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VECTOR-VALUED ALMOST PERIODIC

ULTRADISTRIBUTIONS AND THEIR

GENERALIZATIONS

MARKO KOSTIĆ

Abstract. In this paper, we introduce the notion of a vector-valued
almost periodic ultradistribution and investigate some generalizations
of this concept. Albeit contains some original contributions, the pa-
per is primarily intended to review and slightly generalize some known
results concerning scalar-valued almost periodic ultradistributions and
their generalizations. We contemplate the work of many authors, and
transfer several known results on vector-valued almost periodic distri-
butions to vector-valued almost periodic ultradistributions of Beurling
and of Roumieu type.

1. Introduction and Preliminaries

The concept of almost periodicity was introduced by Danish mathemati-
cian H. Bohr around 1924-1926 and later generalized by many other authors
(cf. [1]-[2], [12], [18] and [23] for more details on the subject). Let I = R or
I = [0,∞), let (X, ‖ · ‖) be a complex Banach space, and let f : I → X be
continuous. Given ε > 0, we say that a number τ > 0 is an ε-period for f(·)
iff ‖f(t+ τ)− f(t)‖ ≤ ε, t ∈ I. The set consisting of all ε-periods for f(·) is
denoted by ϑ(f, ε). It is said that f(·) is almost periodic iff, for every ε > 0,
the set ϑ(f, ε) is relatively dense in I, which means that there exists l > 0
such that any subinterval of I of length l meets ϑ(f, ε). By AP (I : X), we
denote the vector space consisting of all almost periodic functions; we use
the shorthand Cb(I : X) for the space consisting of all bounded continuous
functions I 7→ X.

The notion of an almost periodic function has been reconsidered from
the point of view of generalized function spaces theory. The notions of
bounded and almost periodic distributions have been introduced already
in the pioneering papers by L. Schwartz (see e.g. [28]), who analyzed only
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scalar-valued case. The bounded and almost periodic distributions with
values in general Banach spaces have been investigated for the first time
by I. Cioranescu in [10]: Let DL1 denote the vector space consisting of all
infinitely differentiable functions f : R → C satisfying that for each number
j ∈ N0 we have f (j) ∈ L1(R). The Fréchet topology on DL1 is induced by
the following system of seminorms

‖f‖k :=

k∑

j=0

∥∥f (j)
∥∥

L1(R)
, f ∈ DL1

(
k ∈ N

)
.

A continuous linear mapping f : DL1 → X is said to be the bounded
X-valued distribution. The space of such distributions is usually denoted
by B′(X); equipped with the strong topology, B′(X) becomes a complete
locally convex space. Our first observation is given as follows: If f : DL1 →
X is a bounded X-valued distribution, then there exist c > 0 and k ∈ N

such that

‖f(ϕ)‖ ≤ c
k∑

j=0

∫∞
−∞ |ϕ(j)(x)|dx= c

k∑
j=0

∫∞
−∞

1
x2+1

[(x2 + 1)|ϕ(j)(x)|]dx ≤

≤ c
∫∞
−∞

dx
x2+1

·
k∑

j=0

∥∥(·2 + 1)ϕ(j)(·)
∥∥
∞
, ϕ ∈ S,

so that f|S : S → X is a tempered X-valued distribution (here and
hereafter, the space of rapidly decreasing functions S carries the usual
Fréchet topology; the symbol D denotes the Schwartz space of test functions
and D′(X) denotes the space of all continuous linear mappings D → X,
equipped with the strong topology). Following L. Schwartz [28] and I.
Cioranescu [10], we say that a bounded X-valued distribution f ∈ B′(X)
is almost periodic iff there exists a sequence of X-valued trigonometric
polynomials converging to f(·) inB′(X). If B′

ap(X) denotes the vector space
consisting of all almost periodic X-valued distributions, then AP (R : X)
is dense in B′

ap(X) by definition. Furthermore, it is well known that an

element f ∈ D′(X) belongs to B′(X), resp., B′
ap(X) iff there is an integer

k ∈ N0 such that f =
∑k

j=0 f
(j)
j , where fj ∈ Cb(R : X), resp., fj ∈ AP (R :

X), for 0 ≤ j ≤ k iff for any ϕ ∈ D, we have f ∗ ϕ ∈ Cb(R : X), resp.,
f ∗ ϕ ∈ AP (R : X) iff the set of all translations of f(·), defined as usually,
is bounded in D′(X), resp., relatively compact in B′(X). The spaces of
vector-valued almost periodic distributions are systematically analyzed in
a series of research papers by B. Basit and H. Güenzler (see e.g. [3]-[4]).
Here we would like to mention that they have proved [4] that any regular
vector-valued distribution ϕ 7→

∫∞
−∞ f(t)ϕ(t) dt, ϕ ∈ D, where f : R → X

is a Stepanov p-almost periodic function for some p ∈ [1,∞), is almost
periodic, as well as that, for every p ∈ [1,∞), there exists a scalar-valued
infinitely differentiable Weyl p-almost periodic function f(·) such that the



VECTOR-VALUED ALMOST PERIODIC ULTRADISTRIBUTIONS AND... 7

regular distribution given by the above formula is not almost periodic (cf.
[23] for the notion).

