A NOTE ABOUT THE SUMS OF BINOMIAL COEFFICIENTS
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Here is an alternative, schorter, proof of the result proved
by Grosswald?).

We have the identity \
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If we develope here from the binomial theorem, we obtain
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Equatmg the coefficients of x%*, we have
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where v+ XN=2v 4.
If we put
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we have the formula
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that Grosswald by means of the Legendre polynomials and
the hypergeometric function has proved,
Similarly, we may show that
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=0 , for & odd.

We perceive, that by a good choose the identity of the
form (1), by the showed method, it is possible to get*) a great
number of formulas of the kind (2) and (3).
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