
Matematiqki Bilten ISSN 0351-336X (print)

41(LXVII) No. 2 ISSN 1857-9914 (online)

2017(5-21) UDC: 519.172.1:517.938

Skopje, Makedonija

ON THE ABSTRACT PROPERTIES OF MARKOV GRAPHS

FOR MAPS ON TREES

SERGIY KOZERENKO

Abstract. Having a dynamical system on the vertex set of a finite tree,

one can construct the corresponding Markov graph which is the digraph

that encodes covering relation between edges in a tree. Representatives of

isomorphism classes of Markov graphs are called M-graphs. In this paper

we prove that the class of M-graphs is closed under several prescribed

digraph transformations (such as deletion of a vertex in a digraph or taking

the disjoint union of digraphs, for example). We also give a complete list

of tournaments which are M-graphs as well as of M-graphs with three

vertices.

1. Introduction

A dynamical system is a pair (X, f), where X is some set and f : X → X

is a map from X to itself. Combinatorial dynamics mainly deals with the

structure of periodic points and their orbits. If X is a topological space

and f is a continuous map, then we obtain a topological dynamical system.

The most natural example of such a system is provided by the closed unit

interval X = [0, 1] and its continuous self-map f : [0, 1]→ [0, 1]. Sharkovsky’s

theorem [9] (which was proven in 1964) completely describes the coexistence

of periods of periodic points for continuous maps on the interval. In [2, 11]

(and also in many other papers) the authors presented a combinatorial proof

of Sharkovsky’s theorem which uses the so-called periodic graphs. Namely, if

x ∈ [0, 1] is a periodic point of period n ≥ 2 for the map f : [0, 1] → [0, 1],

then the restriction of f to the orbit σ = f |orb (x) is a cyclic permutation of

orb (x) (here orb (x) = {x, f(x), . . . , fn−1(x)}). Now let orb (x) = {x1 < x2 <

· · · < xn} be the natural ordering of orb (x). We can encode the dynamics

of minimal intervals [xi, xi+1], 1 ≤ i ≤ n − 1 by the dynamics of their ends

xi, xi+1. The corresponding periodic graph Γ is a digraph with the vertex set

{1, . . . , n− 1} (each 1 ≤ i ≤ n− 1 represents the minimal interval [xi, xi+1])

and there is an arc i → j if min{f(xi), f(xi+1)} ≤ xj < max{f(xi), f(xi+1)}
(i.e. if [xi, xi+1] f -covers [xj , xj+1]). It is easy to see that each directed cycle
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C in Γ corresponds to some periodic point of f and if C does not consists of

a smaller cycle traced several times, then the period of this point equals to

the length of C. Also, using this graph-theoretic approach one can prove an

analogue of Sharkovsky’s theorem for continuous maps on topological trees of

a general form (see [1]).

The first graph-theoretic results concerning periodic graphs were ob-

tained by Pavlenko [6, 7, 8]. In particular, in [6] the number of non-isomorphic

periodic graphs with a given number of vertices was counted. Criteria for an

arbitrary digraph to be a periodic graph or to be an induced subgraph of a

periodic graph were presented in [7] and [8], respectively.

In this paper we study graph-theoretical properties of Markov graphs

of self-maps on finite trees. These are the natural generalization of periodic

graphs.

2. Definitions and preliminary results

This paper deals with undirected graphs without loops or multiple edges

as well as with digraphs (which may have loops). All graphs and digraphs

assumed to be finite. Thus, a graph X is a pair (V,E), where V = V (X) is

a set of vertices and E = E(X) is a set of edges, which are just unordered

pairs of vertices. The edge between two vertices u and v in a graph X will

be denoted simply as uv ∈ E(X). The graph X1 is a subgraph of a graph X2

(denoted as X1 ⊂ X2) if V (X1) ⊂ V (X2) and E(X1) ⊂ E(X2). For each set

of vertices A ⊂ V (X) in a graph X put E(A) = {uv ∈ E(X) : u, v ∈ A}.
An induced subgraph X[A] is a graph with X[A] = (A,E(A)). Similarly,

for each set of edges E′ ⊂ E(X) in a graph X put V (E′) = {u ∈ V (X) :

u is incident to some edge e ∈ E′}. Thus, an induced subgraph X[E′] is

a graph with X[E′] = (V (E′), E′). Also, given the sets A ⊂ V (X) and

E′ ⊂ E(X) denote X −A = X[V (X)−A] and X −E′ = (V (X), E(X)−E′).
For every vertex u ∈ V (X) the set NX(u) = {v ∈ V (X) : uv ∈ E(X)} is

called its neighborhood. The number dX(u) = |NX(u)| is called the degree of

u. Also, put ∆(X) = max{dX(u) : u ∈ V (X)}. The vertex u is called isolated

provided dX(u) = 0. Similarly, the vertex u is a leaf if dX(u) = 1. The set

of all leaf vertices in a graph X is denoted by L(X). A leaf edge is an edge

incident to some leaf vertex. A non-leaf edge is called inner.

