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SOME CHARACTERIZATIONS OF 2-INNER PRODUCT

RISTO MALCHESKI, KATERINA ANEVSKA, AND SAMOIL MALCHESKI

Abstract. The characterization of 2-inner product is an issue which
is the focus of interest of many mathematicians. In this paper, several
equivalent characterizations of 2-inner product, that are consequences
of Theorem 2 ([12]) are discussed. Thus, the equivalence of generaliza-
tions of the Jordan and von Neumann ([7]) and also Frechet ([8]) clas-
sical results, are proven. Furthermore, the characterization of Hlawka,
the characterization of D. S. Marinescu, M. Monea, M. Opincariu and
M. Stroe ([4]) are proven as well.

1. INTRODUCTION

Let L be a real vector space with dimension greater than 1 and ||·, ·|| be
a real function on L × L such that:

a) ||x, y|| ≥ 0, for all x, y ∈ L and ||x, y|| = 0 if and only if the set {x, y}
is linearly dependent,

b) ||x, y|| = ||y, x||, for all x, y ∈ L,
c) ||αx, y|| = |α| · ||x, y||, for all x, y ∈ L and for each α ∈ R, and
d) ||x + y, z|| ≤ ||x, z||+ ||y, z||, for all x, y, z ∈ L.

The function ||·, ·|| is said to be 2-norm of L, and (L, ||·, ·||) is said to be
vector 2-normed space ([11]). The inequality in the axiom d) is said to be
parallelepiped inequality.

Let n > 1 be a positive integer, L be a real vector space, dim L ≥ n and
(·, ·|·) be a real function over L × L × L such that:

i) (x, x|y) ≥ 0, for all x, y ∈ L and (x, x|y) = 0 if and only if x and y are
linearly dependent,

ii) (x, y|z) = (y, x|z), for all x, y, z ∈ L,
iii) (x, x|y) = (y, y|x), for all x, y ∈ L,
iv) (αx, y|z) = α(x, y|z), for all x, y, z ∈ L.and for each α ∈ R, and
v) (x + x1, y|z) = (x, y|z) + (x1, y|z), for all x1, x, y, z ∈ L.
The function (·, ·|·)is said to be 2-inner product, and (L, (·, ·|·)) is said to

be 2-pre-Hilbert space ([4]).

2000 Mathematics Subject Classification. 46C50, 46C15, 46B20.
Key words and phrases. 2-norm, 2-inner product, parallelepiped equality .

22



SOME CHARACTERIZATIONS OF 2-INNER PRODUCT 23

The concepts of 2-norm and 2-inner product are two dimensional analo-
gies to the concepts of a norm and an inner product. R. Ehret proved ([9])
that if (L, (·, ·|·)) is a 2-pre-Hilbert space, then

||x, y|| = (x, x|y)1/2 (1)

for all x, y ∈ L, defines a 2-norm.
So, we get vector 2-normed space (L, ||·, ·||) and moreover, for all x, y, z ∈

L the following equalities are satisfied:

(x, y|z) = ||x+y,z||2−||x−y,z||2

4
(2)

||x + y, z||2 + ||x − y, z||2 = 2(||x, z||2 + ||y, z||2) (3)

The equality (3) is actually analogous to the parallelogram equality and
it is called parallelepiped equality. Further, 2-normed space L is 2-pre-
Hilbert space if and only if for all x, y, z ∈ L the equality (3) holds true.

The following theorem gives one other elementary characterization of 2-
inner product, i.e. we will prove the equivalence of generalizations of the
classical results of Jordan and von Neumann ([7]) and Frechet ([8]).

