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WILLMORE SURFACES AND LOOP GROUPS

Vladimir Balan

Abstract

After a brief basic review of Willmore surfaces in §1, in §2 is
shown that the conformal Gauss map plays a major role in building
meromorphic potentials for these surfaces. Section §3 describes
the tools of the DPW procedure, which produces the potentials
by a loop group technuque. The last section provides concluding
remarks which outline essential differences between two perfectible
approaches used to develop the presented process.

1. Brief account on Willmore surfaces

The study of Willmore surfaces has its origins in the works of
G. Thomsen and Shadow [14] in 1923; the existing results were synthetized
by W.Blashke in 1929 [2], and reiterated afterwards by K. Voss in 1950
and by T.Willmore in 1960. A recent approach was provided in 1998 by
F. Helein [5], based on the works of J. Dorfmeister, F. Pedit and H.-Y. Wu
[4], and R. Bryant [3].

Consider a surface S immersed in R3, oriented and without boundary,
and let S be the set of all such surfaces. Let H be the mean curvature,
k, and ko the principal curvatures, g the genus and do the area element
of § € S. Then, using the Gauss-Bonnet formula, itis straightforward to
derive the relation : :

(k1 — k2)

2
[ H%o = [ 1 do +47(1 - g). (1)
S

5
~ where do is the area element of S.

The two integrals above, denoted by Wy(S) and Wi(S) respectively,
are simultaneously minimized within the family S. The first one provides
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the Willmore functional, whose critical points on S are called Willmore
surfaces [18]. Note that we can also write

Wi(S) = %é‘(kf + k2)do + 27 (1= g), 2

hence the right integral has the same critical points as the Willmore
functional. By tedious calculation, it can be proved that the Willmore
surfaces are the solutions of the 4-th order PDE (18]

AH+2H(H? - K)=0, (3)

where the Laplacian A is constructed using the first fundamental form of S.

Hence the minimal surfaces are the first (trivial) examples of Willmore
surfaces. Still, the class of known examples is wider, since the Willmore
functional is invariant under the 10-parameter group of conformal trans-
formations of R3 ([2] and [14]), whence the conformal transform of any
Willmore surface is also a minimizer of Wy,.

Moreover, since the stereographic projection is a conformal map, the
Willmore surfaces in R3 are directly related to the ones in S3 or H3. Hence,
the stereographic projection to R3 of compact minimal surfaces in $° are
embedded Willmore surfaces, and it was shown that the area of such a

“surface § C §3 is exactly Wy(S).

In 1970, H. B. Lawson [10] proved that any compact surface, with the
exception of P2(R), e.g., the 2-holed torus, or the Klein bottle, can be
minimally immersed into $3. As consequence, many such compact em-
bedded minimal surfaces in §° (hence embedded Willmore surfaces) were
recently pointed out by H.Karcher, U. Pinkall and I. Sterling [8]. An ex-
ample of a Willmore surface which is not of this type was provided by
U.Pinkall [11]. Also, A.Garcia and R.Ruedy proved that any compact
two-dimensional Riemannian manifold (like the Wente torus), can be con-
formally immersed into R3.

Though trivial, a significant example of Willmore surfaces are the
spheres in R3. These are the only totally umbilic Willmore surfaces, and
were shown to be the absolute minimizers for Wy among the surfaces in
S of genus 0 [17], a direct computation provides the minimizing value
Wx(S?%) = 4 [13]. ‘

Also, for g = 1, a significant example is the Willmore torus (T. Willmo-
re, 1965), the common torus of revolution in R3 (of radii R = v2 > r = 1).
An unsolved conjecture (the so-called ”Willmore conjecture”) states that
exactly this torus is the absolute minimizer among the surfaces of genus 1.