A graph is called connected if there is a path between each pair of ver-

tices. The vertex set V (X) of a connected graph X is equipped with the

“shortest paths” metric dX(u, v), u, v ∈ V (X). For every vertex u ∈ V (X)

in a connected graph X put eccX(u) = max{dX(u, v) : v ∈ V (X)} for its

eccentricity. Also, put radX = min{eccX(u) : u ∈ V (X)} and diamX =

max{eccX(u) : u ∈ V (X)} for the radius and the diameter of a connected

graph X.
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The metric interval between a pair of vertices u, v ∈ V (X) in a connected

graph X is the set [u, v]X = {x ∈ V (X) : dX(u, x) + dX(x, v) = dX(u, v)}.
A set of vertices A ⊂ V (X) is convex provided [u, v]X ⊂ A whenever u, v ∈
A. Also, for each edge uv ∈ E(X) in a connected graph X define the set

AX(u, v) = {x ∈ V (X) : dX(x, u) ≤ dX(x, v)}.
A tree is a connected acyclic graph. Paths Pn (i.e. n-vertex trees X with

|L(X)| ≤ 2) and stars K1,n (i.e. (n+ 1)-vertex trees X with |L(X)| = n) are

the most used examples of trees. Another class of trees that we will be using

throughout this paper consists of spiders, i.e. trees with at most one vertex of

degree at least three (thus, paths and stars are natural examples of spiders).

If such a vertex u exists, then we will call it as a center of a spider X and its

degree dX(u) as a degree of X. The paths P1, P2 and Pn for n ≥ 3 are spiders

of degree zero, one and two, respectively.

A directed graph, or just a digraph Γ is a pair (V,A), where V = V (Γ)

is the set of vertices and A = A(Γ) ⊂ V (Γ) × V (Γ) is the set of arcs. There

are some model digraphs. Namely, if V (Γ) = ∅, then Γ is called trivial. If

A(Γ) = ∅, then Γ is called empty and denoted by Kn (here n = |V (Γ)|). If

A(Γ) = V (Γ) × V (Γ), then Γ is called complete and denoted by Kn (here

again, n = |V (Γ)|).
For every digraph Γ by [Γ] we denote the undirected graph obtained from

Γ by “forgetting” the orientations of arcs. In other words, V ([Γ]) = V (Γ) and

uv ∈ E([Γ]) if u → v or v → u in Γ for all u, v ∈ V (Γ). If [Γ] is connected,

then Γ is called weakly connected.

If there is an arc (u, v) ∈ A(Γ), then we will write u → v in Γ. Also, if

there is no arc (u, v) /∈ A(Γ), we will write sometimes just u9 v in Γ. The arc

of the form u→ u is called a loop at u. Also, put N+
Γ (u) = {v ∈ V (Γ) : u→ v}

and N−Γ (u) = {v ∈ V (Γ) : v → u}. The cardinalities d+
Γ (u) = |N+

Γ (u)| and

d−Γ (u) = |N−Γ (u)| are called the outdegree and the indegree of u, respectively.

A directed cycle
−→
Cn with n ≥ 1 vertices is a digraph of the form u1 →

· · · → un → u1. For example,
−→
C1 = K1 is just a loop.

A tournament is an orientation of a complete graph. In other words, Γ is

a tournament if it does not contain cycles of length at most two and for each

pair of vertices u, v ∈ V (Γ) either u→ v or v → u in Γ.

Consider two digraphs Γ1 and Γ2. By Γ1 ∪ Γ2 we denote their union,

which is a digraph Γ with V (Γ) = V (Γ1)∪ V (Γ2) and A(Γ) = A(Γ1)∪A(Γ2).

Similarly, by Γ1 t Γ2 we denote their disjoint union, which is a digraph Γ

with V (Γ) = V (Γ1)tV (Γ2) and A(Γ) = A(Γ1)tA(Γ2). Further, by Γ1 → Γ2

we denote the digraph Γ with V (Γ) = V (Γ1) t V (Γ2) and A(Γ) = A(Γ1) t
A(Γ2) t {u → v : u ∈ V (Γ1), v ∈ V (Γ2)}. Finally, we define the symmetric

sum of Γ1 and Γ2 to be the digraph Γ1 + Γ2 = (Γ1 → Γ2) ∪ (Γ2 → Γ1).
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For every map of the form f : X → X one can consider its functional

graph which is a digraph with the vertex set X and there is an arc x → y

if f(x) = y. Thus, the representatives of isomorphism classes of functional

graphs are digraphs Γ with d+
Γ (u) = 1 for all vertices u ∈ V (Γ). Similarly, Γ

is called partial functional if d+
Γ (u) ≤ 1 for all vertices u ∈ V (Γ).

In this paper we consider maps on vertex sets of trees. Let X be a tree

and σ : V (X) → V (X) be some map. The Markov graph Γ = Γ(X,σ) is

a digraph with the vertex set V (Γ) = E(X) and there is an arc e1 → e2

if u2, v2 ∈ [σ(u1), σ(v1)]X , where ei = uivi, i = 1, 2. Thus, periodic graphs

are Markov graphs Γ(X,σ) for paths X and their cyclic permutations σ.

Representatives of isomorphism classes of Markov graphs are called M-graphs.

