which is a modification
of a game used earlier for characterization of fragmentability. The results are
based on a recent generalization of the theorem of Eberlein.

1. Preliminaries

A metric d(., .) defined in a topological space X is said to fragment X, if for
every ε > 0 and every non-empty subset A ⊂ X there exists an open subset U ⊂ X
such that the set A ∩ U is not empty and its d-diameter is smaller than ε. i.e.
every non-empty set A ⊂ X contains relatively open subsets of arbitrarily small
diameters. The space X is said to be fragmentable if there exists a metric that
fragments it. Fragmentability was introduced by Jayne and Rogers (see [7]) and
studied by many authors. It proved to be a convenient tool in the study of Banach
spaces, differentiability of convex functions as well as in many topological contexts
(see Jayne, Namioka and Rogers [8]–[12], Ribarska [16]–[18], Namioka [15] and
Kenderov, Moors [13], [14]). Of a particular interest is the case when the open
subsets of X are open in the metric topology generated by the metric d. In such
a case it is said that d majorizes the topology of X.

For a compact space T it has been shown (see [14] and [13]) that the function
space Cp(T ), where p stands for the pointwise convergence topology, is fragmented
by a metric d majorizing p if, and only if, there exists another metric d which frag-
ments Cp(T ) and majorizes the uniform convergence topology (the one generated
by the "sup-norm" in C(T )). The first goal of this paper is to show that this result
remains valid for pseudocompact spaces T as well. The second goal is to give one
more game characterization of fragmentability of Cp(T ) (by a metric majorizing
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p) for the cases when T is a pseudocompact or a strongly pseudocompact space.
Recall that a subset A of a completely regular space X is said to be bounded

in X if every continuous real-valued function defined on X is bounded on A. If a
completely regular space X is bounded in itself, then it is called pseudocompact
(Engelking [5], Theorem 3.10.22). Every countably compact space T is pseudo-
compact. There are however many pseudocompact spaces which are not countably
compact.

Definition 1.1 ([3] Definition 1.2). A subset A of a topological space X is called
strongly bounded in X, if it contains a dense subset D with the property that for
every sequence {xi}i≥1 in D there exists a subsequence which is bounded in some
separable subspace S of X. A space X which is strongly bounded in itself is called
strongly pseudocompact.

Every strongly pseudocompact space T is pseudocompact. There are however
pseudocompact spaces which are not strongly pseudocompact. Shakhmatov [19]
constructed a pseudocompact space T such that the closed unit ball B = {x ∈
C(T ) : ‖x‖ = maxt∈T |x(t)| ≤ 1} is pseudocompact but not a compact subset
of Cp(T ). As it follows from Theorem 1.2 below, neither of the pseudocompact
spaces T and B (from the example of Shakhmatov) is strongly pseudocompact.
This example outlines some limits for the possible generalizations of the theorem
of Eberlein. Recall that, for a compact space T , Eberlein [4] has shown that the
closure of every countably compact subset of Cp(T ) is compact. Grothendieck [6]
proved that this result remains valid for countably compact spaces T . Another
generalization was obtained by Asanov and Veličko [1] who have shown that, if A
is bounded in Cp(T ) and T is countably compact, then A is a compact subset of
Cp(T ).

As shown in [3] the notions "bounded" and "strongly bounded" provide a con-
venient framework for further generalizations of Eberlein Theorem.

Theorem 1.1 ([3] Theorem 4.1 and Theorem 4.2). Let T be a completely regular
pseudocompact (strongly pseudocompact) space and let A be a nonempty set which
is strongly bounded (bounded) in Cp(T ). Then

(i) A is a non-empty compact subset of Cp(T );
(ii) Every sequence {fi}i≥1 of functions fi ∈ A, i ≥ 1, has a subsequence

converging to some f0 in Cp(T ). If, in addition, the sequence {fi}i≥1 is
contained in some ball in C(T ), then for every ε > 0 there exist an integer
k > 0 and nonnegative numbers λi, 1 ≤ i ≤ k, such that

∑k
i=1 λi = 1 and

|f0(t)−
∑k

i=1 λifi(t)| ≤ ε for every t ∈ T .