Within the Komatsu theory of ultradistributions, the notion of a scalar-
valued almost periodic ultradistribution has been introduced by I. Cio-
ranescu [11]. In her approach, the corresponding sequence (Mp) always
satisfies the conditions (M.1), (M.2) and (M.3). The results from [11] have
been reconsidered and slightly generalized by M. C. Gómez-Collado [16]
and C. Fernández, A. Galbis, M. C. Gómez-Collado [17], within the theory
of ω-ultradistributions (cf. R. W. Braun, R. Meise, B. A. Taylor [8]). In
this paper, we basically follow Komatsu’s approach, with the sequence (Mp)
satisfying the conditions (M.1), (M.2) and (M.3’); any use of the condition
(M.3) will be explicitly emphasized.

To the best knowledge of the author, the notion of a vector-valued al-
most periodic ultradistribution has not been yet introduced in the existing
literature, even in the case that the sequence (Mp) satisfies the condition
(M.3). And, more to the point, the notion of a scalar-valued almost peri-
odic ultradistribution, introduced in this paper, seems to be new in the case
that (Mp) does not satisfy the condition (M.3). Regarding scalar-valued
almost periodic ultradistributions as boundary values of harmonic almost
periodic functions, we would like to mention that I. Cioranescu [11] has
proved that, for any such ultradistribution, we can find a harmonic func-
tion u(x, y) in the right-half plane such that, for every x > 0 the mapping
y 7→ u(x, y), y ∈ R is almost periodic and that limx→0+ u(x, y) = f in
the ultradistributional sense. The main aim of this paper is, actually, to
reexamine the structural results proved in [11], [4] and [16]. The concept of
almost automorphic ultradistributions will be introduced and analyzed in
our follow-up research with S. Pilipović and D. Velinov [24] (cf. C. Bouzar,
M.T. Khalladi, F. Z. Tchouar [5] for the notion of an almost automorphic
Colombeau generalized function, C. Bouzar, Z. Tchouar [6] for the notion
of an almost automorphic distribution, C. Bouzar, M. T. Khalladi [7] for
the notion of an almost periodic Colombeau generalized function, and M.
F. Hasler [19] for the notion of a Bloch-periodic Colombeau generalized
function).

Before recollecting some known facts about vector-valued ultradistribu-
tions, we would like to draw the attention of our readers to the excellent
survey of results [29] by V. Valmorin, concerning periodic generalized func-
tions and their applications.

1.1. Vector-valued ultradistributions. In anything that follows, it will
be assumed that (Mp) is a sequence of positive real numbers satisfying
M0 = 1 and the following conditions:

(M.1): M2
p ≤Mp+1Mp−1, p ∈ N,

(M.2): Mp ≤ AHp sup0≤i≤p MiMp−i, p ∈ N, for some A, H > 1,

(M.3’):
∑∞

p=1
Mp−1

Mp
<∞.
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Any employment of the condition

(M.3): supp∈N

∑∞
q=p+1

Mq−1Mp+1

pMpMq
<∞,

which is slightly stronger than (M.3′), will be explicitly emphasized.
Let s > 1. The Gevrey sequence (p!s) satisfies the above conditions.

The associated function of (Mp) is defined by M(ρ) := supp∈N ln ρp

Mp
, ρ > 0;

M(0) := 0. If λ ∈ C, set M(λ) := M(|λ|). Define mp :=
Mp

Mp−1
, p ∈ N.

The space of Beurling, resp., Roumieu ultradifferentiable functions, is

defined by D(Mp) := indlimKbbRD
(Mp)
K , resp., D{Mp} := indlimKbbRD

{Mp}
K ,

where D
(Mp)
K := projlimh→∞D

Mp,h
K , resp., D

{Mp}
K := indlimh→0D

Mp,h
K ,

D
Mp,h
K :=

{
φ ∈ C∞(R) : suppφ ⊆ K, ‖φ‖Mp,h,K <∞

}

and

‖φ‖Mp,h,K := sup

{
hp|φ(p)(t)|

Mp
: t ∈ K, p ∈ N0

}
.

In the sequel, the asterisk ∗ is used to designate both, the Beurling case
(Mp) or the Roumieu case {Mp}. The space consisted of all continuous
linear functions from D∗ into X, denoted by D′∗(X) := L(D∗ : X), is said
to be the space of all X-valued ultradistributions of ∗-class.