In other words, Γ is an M-graph if there exists a tree X and its vertex map

σ : V (X)→ V (X) such that Γ ' Γ(X,σ). For an M-graph Γ each such a pair

(X,σ) will be called a realization of Γ. Also, in this case we will say that Γ is

realizable on X.

Example 1. Let X be a tree with the vertex set V (X) = {1, . . . , 5} and

the edge set E(X) = {12, 23, 34, 25}. Consider the cyclic permutation σ =

(13524) of V (X). Then the Markov graph Γ(X,σ) is shown on Figure 1.

23 34 12

25

Figure 1. Markov graph Γ(X,σ) for the pair (X,σ) from

Example 1.

We now state some basic properties of Markov graphs and maps on trees

that we will use throughout this paper. Denote by k(X) the number of

connected components (i.e. maximal connected subgraphs) in X.

Proposition 1. [4] Let X be a tree, σ : V (X) → V (X) be some map and

Γ = Γ(X,σ). For each edge e = uv ∈ E(X) we have:

(1) d+
Γ (e) = dX(σ(u), σ(v)) ≤ diamX;

(2) d−Γ (e) = k(X[σ−1(AX(u, v))]) + k(X[σ−1(AX(v, u))])− 1.

Now let X be a tree and X ′ ⊂ X be its subtree. It is easy to observe that

for every vertex u ∈ V (X) there exists a unique vertex v ∈ V (X ′) such that

dX(u, v) = min{dX(u, x) : x ∈ V (X ′)} (in other words, the vertex set of each

subtree is a Chebyshev set in the metric space (V (X), dX)). Therefore, one can
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define a projection map pr X′ : V (X)→ V (X) putting pr X′(u) = v for every

u ∈ V (X). It is easy to see that pr −1
e (u) = AX(u, v) and pr −1

e (v) = AX(v, u)

for all edges e = uv ∈ E(X).

Lemma 1. [3] Let X be a tree, σ : V (X)→ V (X) and X ′ ⊂ X be a subtree.

Then Γ[E(X ′)] = Γ(X ′, pr X′ ◦ σ|V (X′)).

For every tree X and a map σ : V (X) → V (X) one can construct the

edge labeling τσ : E(X) → V (X) ∪ {1,−1} in the following way. For each

e = uv ∈ E(X) we put τσ(e) = v if σ(u), σ(v) ∈ AX(v, u), τσ(e) = 1 if

σ(u) ∈ AX(u, v) and σ(v) ∈ AX(v, u), τσ(e) = −1 if σ(u) ∈ AX(v, u) and

σ(v) ∈ AX(u, v). Thus, if τσ(e) = v, then the edge e = uv gets an orientation

u → v. Otherwise, the edge e is σ-positive or σ-negative depending on the

sign of τσ(e). The obtained mixed tree is a pair (X, τσ) which is denoted

simply as X(τσ).

Example 2. Consider the pair (X,σ) from Example 1. Then the mixed tree

X(τσ) is shown on Figure 2 (the unique σ-negative edge is denoted by −).

1 2 3 4

5

−

Figure 2. Mixed tree X(τσ) for the pair (X,σ) from Example 1.

Denote by p(X,σ) and n(X,σ) the number of σ-positive and σ-negative

edges in X, respectively. If p(X,σ) = n(X,σ) = 0, then the map σ is called

anti-expansive. The map τ : E(X) → V (X) is called an orientation of X if

τ(e) is incident to e for all edges e ∈ E(X).

Proposition 2. [5] Let X be a tree and τ : E(X)→ V (X) be an orientation

of edges in X. There exists an anti-expansive map σ : V (X) → V (X) with

τ = τσ if and only if there exists a vertex u0 ∈ V (X) such that for every edge

e = uv ∈ E(X) from the equality τ(e) = v it follows that v ∈ [u0, u]X .

3. Transformations of M-graphs

At first, observe that the empty digraph is an M-graph, since for every

n ≥ 1 and every tree X with n + 1 vertices each constant map σ : V (X) →
V (X) has an empty Markov graph Γ(X,σ) ' Kn. Further, let X be a path

with n+ 1 vertices. For each of the two possible proper colorings σ of V (X)
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by the leaf vertices L(X) the corresponding Markov graph Γ(X,σ) ' Kn is

a complete digraph. Therefore, every digraph is a subgraph of an M-graph.

Moreover, as Pavlenko showed in [8] for any n ≥ 1 there exists m ≥ 2n − 1

and m-vertex periodic digraph which contain Kn as a subgraph.

A digraph which is obtained from the complete digraph by the deletion of

all loops will be called quasi-complete. Trivially, quasi-complete digraphs with

at most two vertices are M-graphs. Meanwhile, the quasi-complete digraph

with three vertices is not an M-graph, although it is an induced subgraph of

an M-graph.

Example 3. Consider the tree X from Example 1. Also, let σ =

(
1 2 3 4 5

5 4 1 5 1

)
.

Then the edges 12, 25, 34 induce a quasi-complete digraph in Γ(X,σ).

Proposition 3. Each quasi-complete digraph with at least four vertices is not

an induced subgraph of an M-graph.