The problem of characterizing explicitely the Willmore surfaces of
higher genus is still open. Still, complete classification results were obtained
for Willmore immersions r: $2 — R3 and r: P3(R) — R3 by R. Bryant and
R. Kustner.
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2. The conformal Gauss map. Extended frames

Consider a surface S € S, given in conformal coordinates
u = (u!,u?) € D by

S:r:D - R?, r(u)=x(), forall weD, (4)

where D 3 0 is a simply connected domain in R2. Consider also the inverse
of the North stereographic projection ¢ = ®~1:R3 — §3 c R4,

2 2
¢(:c):(—a:; 1—_), forall x € R3, (5)
v v
where v = |x|%s; + 1. This mapping identifies the compactification

R3 U {00} 2 53, and makes possible to embed S into the 5-dimensional

Minkowski space R%! by the so-called conformal Gauss map of
§,¢:D — R4

o(u) = H(u)(f(u), 1) + (n(u),(]), forall weD, (6)

where f = 1 or and n: D — §3 is the normal unit vector field of S.
Then the hyperquadric $3! & 50(4,1)/S0(3,1) associated with the
Lorentz metric

((z,z),(y,y)) = {z,y)rs —zy, forall ((x,z),(y,y)€ RYx R=R%!

contains the image (D). Also, the straightforward relation i
(do, dp)par = (H? — K)do (8)

infers that the energy functional of ¢ is related to Wy by
[ldelPdo = [(H? ~ K)do = W(S) ~ 4x(1 - g), )

and hence the Willmore surfaces are characterized by the harmonicity of
their conformal Gauss map, being minimizers of the Dirichlet functional
of ¢.

For a surface § € S given by (4), we can consider an associated frame
which contains in the first column essentially the position vector of the
surface S, e.g., '

v/2 tZF 1 T o ‘
g F 0| =(f,faf3f1f5) €6=0504,1)Q ", (10)
X .

Fo=
' L—-1 'ZF
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VvZ2/2 0 VZ2)2
where Q = 0 I3 0 , and F'(u) € SO(3) is the orthonormal
V2/2 0 —v2/2

Gauss frame of the surface S € § at w € D. The mapping f1:8% Cc RY —
R4’1,

fl((I) =
1+4¢* 1-¢4 (11)
2(7;_@1,!12,‘137 —\/"5'_) eR%L, for all g=(¢',¢%, ¢°,¢*) €S°

which induces f,, identifies 2 with the generators of the positive semi-cone
of the Lorentz metric (7) and identifies the conformal transformations of
R3 U {0} = $3 with Q50(4,1)Q™" [5].

Since the conformal Gauss map has values in the reductive homoge-
neous space

§31 >~ 50(4,1)/50(3,1),

we search for shifted lifts F = Fo-g € QS0(4,1)Q ™", where g € Q(SO(2) x
S0O(3, 1))62"1 is a convenient conformal transformation, such that F' in-
cludes the conformal Gauss map of the surface [5]. Denoting by g and k

the Lie algebras of G = SO(4,1) and of the subgroup K = S0(3,1), the
Lie algebra of @ is subject to the Cartan splitting g = ko p,
k= {ﬁ €g | Addiag(Ia,—l,l)E = E}

(12)
b= {f €g | Addiag(la,—1,1)£ = —E} -

Then, introducing complex coordinates (2,Z) on D, the Maurer-Cartan
form w = F~1dF associated to the moving frame F splits
w=w;+wk+wzeg:k®p, (13)

where wy,, w, € p are the holomorphic/antiholomorphic parts of the p-part

of w and w}, € k.
The idea is then to extend this form by "loopifying” it ([4], [15], [7]),

i.e., by introducing the complex parameter A € S 1?4
wy = A_lw;, + wi + /\wg . (14)

The conditions under which the equation

F{ldFy = wa (15)




WILLMORE SURFACES AND LOOP GROUPS 21

provides frames F) associated to Willmore immersions subject to
F) |x=1= F; Fx(0) = I, are stated below [5].

' Theorem. The first column of Fy provides a Willmore immersion iff
wy, has zero curvature, i.e., it satisﬁes the integrability condition

dw)+ = [w)\ Awy] =0. (16)

The frames associated to Wlllmore immersions can be obtained by the
DPW loop group procedure, which builds first their corresponding mero-
morphic potentials and then, after applying a ”dressing” method, integrates
these potentials to provide new surfaces of the investigated type.