Recall [20], an entire function of the form P (λ) =
∑∞

p=0 apλ
p, λ ∈ C, is

of class (Mp), resp., of class {Mp}, if there exist l > 0 and C > 0, resp.,
for every l > 0 there exists a constant C > 0, such that |ap| ≤ Clp/Mp,
p ∈ N. The corresponding ultradifferential operator P (D) =

∑∞
p=0 apD

p

is of class (Mp), resp., of class {Mp}. We introduce the topology of above
spaces as well as the convolution of scalar valued ultradistributions (ultra-
differentiable functions) in the same way as in the case of corresponding
distribution spaces ([20]). The convolution of Banach space valued ultra-
distributions and scalar-valued ultradifferentiable functions will be taken
in the sense of considerations given on page 685 of [22]. Let us recall that
for any f ∈ D′∗(X) and ϕ ∈ D∗ we have f ∗ ϕ ∈ E∗(X) as well as that
the linear mapping ϕ 7→ · ∗ ϕ : D′∗(X) → E∗(X) is continuous. Here,
the space E∗(X) is defined as it has been done on page 678 of [22]. The
convolution of an X-valued ultradistribution f(·) and an element g ∈ E ′∗,
defined by the identity [22, (4.9)], is an X-valued ultradistribution and the
mapping g ∗· : D′∗(X) → D′∗(X) is continuous. Set 〈Th, ϕ〉 := 〈T, ϕ(·−h)〉,
T ∈ D′∗(X), h > 0.

If (Mp) satisfies (M.1), (M.2) and (M.3), then

Pl(x) =
(
1 + x2

)∏

p∈N

(
1 +

x2

l2m2
p

)
,
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resp.

Prp
(x) =

(
1 + x2

)∏

p∈N

(
1 +

x2

m2
pr

2
p

)
,

defines an ultradifferential operator of class (Mp), resp., of class {Mp}.
Here, (rp) ∈ R, where R denotes the family of all sequences of positive real
numbers tending to infinity.

The following spaces of tempered ultradistributions of Beurling, resp.,
Roumieu type, are defined by S. Pilipović [27] as duals of the corresponding
test spaces

S(Mp) := projlimh→∞SMp,h, resp., S{Mp} := indlimh→0S
Mp,h,

where

SMp,h :=
{
φ ∈ C∞(R) : ‖φ‖Mp,h <∞

}
(h > 0),

‖φ‖Mp,h := sup

{
hα+β

MαMβ
(1 + t2)β/2|φ(α)(t)| : t ∈ R, α, β ∈ N0

}
.

A continuous linear mapping S(Mp) → X, resp., S{Mp} → X, is said to be an
X-valued tempered ultradistribution of Beurling, resp., Roumieu type. The
space consisted of all vector-valued tempered ultradistributions of Beurling,
resp., Roumieu type, will be denoted by S ′(Mp)(X), resp. S ′{Mp}(X); the

common abbreviation will be S ′∗(X). It is well known that S ′(Mp)(X) ⊆

D′(Mp)(X), resp. S ′{Mp}(X) ⊆ D′{Mp}(X).

2. Almost periodicity of vector-valued ultradistributions

For any h > 0, we define

DL1

(
(Mp), h

)
:=

{
f ∈ DL1 ; ‖f‖1,h := sup

p∈N0

hp‖f (p)‖1

Mp
<∞

}
.

Then (DL1((Mp), h), ‖·‖1,h) is a Banach space and the space of allX-valued
bounded Beurling ultradistributions of class (Mp), resp., X-valued bounded
Roumieu ultradistributions of class {Mp}, is defined as the space consisting
of all linear continuous mappings from DL1((Mp)), resp., DL1({Mp}), into
X, where

DL1

(
(Mp)

)
:= projlimh→+∞DL1

(
(Mp), h

)
,

resp.,
DL1

(
{Mp}

)
:= indlimh→0+DL1

(
(Mp), h

)
.

These spaces, carrying the strong topologies, will be shortly denoted by
D′

L1((Mp) : X), resp., D′
L1({Mp} : X). It is well known that D(Mp), resp.

D{Mp}, is a dense subspace of DL1((Mp)), resp., DL1({Mp}), as well as
that DL1((Mp)) ⊆ DL1({Mp}) (see [9]). Since ‖ϕ‖1,h ≤ ‖ϕ‖Mp,h for any

ϕ ∈ S(Mp) and h > 0, we have that S(Mp), resp. S{Mp}, is a dense subspace
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of DL1((Mp)), resp., DL1({Mp}), and that f|S(Mp) : S(Mp) → X, resp.,

f|S{Mp} : S{Mp} → X, is a tempered X-valued ultradistribution of class

(Mp), resp., of class {Mp}.
Following I. Cioranescu [11], we say that a bounded X-valued ultra-

distribution f ∈ D′
L1((Mp) : X), resp., f ∈ D′

L1({Mp} : X), is almost
periodic of Beurling class (Mp), resp., almost periodic of Roumeiu class
{Mp}, iff there exists a sequence of X-valued trigonometric polynomials
converging to f(·) in D′

L1((Mp) : X), resp., D′
L1({Mp} : X). In the case

that (Mp) satisfies the conditions (M.1), (M.2) and (M.3), the space of all
bounded scalar-valued ultradistributions of Beurling class has been char-
acterized in [11, Theorem 1] and the space of all almost periodic scalar-
valued ultradistributions of Beurling class has been characterized in [11,
Theorem 2]; the condition (M.3) is essentially employed in the proof of
[11, Lemma 2], which is no longer true if we assume only the condi-
tion (M.3’) and which is a fundamental tool for proving the implications
[11, Theorem 1, (iii) ⇒ (iv)] and [11, Theorem 2, (iv) ⇒ (ii)]. The
assertion of [11, Lemma 1] continues to hold if the condition (M.3) is
disregarded, in both Beurling and Roumieu case, that is: Suppose that
P (D) =

∑∞
p=0 apD

p is an ultradifferential operator of class (Mp), resp., of

class {Mp}. Then the induced mapping PB(D) : DL1((Mp)) → DL1((Mp)),
resp., PR(D) : DL1({Mp}) → DL1({Mp}) is linear and continuous.