Proof. Consider a tree X, a map σ : V (X) → V (X) and suppose that the

Markov graph Γ = Γ(X,σ) contains an edge e ∈ E(X) with d+
Γ (e) ≥ 3. Let

e1, e2, e3 ∈ N+
Γ (e) be a triplet of distinct edges. Since all edges ei, 1 ≤ i ≤ 3 lie

on a common path in X, without loss of generality, we can assume that e2 and

e3 lie in different connected components of X−{e1}. Now, if e2, e3 ∈ N+
Γ (e1),

then e1 ∈ N+
Γ (e1). But this means that e1 has a loop in Γ. �

From Lemma 1 it strictly follows that each non-empty M-graph Γ has a

vertex v ∈ V (Γ) such that Γ−{v} is also an M-graph (the vertex v corresponds

to a leaf edge in a fixed realization (X,σ) of Γ). However, it is not true that

for every vertex v ∈ V (Γ) in an M-graph Γ the digraph Γ − {v} is also an

M-graph. Consider the pair (X,σ) from Example 3. Then Γ(X,σ)− {23} is

not an M-graph as it’s the quasi-complete digraph with three vertices.

Proposition 4. Let Γ be an M-graph and v ∈ V (Γ) be its vertex with zero

outdegree. Then Γ− {v} is also an M-graph.

Proof. Fix an isomorphism Γ ' Γ(X,σ). Let the edge u1u2 ∈ E(X) corre-

sponds to the vertex v. Clearly, σ(u1) = σ(u2). Contracting the edge u1u2

to a vertex, we obtain a new tree X ′ with V (X ′) = (V (X)− {u1, u2}) ∪ {u′}
(we assume that u′ /∈ V (X)) and E(X ′) = E(X − {u1, u2}) ∪ {u′u : u ∈
NX(u1) ∪NX(u2)}. Put

σ′(x) =


σ(x), if x 6= u′ and σ(x) /∈ {u1, u2},
σ(u1), if x = u′ and σ(u1) /∈ {u1, u2},
u′, otherwise

for all x ∈ V (X ′). Then Γ− {v} ' Γ(X ′, σ′). �
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Corollary 1. A digraph obtained from an M-graph by the deletion of an

isolated vertex is also an M-graph.

Consider now two Markov graphs Γ1 = Γ(X1, σ1) and Γ2 = Γ(X2, σ2).

Construct a new tree X by adding the new edge between two fixed vertices:

one from X1 and the other one from X2. Putting σ|V (X1) = σ1 and σ|V (X2) =

σ2 we obtain a Markov graph Γ = Γ(X,σ). This means that for any pair of

M-graphs Γ1 and Γ2 there exists an M-graph Γ and its vertex v ∈ V (Γ) such

that Γ− {v} ' Γ1 t Γ2. In particular, the disjoint union of two M-graphs is

always an induced subgraph of an M-graph.

Recall that for a tree X and a map σ : V (X) → V (X) the symbols

p(X,σ) and n(X,σ) denote the number of σ-positive and σ-negative edges in

X(τσ), respectively. Also, let fix σ denotes the set of all fixed points of σ.

In [5] the following result was proved.

Theorem 1. [5] For every tree X and a map σ : V (X)→ V (X) we have

n(X,σ) + |fix σ| = p(X,σ) + 1.

As a corollary of Theorem 1, one can present a sufficient condition for

the disjoint union of M-graphs to be an M-graph itself.

Proposition 5. Let Γ1 and Γ2 be two M-graphs with even numbers of loops

in each. Then Γ1 t Γ2 is an M-graph.

Proof. Fix isomorphisms Γi ' Γ(Xi, σi), i = 1, 2. From the definition it

follows that the number of loops in Γi, i = 1, 2 equals n(Xi, σi) + p(Xi, σi).

Since this number is even, Theorem 1 asserts that σ1 and σ2 both have fixed

points. Fix two of them u1 ∈ fix σ1 and u2 ∈ fix σ2. Consider the tree X ′

which is obtained by gluing X1 and X2 by the two vertices u1 and u2. In

other words, let V (X ′) = (V (X1)−{u1})∪ (V (X2)−{u2})∪{u′} (we assume

that V (X1) ∩ V (X2) = ∅ and u′ /∈ (V (X1) − {u1}) ∪ (V (X2) − {u2})) and

E(X ′) = E(X1 − {u1}) ∪ E(X2 − {u2}) ∪ {u′u : u ∈ NX1(u1) ∪ NX2(u2)}.
Define the map σ′ : V (X ′)→ V (X ′) in the following way:

σ′(x) =


σ1(x), if x ∈ V (X1)− {u1} and σ1(x) 6= u1,

σ2(x), if x ∈ V (X2)− {u2} and σ2(x) 6= u2,

u′, otherwise

for all x ∈ V (X ′). Then Γ1 t Γ2 ' Γ(X ′, σ′). �

Corollary 2. If Γ1 and Γ2 are two M-graphs without loops, then Γ1 t Γ2 is

also an M-graph.

