Математички Билтен Vol.39 (LXV) No.2 2015 (5–11) Скопје, Македонија

UDC: 515.122.2

FRAGMENTABILITY OF FUNCTION SPACES $C_p(T)$ FOR PSEUDOCOMPACT SPACES T

MITROFAN M. CHOBAN, PETAR S. KENDEROV, AND WARREN B. MOORS

Abstract. For a compact space T it is known that the space $C_p(T)$ (of all continuous functions in T, endowed with the pointwise convergence topology p) is fragmentable by a metric that majorizes p if and only if it is fragmentable by another metric which majorizes the sup-norm topology in C(T). We show that this fact remains valid for pseudocompact spaces T. For pseudocompact and for strongly pseudocompact spaces T we give characterizations of fragmentability of $C_p(T)$ by means of a topological game which is a modification of a game used earlier for characterization of fragmentability. The results are based on a recent generalization of the theorem of Eberlein.

1. Preliminaries

A metric d(.,.) defined in a topological space X is said to fragment X, if for every $\varepsilon > 0$ and every non-empty subset $A \subset X$ there exists an open subset $U \subset X$ such that the set $A \cap U$ is not empty and its d-diameter is smaller than ε . i.e. every non-empty set $A \subset X$ contains relatively open subsets of arbitrarily small diameters. The space X is said to be fragmentable if there exists a metric that fragments it. Fragmentability was introduced by Jayne and Rogers (see [7]) and studied by many authors. It proved to be a convenient tool in the study of Banach spaces, differentiability of convex functions as well as in many topological contexts (see Jayne, Namioka and Rogers [8]–[12], Ribarska [16]–[18], Namioka [15] and Kenderov, Moors [13], [14]). Of a particular interest is the case when the open subsets of X are open in the metric topology generated by the metric d. In such a case it is said that d majorizes the topology of X.

For a compact space T it has been shown (see [14] and [13]) that the function space $C_p(T)$, where p stands for the pointwise convergence topology, is fragmented by a metric d majorizing p if, and only if, there exists another metric d which fragments $C_p(T)$ and majorizes the uniform convergence topology (the one generated by the "sup-norm" in C(T)). The first goal of this paper is to show that this result remains valid for pseudocompact spaces T as well. The second goal is to give one more game characterization of fragmentability of $C_p(T)$ (by a metric majorizing

5

²⁰¹⁰ Mathematics Subject Classification. 91A44, 54C35, 54E35.

Key words and phrases. Fragmentability, topological game, pseudocompact space.

p) for the cases when T is a pseudocompact or a strongly pseudocompact space.

Recall that a subset A of a completely regular space X is said to be bounded in X if every continuous real-valued function defined on X is bounded on A. If a completely regular space X is bounded in itself, then it is called pseudocompact (Engelking [5], Theorem 3.10.22). Every countably compact space T is pseudocompact. There are however many pseudocompact spaces which are not countably compact.

Definition 1.1 ([3] Definition 1.2). A subset A of a topological space X is called strongly bounded in X, if it contains a dense subset D with the property that for every sequence $\{x_i\}_{i\geq 1}$ in D there exists a subsequence which is bounded in some separable subspace S of X. A space X which is strongly bounded in itself is called strongly pseudocompact.

Every strongly pseudocompact space T is pseudocompact. There are however pseudocompact spaces which are not strongly pseudocompact. Shakhmatov [19] constructed a pseudocompact space T such that the closed unit ball $B = \{x \in C(T) : ||x|| = \max_{t \in T} |x(t)| \leq 1\}$ is pseudocompact but not a compact subset of $C_p(T)$. As it follows from Theorem 1.2 below, neither of the pseudocompact spaces T and B (from the example of Shakhmatov) is strongly pseudocompact. This example outlines some limits for the possible generalizations of the theorem of Eberlein. Recall that, for a compact space T, Eberlein [4] has shown that the closure of every countably compact subset of $C_p(T)$ is compact. Grothendieck [6] proved that this result remains valid for countably compact spaces T. Another generalization was obtained by Asanov and Veličko [1] who have shown that, if Ais bounded in $C_p(T)$ and T is countably compact, then \overline{A} is a compact subset of $C_p(T)$.