The following theorem gives some new insights into the assertion of [11,
Theorem 1]:

Theorem 1. Let (Mp) satisfy the conditions (M.1), (M.2) and (M.3’), and
let T ∈ D′∗(X). Consider the following assertions:

(i) There exists an ultradifferential operator P (D) =
∑∞

p=0 apD
p of

class (Mp), resp., of class {Mp}, and functions f, g ∈ Cb(R : X)
such that T = P (D)f + g, i.e.,

〈T, ϕ〉 =

∞∑

p=0

(−1)pap

∫ ∞

−∞
f(t)ϕ(p)(t) dt+

∫ ∞

−∞
g(t)ϕ(t) dt, (1)

for all ϕ ∈ DL1((Mp)), resp., ϕ ∈ DL1({Mp}).
(ii) We have T ∈ D′

L1((Mp) : X), resp., D′
L1({Mp} : X).

(iii) For every ϕ ∈ D∗, we have T ∗ ϕ ∈ Cb(R : X); furthermore, if
B ⊆ D∗is bounded, then there exists a finite constant M ≥ 1 such
that ||T ∗ ϕ||∞ ≤M, ϕ ∈ B.

(iv) For each compact set K ⊆ R there exists h > 0 in the Beurling
case, resp., for each compact set K ⊆ R and for every h > 0 in the

Roumieu case, we have T ∗ ϕ ∈ Cb(R : X), ϕ ∈ D
Mp,h
K .

Then we have (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

Proof. The implications (ii) ⇒ (iii) ⇒ (iv) follow from the proof of above-
mentioned theorem and elementary facts about topological properties of



VECTOR-VALUED ALMOST PERIODIC ULTRADISTRIBUTIONS AND... 11

vector-valued ultradistributions. We will give a direct proof of the assertion
(i) ⇒ (ii) here, in which we do not use the condition (M.2); for the sake
of brevity, we examine only the Roumieu case. We need to prove that
for each h > 0 the mapping T : DL1((Mp), h) → X is continuous. By our
assumption, for every l ∈ (0, h), there exists cl > 0 such that |ap| ≤ cll

p/Mp,
p ≥ 0. Hence, for every ϕ ∈ DL1((Mp), h), we have:

∥∥〈T, ϕ〉
∥∥≤

∞∑

p=0

‖f‖∞
∣∣ap

∣∣∥∥ϕ(p)
∥∥

1
+ ‖g‖∞

∥∥ϕ
∥∥

1

≤
∞∑

p=0

‖f‖∞

∣∣cl
∣∣

Mp
lph−p‖ϕ‖1,hMp + ‖g‖∞

∥∥ϕ
∥∥

1

≤ cl‖f‖∞‖ϕ‖1,h
h

h− l
+ ‖g‖∞

∥∥ϕ
∥∥

1
.

This, in turn, yields (ii). �

Remark 1. (i) Assume that (Mp) additionally satisfies (M.3). Then
the assertions (i)-(iv) are mutually equivalent for the Beurling class
[11] and there exists l > 0 such that the choice P (D) = Pl(D)
is possible in (i). It is not clear whether this statement holds for
the Roumieu class, with the operator P (D) = Prp

(D) and some
(rp) ∈ R; see also [11, Lemma 2] and [9, Lemma 3.1.1(ii)].

(ii) The assertion of [16, Theorem 3.2] continues to hold in vector-
valued case.

Concerning [11, Theorem 2], the following result should be stated in
vector-valued case (in the Beurling case, the implication (iii) ⇒ (iv) follows
from the fact that the equation [26, (13)] holds in vector-valued case and
the proof of corresponding implication [11, (iii) ⇒ (iv), Theorem 2]; in the
Roumieu case, the statement follows directly):

Theorem 2. Let (Mp) satisfy the conditions (M.1), (M.2) and (M.3’), and
let T ∈ D′

L1((Mp) : X), resp., T ∈ D′
L1({Mp} : X). Consider the following

assertions:

(i) There exists an ultradifferential operator P (D) =
∑∞

p=0 apD
p of

class (Mp), resp., of class {Mp}, and functions f, g ∈ AP (R : X)
such that T = P (D)f + g, i.e., (1) holds for all ϕ ∈ DL1((Mp)),
resp., ϕ ∈ DL1({Mp}).