Similarly, each digraph obtained from an M-graph by adding an isolated

vertex is also an M-graph. To see this take an M-graph Γ ' Γ(X,σ) and fix

a leaf vertex u ∈ L(X) in X. Then add a new vertex u′ to X with the new
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edge uu′ obtaining a tree X ′. Putting σ′ : V (X ′)→ V (X ′), σ′(u′) = σ(u) and

σ′(x) = σ(x) for all x ∈ V (X) we obtain Γ tK1 ' Γ(X ′, σ′).

Remark 1. If Γ1 and Γ2 are two M-graphs such that there exist their real-

izations (Xi, σi), i = 1, 2 with fix σi 6= ∅, then Γ1 t Γ2 is an M-graph. For

example, the disjoint union of an M-graph with an even number of loops with

a single loop
−→
C 1 is also an M-graph. However, not every disjoint union of

M-graphs is an M-graph. Consider Γ as a digraph which is obtained from the

complete digraph with two vertices by the deletion of one loop. Then Γ is an

M-graph, but Γ t
−→
C 1 is not.

Now we introduce two local transformations of digraphs which are called

doubling and reverse doubling of a vertex and then prove that the class of

M-graphs is closed under these operations.

Consider some digraph Γ and its vertex v ∈ V (Γ). Add a new vertex x

to Γ with new arcs x→ u for all vertices u ∈ N+
Γ (v) to obtain a new digraph

Γ′. We will say that Γ′ is obtained from Γ by the doubling of the vertex v.

Similarly, add a new vertex y to Γ with new arcs u→ y for all u ∈ N−Γ (v)

therefore obtaining a new digraph Γ′. In this case, we will say that Γ′ is

obtained from Γ by the reverse doubling of v.

Theorem 2. Let Γ be an M-graph and let the digraph Γ′ is obtained from Γ by

the doubling or the reverse doubling of some vertex. Then Γ′ is an M-graph.

Proof. Fix an isomorphism Γ ' Γ(X,σ). Suppose Γ′ is obtained from Γ by

the doubling of the vertex v ∈ V (Γ) and let u1u2 ∈ E(X) be the edge which

corresponds to v. Add new leaf vertex u to X with the new edge uu1 to

obtain a new tree X ′ with V (X ′) = V (X)∪ {u} and E(X ′) = E(X)∪ {uu1}.
Define σ′ : V (X ′)→ V (X ′) in the following way:

σ′(x) =

{
σ(x), if x 6= u,

σ(u2), if x = u

for all x ∈ V (X ′). It is easy to see that Γ′ ' Γ(X ′, σ′).

Now let Γ′ is obtained from Γ by the reverse doubling of the vertex

v ∈ V (Γ) and again let u1u2 ∈ E(X) be an edge corresponding to v. Subdivide

the edge u1u2 by the new vertex u to obtain a new tree X ′. In other words,

let V (X ′) = V (X)∪ {u} and E(X ′) = (E(X)− {u1u2})∪ {uu1, uu2}. Define

a map σ′ : V (X ′)→ V (X ′) in the following way:

σ′(x) =

{
σ(x), if x 6= u,

σ(u1), if x = u

for all x ∈ V (X ′). Again, we have Γ′ ' Γ(X ′, σ′). �
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A map σ : V (X1)→ V (X2) between vertex sets of two connected graphs

X1 and X2 is called metric if dX2(σ(u), σ(v)) ≤ dX1(u, v) for all pairs of ver-

tices u, v ∈ V (X1). It is easy to see that a map σ is metric if and only if

dX2(σ(u), σ(v)) ≤ 1 for all edges uv ∈ E(X1). Combining this with Proposi-

tion 1, we can conclude that for a given tree X the map σ : V (X)→ V (X) is

metric if and only if the Markov graph Γ(X,σ) is partial functional.

Proposition 6. Let Γ be a partial functional digraph. Then Γ is an M-graph.

Proof. Let Γ be a partial functional digraph with the vertex set V (Γ) =

{v1, . . . , vn}. Consider the star with n+ 1 vertices X ' K1,n, where V (X) =

{0, . . . , n}, E(X) = {0i : 0 ≤ i ≤ n} and the map σ : V (X)→ V (X) defined

as follows

σ(i) =

{
j, if N+

Γ (vi) = {vj},
0, if i = 0 or N+

Γ (vi) = ∅
for all 0 ≤ i ≤ n. Then Γ ' Γ(X,σ). �

In particular, from Proposition 6 it follows that each disjoint union of

cycles is an M-graph. In [4] it was proved that the Markov graph Γ(X,σ) is

a disjoint union of cycles if and only if σ is an automorphism of X.

Denote by LE (X) the set of leaf edges in a tree X. Note that the proof of

Proposition 6 implies that for every partial functional digraph Γ there exists

a pair (X,σ) such that Γ ' Γ(X,σ)[LE (X)] (here Γ(X,σ)[LE (X)] denotes

the subgraph of Γ(X,σ) induced by LE (X)). We can generalize this result

in the following way.

Proposition 7. For a digraph Γ there exists a pair (X,σ) such that Γ '
Γ(X,σ)[LE (X)] if and only if d+

Γ (v) ≤ 2 for all v ∈ V (Γ).