As shown in [3] the notions "bounded" and "strongly bounded" provide a convenient framework for further generalizations of Eberlein Theorem.

Theorem 1.1 ([3] Theorem 4.1 and Theorem 4.2). Let T be a completely regular pseudocompact (strongly pseudocompact) space and let A be a nonempty set which is strongly bounded (bounded) in $C_p(T)$. Then

- (i) \overline{A} is a non-empty compact subset of $C_p(T)$;
- (ii) Every sequence $\{f_i\}_{i\geq 1}$ of functions $f_i \in A$, $i \geq 1$, has a subsequence converging to some f_0 in $C_p(T)$. If, in addition, the sequence $\{f_i\}_{i\geq 1}$ is contained in some ball in C(T), then for every $\epsilon > 0$ there exist an integer k > 0 and nonnegative numbers λ_i , $1 \leq i \leq k$, such that $\sum_{i=1}^k \lambda_i = 1$ and $|f_0(t) \sum_{i=1}^k \lambda_i f_i(t)| \leq \epsilon$ for every $t \in T$.

We will need one more statement which is also a generalization of the Eberlein theorem:

Theorem 1.2 ([3], Theorem 3.2). The conclusions (i) and (ii) of the above Theorem 1.1 remain valid, if T is a pseudocompact space and A is a set bounded in a separable subspace S of the space $C_p(T)$.

6

As in [14] and [13] our main tool for studying fragmentability is the following topological game.

Two players, Σ and Ω , play a game by selecting alternatively non-empty subsets of X. The player Σ begins the game by selecting some non-empty subset A_1 of X. In turn, player Ω selects some non-empty relatively open subset B_1 of A_1 . Then Σ selects a non-empty subset $A_2 \subseteq B_1$ and, again, Ω choses a non-empty relatively open subset $B_2 \subseteq A_2$. Proceeding this way, the two players generate a nested sequence $\{(A_i, B_i)\}_{i1}$ of sets which we call a *play*. The player is said to have won the play $\{(A_i, B_i)\}_{i1}$ if either the intersection $\cap_{i\geq 1}A_i = \cap_{i\geq 1}B_i$ is empty or consists of just one point. Otherwise player Σ is declared to be the winner of this play.

This game will be referred to as the *Fragmenting Game in* X and will be denoted by G(X).

By a strategy ω for player Ω we mean "a rule" that specifies each move of this player in "every possible situation". The strategy ω is called winning, if every play generated by applying the strategy ω is won by the player Ω . Similarly, one defines the notions "strategy" and "winning strategy" for the player Σ .

Theorem 1.3 ([14]). The topological space X is fragmentable if, and only if, the player Ω has a winning strategy in the game G(X).

Theorem 1.4 ([13]). The topological space (X, τ) is fragmentable by a metric that majorizes some topology τ' in X if, and only if, there exists a winning strategy for Ω such that, for every play $\{A_i, B_i\}_{i\geq 1}$ generated by this strategy, the intersection $\bigcap_{i\geq 1}A_i = \bigcap_{i\geq 1}B_i$ is either empty or it consists of just one point x_0 and every τ' -open set $U \ni x_0$ contains some A_n (and, hence, all sets A_i for which $i \geq n$). In particular, if the intersection $\bigcap_{i\geq 1}A_i = \bigcap_{i\geq 1}B_i$ is not empty (and consists of just one point x_0), then every sequence $\{x_i\}_{i\geq 1}, x_i \in A_i, i \geq 1, \tau'$ -converges to x_0 .

2. Fragmentability of $C_p(T)$ for pseudocompact spaces T

For the formulation of our results we need a modification of the game G. The modified game will be denoted by G'(X). In this game the player Σ plays as in G(X) and selects non-empty subsets of the space X. If A_i is the *i*-th move of Σ , the player Ω answers as in G by selecting a non-empty relatively open $B_i \subset A_i$ but selects also, in addition, a point $x_i \in A_i$.