(ii) T is almost periodic.
(iii) For every ϕ ∈ D∗, we have T ∗ ϕ ∈ AP (R : X).
(iv) There exists h > 0 such that for each compact set K ⊆ R, in the

Beurling case, resp., for each compact set K ⊆ R and for each
h > 0, in the Roumieu case, the following holds T ∗ϕ ∈ AP (R : X),

ϕ ∈ D
Mp,h
K .



12 M. KOSTIĆ

Then we have (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

Remark 2. (i) Assume that (Mp) additionally satisfies (M.3). Then
the above assertions are equivalent for the Beurling class, when there
exists l > 0 such that the choice P (D) = Pl(D) is possible in (i),
and it is not clear whether these assertions are equivalent for the
Roumieu class, with the operator P (D) = Prp

(D) and some (rp) ∈
R.

(ii) It is worth noting that [16, Theorem 4.2] continues to hold in vector-
valued case. Consider the following assertion:
(ii)’ The set of all translations {Th : h ∈ R} is relatively compact

in D′
L1((Mp) : X), resp., D′

L1({Mp} : X).
Using the same arguments as in the proof of [16, Theorem 4.2], we
can deduce that (i) ⇒ (ii)’ ⇒ (iii).

Let us introduce the following space

E∗
AP (X) :=

{
φ ∈ E∗(X) : φ(i) ∈ AP (R : X) for all i ∈ N0

}
.

Then E∗
AP (X) ⊆ D′∗

L1(X) and, due to the fact that the first derivative of a
differentiable almost periodic function is almost periodic iff it is uniformly
continuous [23] and the proof of [6, Proposition 5(i)], E∗

AP (X) = E∗(X) ∩
AP (R : X). Furthermore, E∗

AP (X) ∗ L1(R) ⊆ E∗
AP (X) and E∗

AA(X) is the
space consisted exactly of those elements f(·) from E∗(X) for which f ∗
ϕ ∈ AP (R : X), ϕ ∈ D∗; see e.g. the proof of [6, Corollary 1] given in
distribution case, for almost automorphy.

Consider now the following statement:

(ii)”: T ∈ D′∗
L1((Mp) : X), resp. T ∈ D′∗

L1({Mp} : X), and there exists a
sequence (φn) in E∗

AP (X) such that limn→∞ φn = T for the topology
of D′

L1((Mp) : X), resp. D′
L1({Mp} : X).

Lemma 1. Let (Mp) satisfy the conditions (M.1), (M.2) and (M.3’), and
let T ∈ D′

L1((Mp) : X), resp., T ∈ D′
L1({Mp} : X). Then (ii)” ⇔ (iii), with

(iii) being the same as in the formulation of Theorem 2.

Proof. The proof of implication (ii)’ ⇒ (iii) can be deduced as in distri-
bution case (see the proof of [6, Proposition 7]), while the implication (iii)
⇒ (ii’) can be proved in the following way. Let ρ ∈ D∗, supp(ρ) ⊆ [0, 1]
and Tn := T ∗ ρn (n ∈ N). Since E∗

AP (X) = E∗(X) ∩ AP (R : X), (ii)
yields that Tn ∈ E∗

AP (X) for all n ∈ N. Then it suffices to show that
limn→∞ Tn = T in D′∗

L1(X). For the sake of brevity, we will consider only
the Roumieu class. Let h > 0 be fixed. Then there exists c > 0 such
that ‖〈T, ϕ〉‖ ≤ c‖ϕ‖1,h, ϕ ∈ DL1((Mp), h). Furthermore, the estimate

‖[ρ̌n ∗ ϕ − ϕ](p)‖L1 ≤ (1/n)‖ϕ(p+1)‖L1 (n ∈ N, p ∈ N0) holds good on
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account of the proof of [6, Proposition 7], so that:
∥∥∥∥∥
〈
T ∗ ρn − T, ϕ

〉
∥∥∥∥∥ =

∥∥∥∥∥
〈
T, ρ̌n ∗ ϕ− ϕ

〉
∥∥∥∥∥

≤ c sup
p≥0

hp

∥∥∥∥∥
[
ρ̌n ∗ ϕ− ϕ

](p)

∥∥∥∥∥
L1

Mp

≤
c

n
sup
p≥0

hp
∥∥ϕ(p+1)

∥∥
L1

Mp

≤
c

nh
AM1 sup

p≥0

(hH)p+1‖ϕ(p+1)‖L1

Mp+1

≤
c

nh
AM1‖ϕ‖1,h, ϕ ∈ DL1((Mp), h),

which simply completes the proof by using some elementary topological
properties of spaces D∗

L1 and D′
L1((Mp) : X), resp. D′

L1({Mp} : X). �

Now we can prove the following result:

Theorem 3. Let (Mp) satisfy the conditions (M.1), (M.2) and (M.3’), and
let T ∈ D′

L1((Mp) : X), resp., T ∈ D′
L1({Mp} : X). Consider the assertions

(ii), (iii) and (iv) stated in the formulation of Theorem 2. Then we have
(ii) ⇔ (ii)” ⇔ (iii) ⇔ (iv).