Proof. Clearly, for all treesX and their vertex maps σ the inequality d+
Γ(X,σ)(e) ≥

3 implies the existence of an inner edge e′ ∈ N+
Γ(X,σ)(e). Thus, let Γ be a di-

graph with d+
Γ (v) ≤ 2 for all v ∈ V (Γ) and the vertex set V (Γ) = {v1, . . . , vn}.

Consider the graph X with V (X) = {1, . . . , n}∪{1′, . . . , n′} and E(X) = {ii′ :
1 ≤ i ≤ n} ∪ {i′j′ : j = i+ 1, 1 ≤ i ≤ n− 1}. It is easy to see that X is a tree

with LE(X) = {ii′ : 1 ≤ i ≤ n}. Put

σ(i) =

{
i, if N+

Γ (vi) = ∅,
max{k : vk ∈ N+

Γ (vi)}, otherwise

and

σ(i′) =


i, if N+

Γ (vi) = ∅,
j′, if N+

Γ (vi) = {vj},
min{k : vk ∈ N+

Γ (vi)}, if d+
Γ (vi) ≥ 2

for every 1 ≤ i ≤ n. Then Γ ' Γ(X,σ)[LE (X)]. �
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Proposition 8. Let Γ be a partial functional digraph. Then Γ → Km and

Γ→ Km are M-graphs for every m ≥ 1.

Proof. Let Γ be partial functional digraph with the vertex set V (Γ) = {v1, . . . , vn}.
Consider the tree X with V (X) = {0, . . . , n}∪ {1′, . . . ,m′} and E(X) = {0i :

1 ≤ i ≤ n} ∪ {01′} ∪ {i′j′ : j = i+ 1, 1 ≤ i ≤ m− 1}. Put

σ1(i) =

{
j, if N+

Γ (vi) = {vj},
m′, if i = 0 or N+

Γ (vi) = ∅

for all 0 ≤ i ≤ n and

σ1(k′) =

{
m′, if k is even,

0, if k is odd

for all 1 ≤ k ≤ m. Similarly, put

σ2(i) =

{
j, if N+

Γ (vi) = {vj},
m′, if i = 0 or N+

Γ (vi) = ∅

for every 0 ≤ i ≤ n and σ2(k′) = m′ for 1 ≤ k ≤ m. We have Γ → Km '
Γ(X,σ1) and Γ→ Km ' Γ(X,σ2). �

Corollary 3. For all n,m ≥ 1 the digraphs Kn → Km and Kn → Km are

M-graphs.

Proposition 9. For all n,m ≥ 1 the digraphs Kn → Km and Kn → Km are

M-graphs.

Proof. Consider the pathX ' PN , N = n+m+1 with V (X) = {1, . . . , N} and

E(X) = {ij : j = i + 1, 1 ≤ i, j ≤ N}. Construct a map σ1 : V (X) → V (X)

in the following way:

σ1(i) =


N, if n+ 1− i is even,

1, if 1 ≤ i ≤ n+ 1 and n+ 1− i is odd,

n+ 1, otherwise

for all 1 ≤ i ≤ N . Similarly, put

σ2(i) =

{
N, if n+ 2 ≤ i ≤ N , or 1 ≤ i ≤ n+ 1 and n+ 1− i is even,

1, otherwise

for all 1 ≤ i ≤ N . Then Kn → Km ' Γ(X,σ1) and Kn → Km ' Γ(X,σ2).

�

It is obvious that a complete digraph Kn, n ≥ 1 is realizable only on a

path Pn+1. Similarly, in [4] it was proved that for n,m ≥ 1 the complete

bipartite digraph Kn + Km is realizable only on Pn+m+1. Finally, for n ≥ 1

the cycle
−→
C n is realizable only on K1,n (again, see [4] for details).
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Theorem 3. Let Γ1 and Γ2 be two nontrivial digraphs such that their sym-

metric sum Γ = Γ1 + Γ2 is an M-graph. Then Γ is realizable only on a spider

of degree at most three.

Proof. Fix an isomorphism Γ ' Γ(X,σ). Let the edge sets E1, E2 ⊂ E(X)

correspond to Γ1 and Γ2, respectively. Obviously, E(X) = E1 t E2.

At first, suppose that there exists a vertex u ∈ V (X) with dX(u) ≥ 4.

Choose four distinct vertices u1, u2, u3, u4 ∈ NX(u). Without loss of general-

ity, we can assume that uu1, uu2 ∈ E1 and uu3, uu4 ∈ E2. It is easy to see that

in this case σ(u) 6= u. Again, without loss of generality, let σ(u) ∈ AX(u1, u).

Then the edge uu1 cannot σ-cover simultaneously uu3 and uu4 which leads

to the contradiction.