We will need one more statement which is also a generalization of the Eberlein
theorem:

Theorem 1.2 ([3], Theorem 3.2). The conclusions (i) and (ii) of the above The-
orem 1.1 remain valid, if T is a pseudocompact space and A is a set bounded in a
separable subspace S of the space Cp(T ).
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As in [14] and [13] our main tool for studying fragmentability is the following
topological game.

Two players, Σ and Ω, play a game by selecting alternatively non-empty subsets
of X. The player Σ begins the game by selecting some non-empty subset A1 of
X. In turn, player Ω selects some non-empty relatively open subset B1 of A1.
Then Σ selects a non-empty subset A2 ⊆ B1 and, again, Ω choses a non-empty
relatively open subset B2 ⊆ A2. Proceeding this way, the two players generate a
nested sequence {(Ai, Bi)}i1 of sets which we call a play. The player is said to
have won the play {(Ai, Bi)}i1 if either the intersection ∩i≥1Ai = ∩i≥1Bi is empty
or consists of just one point. Otherwise player Σ is declared to be the winner of
this play.

This game will be referred to as the Fragmenting Game in X and will be denoted
by G(X).

By a strategy ω for player Ω we mean "a rule" that specifies each move of this
player in "every possible situation". The strategy ω is called winning, if every
play generated by applying the strategy ω is won by the player Ω. Similarly, one
defines the notions "strategy" and "winning strategy" for the player Σ.

Theorem 1.3 ([14]). The topological space X is fragmentable if, and only if, the
player Ω has a winning strategy in the game G(X).

Theorem 1.4 ([13]). The topological space (X, τ) is fragmentable by a metric that
majorizes some topology τ ′ in X if, and only if, there exists a winning strategy for
Ω such that, for every play {Ai, Bi}i≥1 generated by this strategy, the intersection
∩i≥1Ai = ∩i≥1Bi is either empty or it consists of just one point x0 and every
τ ′-open set U 3 x0 contains some An (and, hence, all sets Ai for which i ≥ n). In
particular, if the intersection ∩i≥1Ai = ∩i≥1Bi is not empty (and consists of just
one point x0), then every sequence {xi}i≥1, xi ∈ Ai, i ≥ 1, τ ′-converges to x0.

2. Fragmentability of Cp(T ) for pseudocompact spaces T

For the formulation of our results we need a modification of the game G. The
modified game will be denoted by G′(X). In this game the player Σ plays as in
G(X) and selects non-empty subsets of the space X. If Ai is the i-th move of Σ,
the player Ω answers as in G by selecting a non-empty relatively open Bi ⊂ Ai

but selects also, in addition, a point xi ∈ Ai.

Definition 2.1. The player Ω is said to have won the play {(Ai, Bi, xi)}i≥1 in the
game G′(X) if either the intersection ∩i≥1Ai = ∩i≥1Bi is empty or, if not empty,
the sequence {xi}i≥1 contains a subsequence which is bounded in some separable
subset of X.

The notion of "strategy" and "winning strategy" are defined as above.

Theorem 2.1. Let T be a pseudocompact space. Then the following statements
are equivalent:

(i) The space Cp(T ) is fragmentable by a metric majorizing the norm topology
of C(T ).
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(ii) The space Cp(T ) is fragmentable by a metric majorizing the topology p.
(iii) The player Ω has a strategy ω in the game G(Cp(T )) which generates plays

{(Ai, Bi)}i≥1 such that either the intersection ∩i≥1Ai = ∩i≥1Bi is empty
or, otherwise, every sequence {gi}i≥1 with gi ∈ Ai, i ≥ 1, has a cluster
point in Cp(T ).

(iv) The player Ω has a winning strategy ω′ in the game G′(Cp(T )), i.e. Ω
has a strategy ω′ which generates plays {(Ai, Bi, gi)}i≥1 such that either
the intersection ∩i≥1Ai = ∩i≥1Bi is empty or, otherwise, the sequence
{gi}i≥1 contains a subsequence which is bounded in some separable subset
of Cp(T ).