Proof. By Theorem 2 and Lemma 1, we only need to prove that (ii) implies
(ii)” and that (iv) implies (iii). The equivalence of (iv) and (iii) follows
directly in Roumieu case, by definition, while the implication (iv) ⇔ (iii) in

Beurling case follows from the fact that D
(Mp)
K =

⋂
h>0 D

Mp,h
K . To prove that

(ii)” implies (ii), it suffices to observe that any function f ∈ AP (R : X),
and therefore any function f ∈ E∗

AP (X), can be uniformly approximated
by trigonometric polynomials. �

For any f ∈ AP (R : X), we define

M(f) := lim
t→∞

1

t

∫ t

0
f(s) ds.

Let T ∈ D′
L1((Mp) : X), resp., T ∈ D′

L1({Mp} : X) be almost periodic.
Following the analyses from [10] and [16], we define the Bohr-Fourier coef-
ficients aλ(T ) of T by

M(f) :=
M(T ∗ ϕ)∫∞
−∞ ϕ(s) ds

,

where ϕ ∈ D′
L1((Mp) : X), resp., ϕ ∈ D′

L1({Mp} : X) is fixed and satisfies∫∞
−∞ ϕ(s) ds 6= 0. Then T = 0 iff aλ(T ) = 0, λ ∈ R; as in the case of almost
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periodic functions, we have that the spectrum of T, consisted of all real
numbers λ for which aλ(T ) 6= 0, is at most countable (see [16, Proposi-
tion 4.5]). The assertions of [16, Theorem 4.6, Proposition 4.7], regarding
Bochner-Féjer summation methods for ultradistributions, continue to hold
in vector-valued case and it is not difficult to see that these statements hold
for Komatsu’s vector-valued almost ultradistributions, even in the case that
the condition (M.3) is not satisfied.

3. Generalizations of vector-valued almost periodic

ultradistributions

Let A ⊆ L1
loc(R : X). It is said that A satisfies the condition (4) iff for

every f ∈ L1
loc(R : X) with the property that 4sf := f(· + s) − f(·) ∈ A

for all s > 0, we have f −Mhf ∈ A, h > 0, where

Mhf(·) :=
1

h

∫ h

0
f(· + s) ds, h > 0.

If the preassumption 4sf ∈ A, s > 0 implies f − M1f ∈ A, for any
f ∈ L1

loc(R : X), then it is said that A satisfies the condition (41). For
more details about the importance of Doss conditions (4) and (41) in the
theory of almost periodic vector-valued functions, the reader may consult
[3]-[4] and references cited therein.

Define

M(A) :=

{
f ∈ L1

loc(R : X) : Mhf ∈ A for all h > 0

}
.

Following B. Basit and H. Güenzler [3]-[4], we introduce the following space
of vector-valued ultradistributions:

D′∗
A (X) :=

{
T ∈ D′∗(X) : T ∗ ϕ ∈ A for all ϕ ∈ D∗

}
.

If A ⊆ D′∗(X), then we similarly define the space

D′∗
A(X) :=

{
T ∈ D′∗(X) : T ∗ ϕ ∈ A for all ϕ ∈ D∗

}
.

Note that D′∗
A(X) = D′∗

A
(X) = D′∗

A∞
(X), where A = A ∩ L1

loc(R : X) and
A∞ = A∩C∞(R : X). By Theorem 2, we have that the space consisting of
almost periodic vector-valued ultradistributions is contained in the space
D′∗

A
(X), where A = AP (R : X).

Let sh := (1/h)χ(−h,0) (h > 0) and sh := ((−1)/h)χ(0,−h) (h < 0).

Then, for any f ∈ L1
loc(R : X), we have Mhf = f ∗ sh, h > 0. For vector-

valued ultradistributions, we set 〈Ts, ϕ〉 := 〈T, ϕ(· − s)〉, ϕ ∈ D∗ (s ∈ R,
T ∈ D′∗(X)),

M̃hT := T ∗ sh, h 6= 0, T ∈ D′∗(X)
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and, for any subset A of D′∗(X),

M̃(A) :=

{
T ∈ D′∗(X) : M̃hT ∈ A for all h > 0

}
.

It is said that T ∈ D′∗(X) satisfies (4) iff 4sT := T−s − T ∈ D′∗
A

(X)

for all s > 0 implies T − M̃hT ∈ D′∗
A

(X) for all h > 0; if the assumption

4sT ∈ D′∗
A

(X) for all s > 0 implies T − M̃1T ∈ D′∗
A
(X), then it is said that

T satisfies (41).
The space D′∗

A(X) is closed under the action of any ultradifferential op-
erator P (D) of ∗-class because, due to [20, Theorem 2.12], we have:

P (D)T ∗ ϕ = T ∗ P (D)ϕ ∈ A, ϕ ∈ D∗.