Further, suppose that there exist two vertices u, v ∈ V (X) with dX(u) =

dX(v) = 3. Choose two distinct vertices u1, u2 ∈ NX(u)− [u, v]X and another

two distinct vertices v1, v2 ∈ NX(v) − [u, v]X . Since u 6= v, the interval

[u, v]X contains at least one edge. Fix such an edge e ∈ E([u, v]X). Without

loss of generality, assume that uu1, vv1, e ∈ E1 and uu2, vv2 ∈ E2. Suppose

that σ(u) ∈ AX(u2, u) and σ(u1) ∈ AX(v2, v). Then uu2 cannot σ-cover

simultaneously uu1 and vv1. If σ(u) ∈ AX(v2, v) and σ(u1) ∈ AX(u2, u), then

we obtain a similar contradiction. Therefore, X is a spider of degree at most

three. �

Furthermore, let X ' Pn, n ≥ 3 be a path with V (X) = {1, . . . , n} and

E(X) = {ij : j = i+ 1, 1 ≤ i, j ≤ n}. Consider the map

σ(i) =


n, if i = 1,

2, if 1 ≤ i ≤ n is even,

1, if 3 ≤ i ≤ n is odd

for 1 ≤ i ≤ n. Then Γ(X,σ) ' K1 + Kn−2 is the sum of two nontrivial

digraphs.

Now suppose that X is a spider of degree three. Let u ∈ V (X) be the

center of X and L(X) = {v1, v2, v3}. Therefore, V (X) = [u, v1]X ∪ [u, v2]X ∪
[u, v3]X . Also, let xij be the unique vertex from [u, vi]X with dX(u, xij) = j

for 1 ≤ i ≤ 3 and 1 ≤ j ≤ dX(u, vi) (for example, xidX(u,vi) = vi for all

1 ≤ i ≤ 3). Put

σ(i) =


v1, if x = xij , 2 ≤ j ≤ 3 and 1 ≤ j ≤ dX(u, vi) is odd,

v2, if x = u, or x = xij , 1 ≤ i ≤ 3 and 1 ≤ j ≤ dX(u, vi) is even,

v3, if x = x1j and 1 ≤ j ≤ dX(u, v1) is odd

for all x ∈ V (X). Then Γ(X,σ) ' KdX(u,v1) + (KdX(u,v3) → KdX(u,v2)) is

the sum of two nontrivial digraphs again. Therefore, Theorem 3 provides a

criterion for spiders of degree at most three.
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4. Tournaments as M-graphs

In this section we present a complete list of tournaments which are M-

graphs (the so-called tM-graphs). Namely, consider the digraphs depicted on

Figure 3.

T1 T2

T3 T4

T5 T6 T7

T8 T9 T10

T11

Figure 3. Eleven tM-graphs.

It is easy to see (for example, by checking indegree sequences) that all

digraphs Ti, 1 ≤ i ≤ 11 are pairwise non-isomorphic tournaments.

Lemma 2. The tournaments Ti, 1 ≤ i ≤ 11 are M-graphs.
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Proof. Consider the next trees Xi and their maps σi : V (Xi) → V (Xi) for

1 ≤ i ≤ 11:

V (X1) = {1, 2}, E(X1) = {12}, σ1 =

(
1 2

1 1

)
.

V (X2) = {1, 2, 3}, E(X2) = {12, 23}, σ2 =

(
1 2 3

3 2 2

)
.

V (X3) = {1, 2, 3, 4}, E(X3) = {12, 23, 34}, σ3 =

(
1 2 3 4

2 4 3 3

)
.

V (X4) = {1, 2, 3, 4}, E(X4) = {12, 13, 14}, σ4 =

(
1 2 3 4

1 3 4 2

)
.

V (X5) = {1, . . . , 5}, E(X5) = {12, 13, 14, 15}, σ5 =

(
1 2 3 4 5

2 2 4 5 3

)
.

V (X6) = {1, . . . , 5}, E(X6) = {12, 23, 24, 45}, σ6 =

(
1 2 3 4 5

3 2 5 1 4

)
.

V (X7) = {1, . . . , 5}, E(X7) = {12, 23, 34, 45}, σ7 =

(
1 2 3 4 5

2 5 3 3 4

)
.

V (X8) = {1, . . . , 6}, E(X8) = {12, 23, 34, 45, 46}, σ8 =

(
1 2 3 4 5 6

2 3 3 1 6 4

)
.

V (X9) = {1, . . . , 6}, E(X9) = {12, 23, 25, 26, 34}, σ9 =

(
1 2 3 4 5 6

5 4 3 3 6 1

)
.

V (X10) = {1, . . . , 6}, E(X10) = {12, 23, 34, 36, 45}, σ10 =

(
1 2 3 4 5 6

2 5 3 6 4 1

)
.

V (X11) = {1, . . . , 7}, E(X11) = {12, 23, 26, 27, 34, 45}, σ11 =

(
1 2 3 4 5 6 7

6 5 3 3 4 7 1

)
.

Direct computations show that Ti ' Γ(Xi, σi) for all 1 ≤ i ≤ 11. �

Thus, we want to prove that there is no other tM-graphs except of Ti,

1 ≤ i ≤ 11.

Lemma 3. Let X be a tree, σ : V (X)→ V (X) be some map and Γ = Γ(X,σ)

be a tournament. Then diamX ≤ 4.

Proof. Since Γ does not have vertices with loops, σ is an anti-expansive map.

Therefore, from Proposition 2 it follows that there exists u0 ∈ V (X) such

that u→ v in X(τσ) implies v ∈ [u0, u]X .

