Математички Билтен 23 (XLIX) 1999 (19-24) Скопје, Македонија

CONGRUENCES ON (n, m)-GROUPS

Biljana Janeva

Abstract

In this paper we give a generalization of some definitions and properties of congruences on n-groups given in [2]. Congruences on (n,m)-groups are defined as congruences of the corresponding component algebra, and as kernel of a homomorphism, and a connection between these two definitions is given. Also, it is shown that for each congruence of an (n,m)-group \mathbf{Q} there exists an invariant subgroup of its universal covering group \mathbf{Q}^{\vee} of \mathbf{Q} , that is a subset of \mathbf{Q}_{m+p} , where $m+p=sk, \ k=n-m>0$. Conversely, for each invariant subgroup K of \mathbf{Q}^{\vee} , which is a subset of \mathbf{Q}_{m+p} and satisfies the condition

$$x_{j}y_{j}^{-1} \in K, \ j = \overline{1, n} \& x_{1} \cdots x_{n} = a_{1} \cdots a_{m}, y_{1} \cdots y_{n} = a_{1} \cdots b_{m} \Rightarrow a_{i}b_{i}^{-1} \in K,$$

for all $i = \overline{1, m}$, there exists a congruence α on the (n, m)-group Q, such that the corresponding invariant subgroup of Q^{\vee} is exactly K.

1. Preliminary definitions and results

Let Q be a nonempty set. Denote by Q^r , r is a positive integer, the r-th Cartesian power of Q. Instead of denoting the elements of Q^r by (a_1,\ldots,a_r) we will use the notation $a_1\cdots a_r$, or a_1^r . In this way we can identify the set Q^r with the subset $\{a_1\cdots a_r\mid a_\nu\in Q\}$ of the free semigroup Q^+ with a basis Q. The element $a_i\cdots a_j\in Q^+$ will be denoted by a_i^j , meaning the empty symbol when j< i, i.e. the unity of $Q^*=Q^+\cup\{1\},1\notin Q^+$.

Let m, n, n-m=k>0 be positive integers, and $f:Q^n\to Q^m$ a mapping. Then we say that $\mathbf{Q}=(Q;f)$ is an (n,m)-groupoid, and f is an (n,m)-operation on Q. If, moreover, \mathbf{Q} satisfies the condition

$$f(f(x_1^n)x_{n+1}^{2k+m}) = f(x_1^i f(x_{i+1}^{i+n})x_{i+n+1}^{2k+m}),$$

for each $1 \leq i \leq k$, $x_{\nu} \in Q$, then we say that f is an associative (n,m)-operation. We say that the ordered pair (Q;f), where f^{-1} is an associative (n,m)-operation, is an (n,m)-semigroup.

If Q = (Q; []) is an (n, m)-semigroup, then the semigroup Q^{\wedge} given

by the presentation

$$\mathbf{Q}^{\wedge} = \langle Q \mid \{(a_1^n, b_1^m); [a_1^n] = b_1^m\} \rangle$$

in the class of all semigroups, is said to be the universal covering semigroup of Q.

The carrier Q^{\wedge} of Q^{\wedge} is a disjoint union of the form

$$Q^{\wedge} = Q \cup Q^2 \cup \cdots \cup Q^m \cup Q_{m+1} \cup \cdots \cup Q_{m+k-1},$$

where $Q_{m+i} = Q^{m+i}/\beta$ such that β is the congruence on \mathbb{Q}^{\wedge} induced by the defining relations of its presentation ([1]). We denote by Q^{\vee} the subset $Q^m \cup Q_{m+1} \cup \cdots \cup Q_{m+k-1}$ of Q^{\wedge} . Q^{\vee} is an ideal of \mathbb{Q}^{\wedge} ([1]).

In this case we have the following property

$$i \leq m, x_{\nu} \in Q \Rightarrow (x_1 \cdots x_i = y_1 \cdots y_i \Rightarrow x_{\nu} = y_{\nu}), \nu = \overline{1, i}.$$

For each (n, m)-groupoid we can associate an algebra with \underline{m} n-ary operations defined by $[a_1^n]_i = b_i$ iff $[a_1^n] = b_1^m$, where $i = \overline{1, m}$, and $a_{\nu}, b_{\lambda} \in Q^2$. Then $(Q; []_1, \ldots, []_m)$ is called a *component algebra* of \mathbf{Q} .

Let Q and Q' be two (n,m)-semigroups and $\varphi:Q\to Q'$ a mapping. We say that φ is an (n,m)-homomorphism if it is a homomorphism between their corresponding component algebras. We can define a mapping φ^{\wedge} between the corresponding universal covering semigroups by

$$\varphi^{\wedge}(x_1^i) = \varphi(x_1) \cdots \varphi(x_i). \tag{1.1}$$

Then φ^{\wedge} is a homomorphism induced by φ .

We give, bellow, some connections between a homomorphism of (n, m)-semigroups and the induced one of their universal covering semigroups.