Proof. The implications (i)⇒ (ii)⇒ (iii)⇒ (iv) are evident. In view of Theorem
1.4 the implication (iv)⇒ (i) follows from the next assertion. �

Proposition 2.1. For any pseudocompact space T the property (iv) from Theorem
2.1 is equivalent to the following one:

(v) Player Ω has a strategy ω in the game G(Cp(T )) which generates plays
{(Ai, Bi)}i≥1 such that either the intersection ∩i≥1Ai = ∩i≥1Bi is empty
or, otherwise, the sup-norm diameters of the set Ai tend to zero.

Proof. Evidently, (v) ⇒ (iv). It suffices (see Proposition 2.1 in [13]) to prove
the implication (iv) ⇒ (v) for the case when the games G and G′ are played
in the closed unit ball B = {f ∈ C(T ) : ‖f‖ ≤ 1} endowed with the pointwise
convergence topology p. We take an arbitrary strategy ω′ for the game G′((B, p))
and construct a strategy ω for the game G((B, p)). Then we show that, if ω′
satisfies (iv) the constructed strategy ω satisfies (v).

The construction of the strategy ω has its roots in the work of Christensen
(see [2]) who proved that some continuous mappings into Cp(T ) are sup-norm
continuous at many points. Here we follow [13] where the construction was adapted
for the needs of fragmentability theory. The construction of the strategy ω uses
induction. Let A1 be an arbitrary first choice of player Σ in the game G((B, p)).
Using his/her strategy ω′ the player Ω selects some g1 ∈ A1 and a relatively open
subset B′1 ⊂ A1. Put d1 := inf{t > 0 : g1 + tB ⊇ B′1}. If d1 = 0, then B′1 = g1
and we take ω(A1), the answer of Ω, to be the relatively open subset B1 = g1.
Note that, in this case, all subsequent moves Ai, Bi, i ≥ 2, of the players are
predetermined and trivial: Ai = Bi = g1. Such plays are won by Ω in the sense
of (v). Therefore, without loss of generality, we may assume that d1 > 0. In this
case the nonempty set B′1 \ (g1 + 1

2d1B) is relatively open in B′1 (and therefore in
A1). As a first move of player Ω under the strategy ω we now take any non-empty
relatively open subset B1 of B′1 such that B1 ∩ (g1 + 1

2d1B) = ∅. This finishes the
first induction step.

Suppose that the strategy ω has already been defined "up to the n-th stage", n ≥
1, in such a way that each finite ω-play A1 ⊃ B1 ⊃ · · · ⊃ An ⊃ Bn is accompanied
by some sets {B′i}ni=1, some points {gi}ni=1 in Cp(T ) and some numbers {di ≥ 0}ni=1

so that, for every i = 1, . . . , n, the following properties have place:
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a) the points gi ∈ Ai and the sets B′i are the answers of Ω under the strategy
ω′ to the choice Ai of Σ in the game G′(Cp(T )); in particular, B′i is a
relatively open subset of Ai;

b) Bi = ω(A1, . . . , Ai), the answer of Ω under the strategy ω to the choices
A1, . . . , Ai of player Σ, is a relatively open subset of B′i;

c) di := inf{t > 0 : co{g1, . . . , gi} + tB ⊃ B′i}, where co{g1, . . . , gi} is the
convex hull of the set {g1, . . . , gi};

d) The closure Bi of Bi in Cp(T ) does not intersect the set co{g1, . . . , gi} +
i

i+1diB;
e) ‖ · ‖ − diam(Bi) ≤ 2(di + 1

i+1 ).
Let An+1 ⊂ Bn be the next choice of Σ. Using ω′ player Ω selects some gn+1 ∈
An+1 and some non-empty relatively open subset B′n+1 of An+1. Consider the
number

dn+1 := inf{t > 0 : co{g1, . . . , gn+1}+ tB ⊃ B′n+1}.
Suppose dn+1 = 0. Then B′n+1 is a subset of the finite dimensional compact
co{g1, . . . , gn+1} in which pointwise convergence topology and norm topology co-
incide. In this case it is easy to define Bn+1 so that properties d) and e) are
fulfilled for i = n+ 1. Moreover, the norm-diameter of Bn+1 could be taken to be
smaller than 1

n+1 . Consider, in the case dn+1 > 0, the nonempty set

B′n+1 \ {co{g1, . . . , gn+1}+
n+ 1

n+ 2
dn+1B}.