3. Loop groups. The DPW procedure

For a given Lie group G considered as subgroup of a matrix group
GL(n,C), with the Lie algebra g = Lie(G) C Myux,(C), we define a
structure of Banach space on the family AG of those mappings

g8t — @ : (17)

whose natural weighted H'/2 and L norms are finite. These mappmgs are
called loops and AG - a loop group. Moreover, AG has a canonic structure
of a (infinite-dimensional) Lie group whose Lie algebra Ag consists of g-
valued loops of finite norm. The type of loopification described in (14)
leads to the consideration of twisted loop groups. We define the twisted Lie
loop group and its corresponding Lie algebra by [12], [5]

A,G={g€AG |og(N)ot =g(-A)}

_1 (18)
Asg = { € Ag |o(N)o ™" = €(=)},
where ¢ = diag(I3,—1,1). Denoting by ¢* the -complexification of a real

Lie group G, and by gC = g ® C its' Lie algebra, the Fourier series of a

loop g€ A,,gC has the even-power coefficients in the subalgebra k( C gC

and the odd ones in the vector space p( C gC
In the Willmore DPW case we consider

G =S0(4,1) DK =50(3,1)

. 19
c€ = 50(5,¢) > k€ = (503, )¢ 19

The extended frame F resulting from the integration of (15) is split locally
by means of the Birkhoff decomposition

Fr=Fy-Fy e A;6C . A+cC, (20)
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where :
. A;LGC C A,,GC' is the subgroup consisting of loops which admit holo-

morphic extension inside the unit disk and are equal to I at the origin,

and

o A7 Gt ¢ A G is the subgroup consisting of loops which admit holo-

InOI‘pth extension outside the unit.disk and are equal to I5 at infinity.
Then ¢ = (F, )~'dF, is the meromorphic potential associated with the
originar map F.

The converse procedure emerges with a given meromorphic potential
¢. Integrating the equation ¢ = FZldF_ provides a complex frame F_,
which can be further split using the Iwasawa decomposition [4], [1], [12]

F_=F,-F}. (21)

Then, the resultmg (real) frame F, includes the conformal Gauss map of a
Willmore immersion, which provides the surface.

4. Specific features

The choice of the subgroup K C G = S0O(4, 1) in the DPW procedure
for Willmore surfaces is not unique. Namely, the first alternative is the .
one described above, with the subgroup K = SO(3,1) provided by the
involution o of G. This has the advantage of the density of the ”big cell”

in AGC for the Iwasawa decomposition, but the (major) dissadvantage of
untractable decompositions.

Another alternative is the one developed extensively in [5], with
K = SO(3) x SO(1,1) provided by the involution r = diag(—1, I, —1).
Though the decompositions are perfectly feasible, they are just local, and
the meromorphic potentials provide finally a frame which differs from a
Willmore frame mod a right multiplication with an element of K and the
resulting surface has just a so-called "roughly harmonic” conformal Gauss
map. Also, in this case, the terms w;, and wj, in the decomposition of the
Maurer-Cartan form are nolonger the (1,0)- and the (0,1)- parts od the
component wp, = wy, +wy € p. Still, the advantage of this method is that
the meromorphlc potentlal data provides straightforward the first partlals
of the immersion, which can be obtained explicitly.

It should be noted that, because of the need to incorporate a
non-degenerate Gauss map into the moving frame, the Willmore DPW
procedure removes from the domian D the umbilic points of the surface S,
and that the effective results are mainly local.
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IIOBPUIMHN HA WILLMORE M JIYIIN

Vladimir Balan

Peszuwme

Mo kpaTkuoTr mperien Ha nospmmaure Ba Willmore o §1, Bo §2
ce NoKaxKyBa Aexa KoHPopMmHOTO ['aycoBo mpecivKyBame Urpa BaskHa
yJjora BO KOHCTPYKOMjaTa Ha MepoMOp$HUTE NOTEHOMjasM 3a OBME
moppmuan. Bo §3 ce onumyBa cymrurara Ha DPW nocramkara, 3a
cTBapame NOTeHOMjaJM KopucTejku aynu. Bo mocnensumor naparpad
ce M3BJIeUeHN 3aKJyJYOIy BO KOV Ce NPUKaKaHU CYMTHHCKATE Pa3JIMKN
Mel'y JiBa COBDIIIEHM OPUCTaNa KQDUCTeHM BO PA3BOJOT HA M3JIOKEHATa
DPW nocranxa. a
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