Further on we will denote an (n, m)-operation by [].

Further on we will assume that $a_{\nu}, b_{\lambda} \in Q$.

Prop 1.1. Let $\varphi: Q \to Q'$ be a homomorphism of (n, m)-semigroups and φ^{\wedge} the induced homomorphism defined by (1.1). Then φ^{\wedge} is the unique homomorphique extension of φ and φ is surjective iff φ^{\wedge} is surjective as well ([1]).

Let Q=(Q;[]) be an (n,m)-semigroup, such that for all $a_{\nu},b_{\lambda}\in Q$,

there exist $x_i, b_i \in Q$, such that

$$[a_1^k x_1^m] = b_1^m = [y_1^m a_1^k].$$

Then we say that Q is an (n, m)-group.

In this case, when Q is an (n, m)-group, Q^{\wedge} is the universal covering semigroup and

 $\boldsymbol{Q}^{\vee} = Q^m \cup Q_{m+1} \cup \cdots \cup Q_{m+k-1}$

is a group, called universal covering group of Q ([1]).

For each $a \in Q$, \mathbf{Q}^{\vee} has the form

$$Q^{\vee} = Q_m \cup aQ_m \cup \cdots \cup a_{k-1}Q_m,$$

and the unity 1 of Q^{\vee} is an element of Q_{m+p} , where m+p < m+k, and m+p=sk. Thus, Q can be considered as a subset of Q_{m+p+1} .

Prop 1.2. Let $Q = (Q; [\])$ and $Q' = (Q'; [\]')$ be (n,m)-groups, and $\varphi : Q \to Q'$ a homomorphism. Then there exists a unique extension $\varphi^{\vee} : Q^{\vee} \to Q'^{\vee}$ of φ , defined by

$$\varphi^{\vee}(x_1\cdots x_{m+i})=\varphi(x_1)\cdots \varphi(x_{m+i}),$$

and φ is surjective (injective) iff φ^{\vee} is surjective (injective) as well ([1]).

2. Congruences on (n, m)-semigroups

Let α be an equivalence relation on Q. We say that α is a congruence on \mathbf{Q} if for $i = \overline{1, n}$, we have

$$a_i \alpha b_i \Rightarrow [a_1^n]_j \alpha [b_1^n]_j, j = \overline{1, m},$$

i.e. if α is a congruence on the corresponding component algebra of Q.

Let α be a congruence on an (n,m)-semigroup \mathbf{Q} , and $\varphi = \operatorname{nat} \alpha : Q \to Q/\alpha$ the natural homomorphism. Then $\varphi^{\wedge} : Q^{\wedge} \to (Q/\alpha)^{\wedge}$ is an epimorphism, and $\alpha^{\wedge} = \ker \varphi^{\wedge}$ a congruence on \mathbf{Q}^{\wedge} . Thus

Prop 2.1. $(Q/\alpha)^{\wedge} \cong Q^{\wedge}/\alpha^{\wedge}$.

Using the properties of the universal covering semigroup of an (n,m)-semigroup and the definition of congruences of (n,m)-semigroups, we will give below some connections between congruences of the given (n,m)-semigroup and its universal covering semigroup.

Prop 2.2. Let β be a congruence on \mathbf{Q}^{\wedge} with the property

$$x_j \beta y_j, j = \overline{1, n} \& x_1^n = a_1^m, y_1^n = b_1^m \Rightarrow a_i \beta b_i, i = \overline{1, m}.$$
 (2.1)

Then $\alpha = \beta_{/Q}$ is a congruence on Q, such that $\alpha^{\wedge} \subseteq \beta$.

Prop 2.3. Let β be a congruence of \mathbf{Q}^{\wedge} , such that satisfies (2.1) and

$$x_{\nu}, y_{\nu} \in Q, i, j < m + k \Rightarrow (x_1^i \beta y_1^j \Rightarrow i = j). \tag{2.2}$$

Then $\alpha = \beta_{/Q}$ is a congruence on \mathbf{Q} , such that $\alpha^{\wedge} = \beta$.

3. Congruences on (n, m)-groups

Let Q be an (n, m)-group, and α a congruence on Q. Define a relation α^{\vee} on Q^{\vee} by

 $a^{i}x_{1}^{m}\alpha^{\vee}a^{i}y_{1}^{m} \Leftrightarrow x_{i}\alpha y_{i}, i = \overline{1, m}.$ (3.1)

Then

Prop 3.1. (i) α^{\vee} does not depend on the choice of a; (ii) α^{\vee} is a congruence on \mathbf{Q}^{\vee} , such that $\alpha_{|Q}^{\vee} = \alpha$.

Thus, for each congruence α on an (n, m)-group, there is a congruence, namely α^{\vee} , of its universal covering group, such that $\alpha^{\vee}_{IO} = \alpha$.