Theorem 1. Let (L, ||·, ·||) be a real 2-normed space. Then, L is a
2-pre-Hilbert space if and only if

||x + y + z, u||2 + ||x, u||2 + ||y, u||2 + ||z, u||2 =

= ||x + y, u||2 + ||y + z, u||2 + ||z + x, u||2 (4)

for all x, y, z, u ∈ L.
Proof. Let the equality (4) hold true, for all x, y, z, u ∈ L. For z = −y,

and for each x, y, u ∈ L it is true that

||x, u||2+ ||x, u||2+ ||y, u||2+ ||−y, u||2 = ||x+y, u||2+ ||0, u||2+ ||x−y, u||2,

i.e. the equality (3) holds true, therefore, L is a 2-pre-Hilbert space. Con-
versely, let (L, ||·, ·||) be a 2-pre-Hilbert space. Then the equation of the
parallelogram implies that for all x, y, z, u ∈ L the following holds true

||x + y + z, u||2 + ||x, u||2 + ||y, u||2 + ||z, u||2 =

= 1
2
||2x + y + z, u||2 + 1

2
||y + z, u||2 + 1

2
||y + z, u||2 + 1

2
||y − z, u||2

= 1
2
||2x + y + z, u||2 + 1

2
||y − z, u||2 + ||y + z, u||2

= 1
2
||(x + y) + (x + z), u||2 + ||(x + y) − (x + z), u||2 + ||y + z, u||2

= ||x + y, u||2 + ||y + z, u||2 + ||z + x, u||2,

i.e. the equality (4) holds true.
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2. CHARACTERIZATION OF 2-PRE-HILBERT SPACE

The problem of characterization of 2-pre-Hilbert spaces, i.e. the neces-
sary and sufficient conditions, the 2-normed spaces to be treated as 2-pre-
Hilbert space is of particular interest while studying the 2-normed spaces.
Thus, in [5] characterization of 2-pre-Hilbert space is given by using Euler-
Lagrange type of equality, in [7] is given characterization by using strictly
convex norm with modulus c, and in [9] are given characterizations by
using Mercer inequality for 2-normed space and its equivalent inequality.
Furthermore, in [13] the following theorem is proven.

Theorem 2. ([12]). Let (L, ||·, ·||) be a real 2-normed space. L is a 2-
pre-Hilbert space if and only if the following condition is satisfied: If n ≥ 3,

x1, x2, ..., xn, z ∈ L and a1, a2, ..., an are real numbers such that
n∑

i=1

ai = 0,

then

||

n∑

i=1

aixi, z||
2 = −

∑

1≤i<j≤n

aiaj||xi − xj, z||
2 (5)

.
In the next consequence, by applying theorems 1 and 2 we will prove the

following generalization of Hlawkas result.

Corollary 1. Let (L, ||·, ·||) be a real 2-normed space. L is a 2-pre-
Hilbert space if and only if for each n ≥ 2 and for each x1, x2, ..., xn, z ∈ L

the following equality holds true

||

n∑

i=1

xi, z||
2 + (n − 2)

n∑

i=1

||xi, z||
2 =

∑

1≤i<j≤n

||xi + xj, z||
2. (6)

Proof. Let for each n ≥ 2 and for all x1, x2, ..., xn, z ∈ L the equality
(6) holds true. For n = 3 and x1 = x, x2 = y, x3 = u the equality (6) is
transformed as the following:

||x + y + u, z||2 + ||x, z||2 + ||y, z||2 + ||u, z||2 =

= ||x + y, z||2 + ||y + u, z||2 + ||u + x, z||2,

x, y, u, z ∈ L

by applying Theorem 1 we get that L is a 2-pre-Hilbert space.
Conversely, let L be a 2-pre-Hilbert space, n ≥ 2 and x1, x2, ..., xn, z are

arbitrary vectors from L. If we get that an+1 = −n, ai = 1, i = 1, 2, ..., n

and xn+1 = 0 then, by applying the above theorem and the parallelepiped
equality the following equality holds true
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||
n∑

i=1

xi, z||
2 = ||

n∑
i=1

xi − nxn+1, z||
2 =

= n
n∑

i=1

||xi − xn+1, z||
2 −

∑
1≤i<j≤n

||xi − xj , z||
2

= n
n∑

i=1

||xi, z||
2 − 2

∑
1≤i<j≤n

(||xi, z||
2 + ||xj, z||

2) +
∑

1≤i<j≤n
||xi + xj, z||

2)

= n
n∑

i=1

||xi, z||
2 − 2(n − 1)

n∑
i=1

||xi, z||
2 +

∑
1≤i<j≤n

||xi + xj, z||
2),

which is equivalent to equality (6).