By [4, Theorem 2.10], we have that the closedness of A under addition
implies that, for any vector-valued distribution T ∈ D′(X), we have:

T ∗ ϕ ∗ ψ ∈ A, ϕ, ψ ∈ D ⇒ T ∗ ϕ ∈ A, ϕ ∈ D. (2)

To the best knowledge of the author, it is still unknown whether an ultra-
differentiable function of ∗-class can be written as a finite sum of functions
like ϕ ∗ ψ, where ϕ, ψ are ultradifferentiable functions of ∗-class. Because
of that, in the present situation, we are not able to say whether (2) holds in
ultradistribution case, if A is only closed under addition. But, we would like
to note that the closedness of set A∩C(R : X) under uniform convergence
over R also implies that, for any vector-valued distribution T ∈ D′(X), we
have (2). The proof can be given as in ultradistribution case, where we
have the following statement:

Proposition 1. Let A ∩ C(R : X) be closed under uniform convergence
over R. Then, for any vector-valued ultradistribution T ∈ D′∗(X), we have:

T ∗ ϕ ∗ ψ ∈ A, ϕ, ψ ∈ D∗ ⇒ T ∗ ϕ ∈ A, ϕ ∈ D∗. (3)

Proof. It is well-known that there is a function ρ ∈ D∗
[0,1] such that

∫∞
−∞ ρ(t) dt = 1.

Set ρn(t) := nρ(nt), t ∈ R, n ∈ N. It suffices to show that, for every ϕ ∈ D∗,
we have

lim
n→+∞

(
T ∗ ρ̌n ∗ ϕ

)
(x) =

(
T ∗ ϕ

)
(x),

uniformly on R (although this basically follows from the proof of implication
[11, (iii) ⇒ (iv), Theorem 2], we want to present a direct and much simpler
proof here). Since (T ∗ ρ̌n ∗ ϕ)(x) = 〈T, ϕ(x− ·) ∗ ρn〉 and (T ∗ ϕ)(x) =
〈T, ϕ(x− ·)〉 for all x ∈ R and n ∈ N, we need to prove that

lim
n→+∞

〈
T,
[
ϕ(x− ·) ∗ ρn − ϕ(x− ·)

]〉
= 0,
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uniformly for x ∈ R. In the Beurling case, we have the existence of a
positive real number h > 0 such that, due to a simple calculation involving
the condition (M.2), the mean value theorem and the continuity of T on

D
(Mp)
[−1,1],

∥∥∥∥∥

〈
T,
[
ϕ(x− ·) ∗ ρn − ϕ(x− ·)

]〉∥∥∥∥∥

≤ sup
p≥0

hp supy∈[−1,1]

∣∣∣∣∣
[
ϕ(p)(x− ·) ∗ ρn − ϕ(p)(x− ·)

]
(y)

∣∣∣∣∣
Mp

≤ sup
p≥0

hp
∫ 1
0

∣∣∣ϕ(p)(x− y + t) − ϕ(p)(x− y)
∣∣∣ρn(t) dt

Mp

≤

∫ 1

0
tρn(t) dt · sup

p≥0

hp+1
∥∥∥ϕ(p+1)

∥∥∥
∞

Mp

≤
1

n

∫ 1

0
tρ(t) dt ·

1

AM1h
sup
p≥0

(h/H)p+1
∥∥∥ϕ(p+1)

∥∥∥
∞

Mp+1
.

In the Roumieu case, the above holds for all positive real numbers h > 0,
which simply completes the proof of proposition. �

If f : R → X is uniformly continuous, f ∈ D′∗
A(X) and A ∩ C(R :

X) is closed under uniform convergence, then we can use the fact that
limn→∞ ρn ∗ f = f, uniformly on R, to get that f ∈ A.

The statements of [4, Lemma 2.3, Proposition 2.4] hold in ultradistribu-
tion case, so that the assumption 4hT := T−h − T ∈ D′∗

A
(X) for all h > 0

implies T − M̃hT ∈ D′∗
A
(X), as well as:

(i) D′∗
A(X) ⊆ M̃D′∗

A(X) = D′∗
fMA

(X), and

(ii) D′∗
A(X) ⊆ M̃D′∗

A(X) if A is a cone (i.e., [0,∞) ·A + [0,∞) ·A ⊆ A)
satisfying (41).

It is worth noting that [4, Corollary 2.5, Corollary 2.6], results from [4,
Section 4] and [3, Proposition 1.1] can be formulated in ultradistribution
case, as well.

The following statements are in a close connection with [11, Theorem 2]
and [4, Theorem 2.11]:

1. Let there exist an ultradifferential operator P (D) =
∑∞

p=0 apD
p

of class (Mp), resp., of class {Mp}, and f, g ∈ D′∗
A(X) such that

T = P (D)f + g. If A is closed under addition, then T ∈ D′∗
A(X).
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2. If A∩C(R : X) is closed under uniform convergence, T ∈ D′
L1((Mp) :

X) and T ∗ ϕ ∈ A, ϕ ∈ D(Mp), then there exists h > 0 such that

for each compact set K ⊆ R we have T ∗ ϕ ∈ A, ϕ ∈ D
Mp,h
K . In our

personal opinion, we need to assume here that T ∈ D′
L1((Mp) : X)

since the set-theoretical equality appearing on the second line of
proof of implication [11, (iii) ⇒ (iv)] is mistakenly written.