To be able to establish connections between the congruences of an (n,m)-group and its universal covering group, let us first give some properties of the congruence α^{\vee} on Q^{\vee} induced by a given congruence α of the given (n,m)-group Q.

Prop 3.2. Let α be a congruence on the (n,m)-group \mathbf{Q} , $\varphi = \operatorname{nat} \alpha$, $\varphi^{\vee} : Q^{\vee} \to (Q/\alpha)^{\vee}$, and $\overline{\alpha} = \ker \varphi^{\vee}$. Then $\overline{\alpha} = \alpha^{\vee}$.

Prop 3.3. Let α be a congruence on the (n,m)-group \mathbf{Q} . Then α^{\vee} satisfies the following conditions

$$(i) x_j \alpha^{\vee} y_j \& x_1^n = a_1^m, y_1^n = b_1^m \Rightarrow a_i \alpha^{\vee} b_i, i = \overline{1, m};$$
 (3.2)

(ii) The invariant subgroup K, induced by α^{\vee} is a subset of Q_{m+p} , where $m+p=sk, 0 \leq p \leq k-1$.

Prop 3.4. Let β be a congruence on \mathbf{Q}^{\vee} , $\alpha = \beta_{/Q}$ and β satisfy (3.2). Then α is a congruence on \mathbf{Q} , such that $\alpha^{\vee} \subseteq \beta$.

The next proposition establishes connections under which the restriction $\alpha = \beta_{/Q}$ of the congruence β of the universal covering group is such that $\alpha^{\vee} = \beta$.

Prop 3.5. Let β be a congruence on \mathbf{Q}^{\vee} , $\alpha = \beta_{/Q}$, β satisfies (3.2) and

$$0 \le i, j < k \& x_1^{m+i} \beta y_1^{m+j} \Rightarrow i = j.$$

Then α is a congruence on \mathbf{Q} , such that $\alpha^{\vee} = \beta$.

Prop 3.6. For each congruence α on the (n,m)-group Q, there exists an invariant subgroup $K \subseteq Q_{m+p}$, such that

$$x_j y_j^{-1} \in K, j = \overline{1, n} \& x_1^n = a_1^m, y_1^n = b_1^m \Rightarrow a_i b_i^{-1} \in K, i = \overline{1, m}.$$
 (3.3)

Conversely, for each invariant subgroup K of \mathbf{Q}^{\vee} , such that $K \subseteq Q_{m+p}$ and (3.3) is satisfied, there exists a congruence α on the (n,m)-group \mathbf{Q} , such that the invariant subgroup induced by α^{\vee} is exactly K.

Thus Prop 3.6 is a characterization of the congruences of an (n, m)-group through invariant subgroups of its universal covering group.

As a corollary of Prop 3.6 we obtain the following

Prop 3.7. The lattice of congruences of an (n, m)-group is a modular one and is isomorphic to a sublattice of the lattice of invariant subgroups of Q^{\vee} .

References

- [1] Čupona G., Celakoski N., Markovski S., and Dimovski D.: Vector Valued Groupoids, Semigroups and Groups, Vector Valued Semigroups and Groups, Maced. Acad. Sci. Art., Skopje, (1988), 1-78
- [2] Janeva B.: Congruences on n-Groups, Bull. Soc. Math. Mac., Skopje 19 (XLV) (1995), 85-90.
- [3] Markovski S. and Janeva B.: Post and Hosszu-Gluskin Theorem for Vector Valued Groups. Proc. Conf. "Algebra and Logic", Sarajevo (1987) 77-88.
- [4] Post E.L.: Polyadic Groups, Trans, Amer. Math. Soc. 48 (1940), 208-250.

КОНГРУЕНЦИИ НА (n,m)-ГРУПИ

Билјана Јанева

Резиме

Во овој труд е дадено обопштување на некои дефиниции и својства на конгруенции на n-групи ([2]). Конгруенциите на (n,m)-групи се дефинирани како конгруенции на соодветната компонетна алгебра и како јадро на хомоморфизам. Исто така дадена е и врската меѓу овие две дефиниции. Покрај тоа, покажано е дека за секоја конгруенција на (n,m)-група \boldsymbol{Q} постои нормална подгрупа од нејзината универзална покривачка група \boldsymbol{Q}^{\vee} која е подмножество од Q_{m+p} , каде m+p=sk, k=n-m>0, како и дека за секоја нормална подгрупа K од Q^{\vee} која е подмножество од Q_{m+p} и го задоволува условот

$$x_j y_j^{-1} \in K \ j = \overline{1, n} \ \& \ x_1 \cdots x_n = a_1 \cdots a_m, y_1 \cdots y_n = b_1 \cdots b_m$$
$$\Rightarrow a_i b_i^{-1} \in K, \ i = \overline{1, m},$$

постои конгруенција α на (n,m)-групата Q, така што соодветната нормална подгрупа од Q^\vee е точно K.

Faculty of Natural Sciences and Mathematics

P. O. Box 162 1000 Skopje

Macedonia