Definition 2.1. The player Ω is said to have won the play $\{(A_i, B_i, x_i)\}_{i \ge 1}$ in the game G'(X) if either the intersection $\bigcap_{i \ge 1} A_i = \bigcap_{i \ge 1} B_i$ is empty or, if not empty, the sequence $\{x_i\}_{i \ge 1}$ contains a subsequence which is bounded in some separable subset of X.

The notion of "strategy" and "winning strategy" are defined as above.

Theorem 2.1. Let T be a pseudocompact space. Then the following statements are equivalent:

(i) The space $C_p(T)$ is fragmentable by a metric majorizing the norm topology of C(T).

M. M. CHOBAN, P. S. KENDEROV, AND W. B. MOORS

- (ii) The space $C_p(T)$ is fragmentable by a metric majorizing the topology p.
- (iii) The player Ω has a strategy ω in the game $G(C_p(T))$ which generates plays $\{(A_i, B_i)\}_{i\geq 1}$ such that either the intersection $\bigcap_{i\geq 1}A_i = \bigcap_{i\geq 1}B_i$ is empty or, otherwise, every sequence $\{g_i\}_{i\geq 1}$ with $g_i \in A_i$, $i \geq 1$, has a cluster point in $C_p(T)$.
- (iv) The player Ω has a winning strategy ω' in the game $G'(C_p(T))$, i.e. Ω has a strategy ω' which generates plays $\{(A_i, B_i, g_i)\}_{i\geq 1}$ such that either the intersection $\cap_{i\geq 1}A_i = \cap_{i\geq 1}B_i$ is empty or, otherwise, the sequence $\{g_i\}_{i\geq 1}$ contains a subsequence which is bounded in some separable subset of $C_p(T)$.

Proof. The implications $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv)$ are evident. In view of Theorem 1.4 the implication $(iv) \Rightarrow (i)$ follows from the next assertion.

Proposition 2.1. For any pseudocompact space T the property (iv) from Theorem 2.1 is equivalent to the following one:

(v) Player Ω has a strategy ω in the game $G(C_p(T))$ which generates plays $\{(A_i, B_i)\}_{i\geq 1}$ such that either the intersection $\bigcap_{i\geq 1}A_i = \bigcap_{i\geq 1}B_i$ is empty or, otherwise, the sup-norm diameters of the set A_i tend to zero.

Proof. Evidently, $(v) \Rightarrow (iv)$. It suffices (see Proposition 2.1 in [13]) to prove the implication $(iv) \Rightarrow (v)$ for the case when the games G and G' are played in the closed unit ball $B = \{f \in C(T) : ||f|| \le 1\}$ endowed with the pointwise convergence topology p. We take an arbitrary strategy ω' for the game G'((B,p))and construct a strategy ω for the game G((B,p)). Then we show that, if ω' satisfies (iv) the constructed strategy ω satisfies (v).

The construction of the strategy ω has its roots in the work of Christensen (see [2]) who proved that some continuous mappings into $C_p(T)$ are sup-norm continuous at many points. Here we follow [13] where the construction was adapted for the needs of fragmentability theory. The construction of the strategy ω uses induction. Let A_1 be an arbitrary first choice of player Σ in the game G((B, p)). Using his/her strategy ω' the player Ω selects some $g_1 \in A_1$ and a relatively open subset $B'_1 \subset A_1$. Put $d_1 := \inf\{t > 0 : g_1 + t_B \supseteq B'_1\}$. If $d_1 = 0$, then $B'_1 = g_1$ and we take $\omega(A_1)$, the answer of Ω , to be the relatively open subset $B_1 = g_1$. Note that, in this case, all subsequent moves A_i , B_i , $i \ge 2$, of the players are predetermined and trivial: $A_i = B_i = g_1$. Such plays are won by Ω in the sense of (v). Therefore, without loss of generality, we may assume that $d_1 > 0$. In this case the nonempty set $B'_1 \setminus (g_1 + \frac{1}{2}d_1B)$ is relatively open in B'_1 (and therefore in A_1). As a first move of player Ω under the strategy ω we now take any non-empty relatively open subset B_1 of B'_1 such that $\overline{B_1} \cap (g_1 + \frac{1}{2}d_1B) = \emptyset$. This finishes the first induction step.