3. Assume T ∈ D′(Mp)(X) and there exists h > 0 such that for each

compact set K ⊆ R we have T ∗ ϕ ∈ A, ϕ ∈ D
Mp,h
K . If (Mp) ad-

ditionally satisfies (M.3), then there exist l > 0 and two elements
f, g ∈ A such that T = P (D)f + g.

4. Conclusions and final remarks

In this section, we will present several conclusions and remarks about
the obtained results, propose some open problems and possible ways for
expanding this research. First of all, we would like to raise the following
issues that we have not been able to solve:

A. Theorem 1: Let (Mp) satisfy the conditions (M.1), (M.2) and (M.3’),
and let T ∈ D′∗(X). Is it true that the assertion (iv) implies (ii)?

B. Theorem 2 and Remark 2: Let (Mp) satisfy the conditions (M.1),
(M.2) and (M.3’), and let T ∈ D′

L1((Mp) : X), resp. T ∈ D′
L1({Mp} :

X). Is it true that (ii)’ is equivalent with (ii), in orther words, is it
true that (ii) implies (ii)’ ?

The notion of space D′∗
A(X) can be modified for tempered vector-valued

ultradistributions as follows

S ′∗
A (X) :=

{
T ∈ S ′∗(X) : T ∗ ϕ ∈ A for all ϕ ∈ S∗

}
.

Concerning some known results on the structure of space S ′∗
A (X), we would

like to note that P. Dimovski, B. Prangoski and D. Velinov [13] have exam-
ined the convolutors and the space of multipliers of Beurling and Roumieu
tempered scalar-valued ultradistributions. We feel duty bound to observe
that [13, Proposition 3.2] can be formulated in the vector-valued case, as
well, and that some implications from the formulation of this result holds
even in the case that the sequence (Mp) does not satisfy (M.3). To pre-
cise this, we introduce the space of vector-valued convolutors O′

C(X) of
S ′∗(X) as the space consisted of all tempered vector-valued ultradistribu-
tions T ∈ S ′∗(X) such that, for every ϕ ∈ S∗, we have T ∗ ϕ ∈ S∗(X) and
that the mapping ϕ 7→ T ∗ ϕ, S∗ → S∗(X) is continuous. We have the
following result:

Proposition 2. Suppose that (Mp) satisfies the conditions (M.1), (M.2)
and (M.3’). Let T ∈ S ′∗(X). Then we have (i) ⇒ (ii) ⇒ (iii) ⇒ (iv), where:

(i) T ∈ O′
C(X).
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(ii) For every ϕ ∈ S∗, we have T ∗ ϕ ∈ S∗(X), i.e., T ∈ S ′∗
S∗(X)(X).

(iii) For every ϕ ∈ D∗, we have T ∗ ϕ ∈ S∗(X).
(iv) For every r > 0, resp., there exists r > 0, such that the set

{
eM (r|h|)Th : h ∈ R

}

is bounded in D′∗(X).

Moreover, if (Mp) satisfies (M.3), then we have (i) ⇔ (ii) ⇔ (iii) ⇔ (iv)
⇔ (v), where:

(v) For every r > 0, resp., there exists r > 0, there exists l > 0, resp.,
there exists a sequence (rp) of positive real numbers tending to infin-
ity, and two functions f, g ∈ L∞(R : X) such that T = Pl(D)f+g,
resp., T = Trp

(D)f + g, and

sup
x∈R

∥∥∥∥∥e
M (x|h|)

[
‖f(x)]‖+ ‖g(x)‖

]∥∥∥∥∥ <∞.

It is almost impossible to summarize here all obtained results about the
structure of spaces D′∗

A(X) and S ′∗
A (X) in general case. We would like to

mention here only one more result in this direction, obtained recently by P.
Dimovski, S. Pilipović, B. Prangoski and J. Vindas [14]. They have intro-
duced the notion of a translation-invariant Banach space of tempered ul-
tradistributions of ∗-class and structurally characterized the space D′∗

E′(C),
where E is a translation-invariant Banach space (see [14, Definition 4.1,
Theorem 6.1]). It would be very interesting to prove a vector-valued ver-
sion of this result, as well as vector-valued versions of [9, Theorem 2.3.1,
Theorem 2.3.2] and some results from [15] and [25].

In [4, Theorem 2.15], B. Basit and H. Güenzler have proved several
equivalent conditions for a vector-valued distribution T ∈ D′(X) to belong
the space D′

S′(X)(X), i.e., that T ∗ ϕ ∈ S ′(X), ϕ ∈ D. As an interesting

problem for our readers, we would like to address the problem of structural
characterization of vector-valued ultradistributions T ∈ D′∗(X) for which
T ∗ϕ ∈ S ′∗(X), ϕ ∈ D∗. This problem seems to be unsolved even in scalar-
valued case.
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Basel AG, Basel, 2001
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[17] C. Fernández, A. Galbis, M. C. Gómez-Collado, Bounded and almost periodic ul-

tradistributions as boundary values of holomorphic functions, Rocky Mountain J.
Math., 33 (4), (2003) 1295–1311
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