
Matematiqki Bilten ISSN 0351-336X
Vol.39 (LXV) No.2
2015 (13�18) UDC: 511.17:519.212.2
Skopje, Makedonija

A CONGRUENCE FOR FERMAT QUOTIENT

MIOMIR ANDJI� AND ROMEO ME�TROVI�

Abstract. Let p be a prime, and let qp(2) = (2p−1 − 1)/p be the Fermat
quotient of p to base 2. In this paper we prove that for any prime p > 3

qp(2) ≡
(−1)bp/3c−bp/6c3(p−1)/2 − 1

p

−
(−1)bp/3c−bp/6c3(p−3)/2

2

p−1∑
k=(p+1)/2

(−3)k

k
(mod p),

where bac denotes the greatest integer not exceeding a.

1. Introduction and the main result

If p is a prime and a is an integer not divisible by p, then by Fermat little
theorem ap−1 ≡ 1(mod p). This gives rise to the de�nition of the Fermat quotient

of p to base a,

qp(a) :=
ap−1 − 1

p
,

which is an integer according to Fermat little theorem. This quotient has been
extensively studied because of its links to numerous question in Number Theory.
In particular, Fermat quotients appear and play a major role in various questions
of computational and algebraic number theory (see the survey [5] of classical re-
sult). Among other properties, the p-divisibility of Fermat quotient qp(a) by p has
numerous applications which include the Fermat Last Theorem and squarefreeness
testing (see [1], [2], [8], [11], [18] and [20]).

Here, as usually in the sequel, we consider the congruence relation modulo
a prime power pe extended to the ring of rational numbers with denominators
not divisible by p. For such fractions we put m/n ≡ r/s (mod pe) if and only if
ms ≡ nr (mod pe), and the residue class of m/n is the residue class of mn′ where
n′ is the inverse of n modulo pe.
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A classical congruence, due to F.G. Eisenstein [4] in 1850, asserts that for a
prime p ≥ 3,

qp(2) ≡
1

2

p−1∑
k=1

(−1)k−1

k
(mod p) (1.1)

which was extended in 1861 by J. J. Sylvester [22] and in 1901 by J.W.L. Glaisher
[7, pp. 21�22] as

qp(2) ≡ −
1

2

(p−1)/2∑
k=1

1

k
(mod p).

The above congruence was generalized in 1905 by M. Lerch in the �rst paper of
substance on Fermat quotients [12] (see also [1, pp. 32�35]). Lerch developed
equivalent results entailing fewer terms.

As noticed in [16], the connection of Fermat quotients with the �rst case of
Fermat Last Theorem retains its historical interest despite the complete proof of
this theorem by A. Wiles in 1995, and Skula's demonstration in 1992 [20] that the
failure of the �rst case of Fermat Last Theorem would imply the vanishing of many
similar sums but with much smaller ranges (sums of Lerch's type which cannot be
evaluated in terms of Fermat quotients). Some criteria concerning the �rst case
of Fermat Last Theorem on Lerch's type sums were established in Ribenboim's
book [18], in 1995 by Dilcher and Skula [2] (cf. [3, Section 8]) and in 2012 by J.B.
Dobson [3].

In 1900 J.W.L. Glaisher [6] proved that for a prime p ≥ 3 it holds a curious
congruence

qp(2) ≡ −
1

2

p−1∑
k=1

2k

k
(mod p). (1.2)

Another variation of Eisenstein's congruence (1.1) and Glaisher's congruence (1.2)
was obtained in 1997 by W. Kohnen [10] (also see [13]).

In 2004 L. Skula [9] conjectured that

qp(2)
2 ≡ −

p−1∑
k=1

2k

k2
(mod p). (1.3)

Applying a certain polynomial congruence, A. Granville [9] proved the congruence
(1.3). In [15] the second author of this paper established a simple and elementary
proof of the congruence (1.3).

In [21, Theorem 4.1] Z.-H. Sun extended the congruences (1.2) and (1.3) modulo
p3 and p2, respectively. Furthermore, these Sun's congruences are extended in [14,
Theorem 1.5] and [16, Theorem 1.2]. Notice also that some curious combinatorial
congruences modulo p2 involving the Fermat quotient qp(2) are recently established
in [17].

Here we prove the following result.
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Theorem 1. Let p > 3 be a prime. Then

qp(2) ≡
(−1)bp/3c−bp/6c3(p−1)/2 − 1

p

− (−1)bp/3c−bp/6c3(p−3)/2

2

p−1∑
k=(p+1)/2

(−3)k

k
(mod p),

(1.4)

where bac denotes the greatest integer not exceeding a.