Suppose that the strategy ω has already been defined "up to the *n*-th stage", $n \geq 1$, in such a way that each finite ω -play $A_1 \supset B_1 \supset \cdots \supset A_n \supset B_n$ is accompanied by some sets $\{B'_i\}_{i=1}^n$, some points $\{g_i\}_{i=1}^n$ in $C_p(T)$ and some numbers $\{d_i \geq 0\}_{i=1}^n$ so that, for every $i = 1, \ldots, n$, the following properties have place:

8

- a) the points $g_i \in A_i$ and the sets B'_i are the answers of Ω under the strategy ω' to the choice A_i of Σ in the game $G'(C_p(T))$; in particular, B'_i is a relatively open subset of A_i ;
- b) $B_i = \omega(A_1, \ldots, A_i)$, the answer of Ω under the strategy ω to the choices A_1, \ldots, A_i of player Σ , is a relatively open subset of B'_i ;
- c) $d_i := \inf\{t > 0 : co\{g_1, \dots, g_i\} + tB \supset B'_i\}$, where $co\{g_1, \dots, g_i\}$ is the convex hull of the set $\{g_1, \ldots, g_i\};$
- d) The closure $\overline{B_i}$ of B_i in $C_p(T)$ does not intersect the set $co\{g_1, \ldots, g_i\} +$ $\begin{array}{l} \frac{i}{i+1}d_iB;\\ \text{e)} \quad \|\cdot\|-diam(B_i) \leq 2(d_i+\frac{1}{i+1}). \end{array}$

Let $A_{n+1} \subset B_n$ be the next choice of Σ . Using ω' player Ω selects some $g_{n+1} \in$ A_{n+1} and some non-empty relatively open subset B'_{n+1} of A_{n+1} . Consider the number

$$d_{n+1} := \inf\{t > 0 : co\{g_1, \dots, g_{n+1}\} + tB \supset B'_{n+1}\}.$$

Suppose $d_{n+1} = 0$. Then B'_{n+1} is a subset of the finite dimensional compact $co\{g_1,\ldots,g_{n+1}\}$ in which pointwise convergence topology and norm topology coincide. In this case it is easy to define B_{n+1} so that properties d) and e) are fulfilled for i = n + 1. Moreover, the norm-diameter of B_{n+1} could be taken to be smaller than $\frac{1}{n+1}$. Consider, in the case $d_{n+1} > 0$, the nonempty set

$$B'_{n+1} \setminus \{co\{g_1, \ldots, g_{n+1}\} + \frac{n+1}{n+2}d_{n+1}B\}.$$

It is relatively open in B'_{n+1} . Take some nonempty relatively open subset A of B'_{n+1} such that

$$\overline{A} \bigcap \{ co\{g_1, \dots, g_{n+1}\} + \frac{n+1}{n+2} d_{n+1}B \} = \emptyset.$$

Since $co\{g_1, \ldots, g_{n+1}\}$ is compact, there is a finite set M such that

$$co\{g_1,\ldots,g_{n+1}\} \subset M + \frac{1}{n+2}B$$

Since $A \subset B'_{n+1} \subset co\{g_1, \dots, g_{n+1}\} + d_{n+1}B$, we have $A \subset M + (d_{n+1} + \frac{1}{n+2})B$. Without loss of generality we can assume that M is a minimal (with respect to its cardinality) finite set with this property. Then, for any $m_0 \in M$, the set

$$B_{n+1} := A \setminus \{\{M \setminus \{m_0\}\} + (d_{n+1} + \frac{1}{n+2})B\} \neq \emptyset$$

is a non-empty relatively open subset of A (and therefore of A_{n+1}). This set is taken as the answer of Ω under the strategy $\omega : B_{n+1} := \omega(A_1, \ldots, A_n, A_{n+1})$. Since $B_{n+1} \subset m_0 + (d_{n+1} + \frac{1}{n+2})B$, we have $\|\cdot\| - diam(B_{n+1}) \leq 2(d_{n+1} + \frac{1}{n+2})$. Thus, condition e) is satisfied.