It is relatively open in B′n+1. Take some nonempty relatively open subset A of
B′n+1 such that

A
⋂
{co{g1, . . . , gn+1}+

n+ 1

n+ 2
dn+1B} = ∅.

Since co{g1, . . . , gn+1} is compact, there is a finite set M such that

co{g1, . . . , gn+1} ⊂M +
1

n+ 2
B.

Since A ⊂ B′n+1 ⊂ co{g1, . . . , gn+1} + dn+1B, we have A ⊂ M + (dn+1 + 1
n+2 )B.

Without loss of generality we can assume that M is a minimal (with respect to its
cardinality) finite set with this property. Then, for any m0 ∈M , the set

Bn+1 := A \ {{M \ {m0}}+ (dn+1 +
1

n+ 2
)B} 6= ∅

is a non-empty relatively open subset of A (and therefore of An+1). This set is
taken as the answer of Ω under the strategy ω : Bn+1 := ω(A1, . . . , An, An+1).
Since Bn+1 ⊂ m0 + (dn+1 + 1

n+2 )B, we have ‖ · ‖− diam(Bn+1) ≤ 2(dn+1 + 1
n+2 ).

Thus, condition e) is satisfied.
This, considered as an induction step, completes the construction of the strategy

ω.
Let {(Ai, Bi)}i≥1 be an ω-play. Clearly, {(Ai, B

′
i, gi)}i≥1, where B′i and gi are

from the construction of ω, is an ω′-play.
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Suppose ∩i≥1Ai = ∩i≥1Bi is not empty. If dn = 0 for some n > 0, then
by construction, the diameters of the sets Bk tend to zero. If di > 0 for every
i ≥ 1, then the sequence {gi}i≥1 consists of distinct points and, by (iv), it contains
a subsequence which is bounded in a separable subset of Cp(T ). It follows from
Theorem 1.2 that the sequence {gi}i≥1 contains a subsequence converging in Cp(T )

to some function g∞ which, necessarily, belongs to
⋂

i≥1Bi.
The sequence {di}i≥1 of non-negative numbers is non-increasing. Put d∞ :=

limn→∞ dn. It suffices to show that d∞ = 0. Suppose that d∞ > 0 and take some
positive number ε < 1

2d∞. Then, by d), we have for every i ≥ 1

g∞ + εB ∩ co{g1, . . . , gi} ⊂ {Bi +
i

i+ 1
diB} ∩ co{g1, . . . , gi} = ∅.

Therefore {g∞ + εB} ∩
⋃

i≥1{co{g1, ..., gi}} = ∅.

On the other hand, part ii) of Theorem 1.2 says that this is impossible. This
contradiction completes the proof of Proposition 2.1 and of Theorem 2.1. �

If the space T has additional properties, then the fragmentability of Cp(T ) is
implied by even weaker assumptions imposed on the strategy of player Ω. Let us
denote by G′′(X) a game in the topological space X which differs from G′(X) only
by the winning rule: the player Ω is said to have won the play {(Ai, Bi, xi)}i≥1
if either the intersection ∩i≥1Ai = ∩i≥1Bi is empty or, if not empty, there exists
some subsequence of the sequence {xi}i≥1 which is bounded in X.

Theorem 2.2. Let T be strongly pseudocompact. Then each of the equivalent
conditions (i)–(v) (from Theorem 2.1 and Proposition 2.1) is equivalent to the
following statement:

(vi) The player Ω has a winning strategy ω′′ in the game G′′(Cp(T )), i.e. ω′′
generates plays {(Ai, Bi, gi)}i≥1 such that either the intersection ∩i≥1Ai =
∩i≥1Bi is empty or, otherwise, there exists some subsequence of the se-
quence {gi}i≥1 which is bounded in Cp(T ).

Proof. The proof is almost identical with the proof of the previous theorem. The
only difference is that instead of Theorem 1.2 one uses Theorem 1.1. �
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