Suppose that eccX(u0) ≥ 3. Choose three distinct vertices u1, u2, u3 ∈
V (X) such that [u0, u3]X = {u0 − u1 − u2 − u3}. Since u0u1 9 u1u2 in Γ, we

have u1u2 → u0u1 in Γ. Therefore, σ(u2) ∈ AX(u1, u0). Similarly, u0u1 9
u2u3 in Γ means that u2u3 → u0u1 in Γ and thus σ(u3) ∈ AX(u0, u1). Now it

is easy to see that u1u2 9 u2u3 and u2u3 9 u1u2 in Γ. But this is impossible

since Γ is a tournament. Thus, diamX ≤ 2 · radX ≤ 2 · eccX(u0) ≤ 4. �

Corollary 4. Let X be a tree with n ≥ 1 vertices, σ : V (X)→ V (X) be some

map and Γ = Γ(X,σ) be a tournament. Then n ≤ 10.
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Proof. Since Γ is a tournament, |A(Γ)| =
∑

e∈E(X) d
+
Γ (e) = (n−1)(n−2)

2 . This

means that there exists an edge e ∈ E(X) such that

d+
Γ (e) ≥ (n− 1)(n− 2)

2
· 1

n− 1
=
n− 2

2
.

Combining this with Proposition 1 and Lemma 3, we obtain

n− 2

2
≤ d+

Γ (e) ≤ diamX ≤ 4

which yields n ≤ 10. �

Thus, in order to find all tM-graphs, one must check all Markov graphs

Γ(X,σ) for (finite number) of trees X with diamX ≤ 4 and |V (X)| ≤ 10.

Of course, this can be done by direct “brute-force” computations. However,

one can simplify the task by considering forbidden mixed subtrees for X(τσ).

Namely, if Γ is a nontrivial tM-graph, then there exists a vertex v ∈ V (Γ)

such that Γ− {v} is also a tM-graph.

Now we sketch the strategy of such direct computations. Checking pairs

(X,σ) for trees X with |V (X)| ≤ 3 it is easy to observe that the only tM-

graphs with at most two vertices are T1 and T2. From Lemma 3 and Proposi-

tion 2 it follows that the directed path with four vertices Γ1 = {• → • → • →
•} is the forbidden subtree for each X(τσ) for all pairs (X,σ) with Γ(X,σ)

being a tournament. Another admissible (in the sense of Proposition 2) ori-

ented trees with four vertices are realizable as mixed trees X(τσ) for pairs

(X,σ) with Γ(X,σ) being a tournament for some proper maps σ. Therefore,

we must consider pairs (X,σ) for trees X with |V (X)| = 5. Figure 4 depicts

the five possibilities for X(τσ).

It is easy to observe that Γ2 is another forbidden subtree, while the other

four oriented trees produce Markov graphs isomorphic to T5, T6 and T7 (for

suitable maps). Also, observe that since Γ2 is a forbidden subtree, for every

tournament Γ(X,σ), where |V (X)| ≥ 6 it holds ∆(X) ≤ 4. Thus, we obtain

the next four possibilities for X(τσ) for pairs (X,σ) with Γ(X,σ) being a

tournament, where |V (X)| = 6 (see Figure 5).

Again, some computations involving enumeration of all maps σ show that

Γ3 is a forbidden subtree and the other three oriented trees produce Markov

graphs isomorphic to T8, T9 and T10. Further, having in mind the forbidden

subtrees Γ1,Γ2 and Γ3 consider the next two possibilities for X(τσ) for pairs

(X,σ) with Γ(X,σ) being a tournament, where |V (X)| = 7 (see Figure 6).

One can show that Γ4 is another forbidden subtree, while the other

tree produces a Markov graph isomorphic to T11. Finally, for trees X with

|V (X)| ≥ 8 and their anti-expansive maps σ each mixed tree X(τσ) contains

a subtree isomorphic to either Γ1,Γ2,Γ3 or Γ4. Thus, we have the following

result.
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Γ2

Figure 4. Mixed trees X(τσ) for X with |V (X)| = 5 and

anti-expansive maps σ, which do not contain Γ1 as a subtree.

Γ3

Figure 5. Mixed treesX(τσ) forX with |V (X)| = 6 and anti-

expansive maps σ, which do not contain Γ1,Γ2 as subtrees.

Γ4

Figure 6. Mixed treesX(τσ) forX with |V (X)| = 7 and anti-

expansive maps σ, which do not contain Γ1,Γ2,Γ3 as subtrees.

Theorem 4. Let Γ be a nontrivial M-graph. Then Γ is a tournament if and

only if Γ ' Ti for some 1 ≤ i ≤ 11.
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5. M-graphs with three vertices

It is easy to see that each digraph with at most two vertices is an M-graph.

In this section we provide a complete list of 3-vertex M-graphs. Recall that

there is only two non-isomorphic 4-vertex trees: P4 and K1,3. Checking all

possible maps on these two trees, we can conclude that there exist exactly 86

pairwise non-isomorphic 3-vertex M-graphs. Note that the number of pairwise

non-isomorphic digraphs with three vertices equals 104 (see [10]). Therefore,

there is 18 pairwise non-isomorphic 3-vertex digraphs which are not M-graphs

(see Figure 7).

Figure 7. Complete list of 3-vertex digraphs which are not

M-graphs.
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