This, considered as an induction step, completes the construction of the strategy ω.

Let $\{(A_i, B_i)\}_{i\geq 1}$ be an ω -play. Clearly, $\{(A_i, B'_i, g_i)\}_{i\geq 1}$, where B'_i and g_i are from the construction of ω , is an ω' -play.

Suppose $\bigcap_{i\geq 1}A_i = \bigcap_{i\geq 1}B_i$ is not empty. If $d_n = 0$ for some n > 0, then by construction, the diameters of the sets B_k tend to zero. If $d_i > 0$ for every $i \geq 1$, then the sequence $\{g_i\}_{i\geq 1}$ consists of distinct points and, by (iv), it contains a subsequence which is bounded in a separable subset of $C_p(T)$. It follows from Theorem 1.2 that the sequence $\{g_i\}_{i\geq 1}$ contains a subsequence converging in $C_p(T)$ to some function g_{∞} which, necessarily, belongs to $\bigcap_{i\geq 1}\overline{B_i}$.

The sequence $\{d_i\}_{i\geq 1}$ of non-negative numbers is non-increasing. Put $d_{\infty} := \lim_{n\to\infty} d_n$. It suffices to show that $d_{\infty} = 0$. Suppose that $d_{\infty} > 0$ and take some positive number $\varepsilon < \frac{1}{2}d_{\infty}$. Then, by d), we have for every $i \geq 1$

$$g_{\infty} + \varepsilon B \cap co\{g_1, \dots, g_i\} \subset \{\overline{B_i} + \frac{i}{i+1}d_iB\} \cap co\{g_1, \dots, g_i\} = \varnothing$$

Therefore $\{g_{\infty} + \varepsilon B\} \cap \bigcup_{i>1} \{co\{g1, ..., gi\}\} = \emptyset$.

On the other hand, part ii) of Theorem 1.2 says that this is impossible. This contradiction completes the proof of Proposition 2.1 and of Theorem 2.1. \Box

If the space T has additional properties, then the fragmentability of $C_p(T)$ is implied by even weaker assumptions imposed on the strategy of player Ω . Let us denote by G''(X) a game in the topological space X which differs from G'(X) only by the winning rule: the player Ω is said to have won the play $\{(A_i, B_i, x_i)\}_{i\geq 1}$ if either the intersection $\cap_{i\geq 1}A_i = \cap_{i\geq 1}B_i$ is empty or, if not empty, there exists some subsequence of the sequence $\{x_i\}_{i\geq 1}$ which is bounded in X.

Theorem 2.2. Let T be strongly pseudocompact. Then each of the equivalent conditions (i)-(v) (from Theorem 2.1 and Proposition 2.1) is equivalent to the following statement:

(vi) The player Ω has a winning strategy ω'' in the game $G''(C_p(T))$, i.e. ω'' generates plays $\{(A_i, B_i, g_i)\}_{i\geq 1}$ such that either the intersection $\cap_{i\geq 1}A_i = \bigcap_{i\geq 1}B_i$ is empty or, otherwise, there exists some subsequence of the sequence $\{g_i\}_{i\geq 1}$ which is bounded in $C_p(T)$.

Proof. The proof is almost identical with the proof of the previous theorem. The only difference is that instead of Theorem 1.2 one uses Theorem 1.1. \Box

Acknowledgements. The second author was partially supported by Grant DFNI-102/10 of the National Fund for Scientific Research of the Bulgarian Ministry of Education and Science.