As an immediate consequence of Theorem 1, we obtain the known result con-

cerning the Legendre symbol
(

3
p

)
for a prime p > 3 (see, e.g., [19, �7.3, p. 257,

Exercise 2]).

Corollary 1.1. Let p > 3 be a prime. Then

3(p−1)/2 ≡
(
3

p

)
≡ (−1)bp/3c−bp/6c (mod p).

Proof of Theorem 1 is elementary and it is based on de Moivre's formula and
some congruences modulo a prime.

2. Proof of Theorem 1 and Corollary 1.1

Lemma 1. Let p > 3 be a prime, and let n be a positive integer such that p = 6n−1
or p = 6n+ 1. Then

qp(2) =
(−1)n3(p−1)/2 − 1

p
+ (−1)n

(p−1)/2∑
j=1

1

2j

(
p− 1

2j − 1

)
(−1)j3(p−1−2j)/2. (2.1)

Proof. By using the binomial expansion and the identity
(
m
k

)
= m

k

(
m−1
k−1

)
with

1 ≤ k ≤ m, we have

(
√
3 + i)p + (

√
3− i)p =

p∑
k=0

(
p

k

)√
3
p−k

ik +

p∑
k=0

(−1)k
(
p

k

)√
3
p−k

ik

= 2

(p−1)/2∑
j=0

(−1)j
(
p

2j

)√
3
p−2j

= 2
√
3

(p−1)/2∑
j=0

(−1)j
(
p

2j

)
3(p−1−2j)/2

= 2 · 3p/2 + 2
√
3

(p−1)/2∑
j=1

(−1)j p
2j

(
p− 1

2j − 1

)
3(p−1−2j)/2.

(2.2)
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On the other hand, by de Moivre's formula, we have

(
√
3 + i)p + (

√
3− i)p =2p

((
cos

π

6
+ i sin

π

6

)p
+
(
cos

π

6
− i sin π

6

))p
=2p+1 cos

pπ

6
.

(2.3)

If p = 6n± 1 with a positive integer n, then

cos
pπ

6
= cos

(6n± 1)π

6
= cos

(
nπ ± π

6

)
= (−1)n

√
3

2
. (2.4)

Comparing (2.2), (2.3) and (2.4), we obtain

(−1)n2p−1 = 3(p−1)/2 +

(p−1)/2∑
j=1

p

2j

(
p− 1

2j − 1

)
(−1)j3(p−1−2j)/2. (2.5)

Since 2p−1 = pqp(2) + 1, substituting this into (2.5) immediately gives (2.1). �

Proof of Theorem 1. Let n be a positive integer de�ned as in Lemma 1, that is,
p = 6n± 1.

Notice that for each j = 1, 2, . . . , (p− 1)/2 there holds(
p− 1

2j − 1

)
=

(p− 1)(p− 2) · · · (p− (2j − 1))

(2j − 1)!

≡ (0− 1)(0− 2) · · · (0− (2j − 1))

(2j − 1)!

=
(−1)2j−1(2j − 1)!

(2j − 1)!
= −1 (mod p).

(2.6)

Substituting (2.6) into (2.1) of Lemma 1 and using the fact that 3p−1 ≡ 1(mod p),
we get

qp(2) ≡
(−1)n3(p−1)/2 − 1

p
+ (−1)n

(p−1)/2∑
j=1

(−1)j−1

2j
3(p−1−2j)/2 (mod p)

=
(−1)n3(p−1)/2 − 1

p
− (−1)n3(p−1)/2

2

(p−1)/2∑
j=1

(−1)j

j
3−j

≡ (−1)n3(p−1)/2 − 1

p
+

(−1)n3(p−1)/2

2

(p−1)/2∑
j=1

(−1)p−1−j

p− j
3p−1−j (mod p)

=
(−1)n3(p−1)/2 − 1

p
+

(−1)n3(p−1)/2

2

p−1∑
k=(p+1)/2

(−3)k−1

k

=
(−1)n3(p−1)/2 − 1

p
− (−1)n3(p−3)/2

2

p−1∑
k=(p+1)/2

(−3)k

k
(mod p).

(2.7)
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Since p = 6n± 1 implies that n = bp/3c−bp/6c, substituting this into (2.7) yields
the congruence (1.4) of Theorem 1. �

Proof of Corollary 1.1. From the congruence (1.4) of Theorem 1 we see that that

(−1)bp/3c−bp/6c3(p−1)/2 − 1 ≡ 0 (mod p),

or equivalently,

3(p−1)/2 ≡ (−1)bp/3c−bp/6c (mod p).

This together with the fact that by the well known Euler's criterion, for any prime
p > 3 we have

3(p−1)/2 ≡
(
3

p

)
(mod p)

concludes the proof. �
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