References

- M. O. Asanov, N. V. Veličko, Compact sets in C_p(X), Comment. Math. Univ.Carolinae, Vol.22 No.2, (1981), 255–266 (in Russian).
- [2] J. P. R. Christensen, Theorems of I.Namioka and R.E. Johnson type for upper semicontinuous and compact-valued set-valued mappings, Proc. Amer. Math. Soc. 86 (1982) 649–655.
- [3] M. M. Choban, P. S. Kenderov, W. B. Moors, Eberlein Theorem and Norm Continuity of Pointwise Continuous Mappings into Function Spaces, Topology and its Appl. 169 (2014) 108–119

- [4] W. F. Eberlein, Weak Compactness in Banach Spaces, Proc. Natl. Acad. Sci.US A., 33(3) (1947), 51–53.
- [5] R. Engelking, General Topology, PWN. Warszawa, 1977.
- [6] A. Grothendieck, Critères de Compacités dans les Espaces Fonctionnels Généraux, American Journal of Mathematics, 74(1) (1952), 168–186.
- [7] J. E. Jayne and C. A. Rogers, Borel selectors for upper semi-continuous set-valued maps, Acta Math. 155 (1985), 41–79.
- [8] J. E. Jayne, I. Namioka, C. A. Rogers, *Topological properties of Banach spaces*, Proc. London Math. Soc.(3) 66 (1993), 651–672.
- [9] J. E. Jayne, I. Namioka, C. A.Rogers, σ-Fragmentable Banach spaces I, Mathematika 39 (1992), 161–188.
- [10] J. E. Jayne, I. Namioka, C. A. Rogers, σ-Fragmentable Banach spaces II, Mathematika 39 (1992), 197-215.
- [11] J. E. Jayne, I. Namioka, C. A. Rogers, Fragmentability and σ-fragmentability, Fund. Math. 143 (1993), 207–220.
- [12] J. E. Jayne, I. Namioka, C. A. Rogers, Norm fragmented weak* compact sets, Collect. Math. 41 (1990), 133–163.
- [13] P. S. Kenderov, W. B. Moors, Fragmentability and sigma-fragmentability of Banach spaces, J.London Math. Soc., 60 (1999), 203–223.
- [14] P. S. Kenderov, W. B. Moors, Game characterization of fragmentability of topological spaces, Mathematics and Education in Mathematics, (1996), 8–18 (Proceedings of the 25-th Spring conference of the Union of Bulgarian Mathematicians, April 1996, Kazanlak, Bulgaria).
- [15] I. Namioka, Radon-Nikodym compact spaces and fragmentability, Mathematika 34 (1987), 258–281.
- [16] N. K. Ribarska, Internal characterization of fragmentable spaces, Mathematika 34 (1987), 243-257.
- [17] N. K. Ribarska, A note on fragmentability of some topological spaces, Compt. R. lâĂŹAcad. Bulgare des Sci. (7) 43 (1990), 13–15.
- [18] N. K. Ribarska, The dual of a Gateaux smooth Banach space is weak* fragmentable, Proc. Amer. Math. Soc. (4) 114 (1992), 1003–1008.
- [19] D. B. Shakhmatov, A pseudocompact Tychonoff space all countable subsets of which are closed and C^{*}-embedded, Topology and Appl. 22 (2) (1986), 139–144.

TIRASPOL STATE UNIVERSITY, DEPARTMENT OF MATHEMATICS, KISHINEV, REPUBLIC OF MOLDOVA, MD 2069 *E-mail address*: mmchoban@gmail.com

Bulgarian Academy of Sciences, Institute of Mathematics and Informatics, Acad. G. Bonchev-Street, Block 8, 1113, Sofia, Bulgaria *E-mail address:* kenderovp@cc.bas.bg

University of Auckland, Department of Mathematics, Private Bag 92019, Auckland, New Zealand *E-mail address*: moors@math.auckland.ac.nz