In the following considerations will be proven several consequences of
Theorem 2, which are actually generalizations of the results given by D. S.
Marinescu, M. Monea, M. Opincariu and M. Stroe ([4]).

Corollary 2. Let (L, ||·, ·||) be a real 2-normed space. L is a 2-pre-
Hilbert space if and only if for each n ≥ 2, for all a1, a2, ..., an ∈ R and for
all x1, x2, ..., xn, z ∈ L the following equality holds true

||
n∑

i=1

aixi, z||
2 =

= (a1 + a2 + ... + an)
n∑

i=1

ai||xi, z||
2 −

∑

1≤i<j≤n

aiaj||xi − xj , z||
2. (7)

Proof. For each n ≥ 2, and for all a1, a2, ..., an ∈ R and x1, x2, ..., xn, z ∈
L, let the equality (7) hold true. For n = 2, a1 = a2 = 1, x1 = x, x2 = y

the equality (7) is transformed as the following

||x + y, z||2 = 2(||x, z||2 + ||y, z||2) − ||x− y, z||2, x, y, z ∈ L

i.e. the equality (3) holds true. The latter means that L is a 2-pre-Hilbert
space.

Conversely, let L be a 2-pre-Hilbert space, n ≥ 2, a1, a2, ..., an be arbi-
trary real numbers and x1, x2, ..., xn, z arbitrary vectors on L.

Let an+1 = −(a1 + a2 + ... + an) and xn+1 = 0. Since Theorem 2 we get
the following

||

n∑

i=1

aixi, z||
2 = ||

n+1∑

i=1

aixi, z||
2 = −

∑

1≤i<j≤n+1

aiaj ||xi − xj, z||
2

= −

n∑

i=1

aian+1||xi − xn+1, z||
2 −

∑

1≤i<j≤n

aiaj||xi − xj, z||
2

= −(a1 + a2 + ... + an)

n∑

i=1

ai||xi, z||
2 −

∑

1≤i<j≤n

aiaj||xi − xj, z||
2,
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The latter means that the equality (7) holds true.
Corollary 3. Let (L, ||·, ·||) be a real 2-normed space. L is a 2-pre-

Hilbert space if and only if for each n ≥ 2, for all a1, a2, ..., an ∈ R such

that
n∑

i=1

ai = 1 and for all x1, x2, ..., xn, z ∈ L the following equality holds

true

||

n∑

i=1

aixi, z||
2 =

n∑

i=1

ai||xi, z||
2 −

∑

1≤i<j≤n

aiaj||xi − xj, z||
2. (8)

Proof. Let for each n ≥ 2, for all a1, a2, ..., an ∈ R so that
n∑

i=1

ai = 1

and x1, x2, ..., xn, z ∈ L, the equality (8) hold true. For n = 2, a1 = a2 = 1
2
,

x1 = x, x2 = y the equality (8) is transformed as following

|| 12x + 1
2y, z||2 = 1

2 ||x, z||2 + 1
2 ||y, z||2 − 1

4 ||x + y, z||2

for all x, y, z ∈ L. The latter is equivalent to the equation (3). Therefore
L is 2-pre-Hilbert space.

Conversely, let L be a 2-pre-Hilbert space and n ≥ 2, a1, a2, ..., an are

any real numbers so that
n∑

i=1

ai = 1 and x1, x2, ..., xn, z are any vectors on

L. Let an+1 = −1 and xn+1 = 0. Theorem 2 implies the following

||

n∑

i=1

aixi, z||
2 = ||

n+1∑

i=1

aixi, z||
2 = −

∑

1≤i<j≤n+1

aiaj||xi − xj, z||
2

= −

n∑

i=1

aian+1||xi − xn+1, z||
2 −

∑

1≤i<j≤n

aiaj||xi − xj , z||
2

=

n∑

i=1

ai||xi, z||
2 −

∑

1≤i<j≤n

aiaj||xi − xj, z||
2,

The latter means that (8) holds true.

Corollary 4. Let (L, ||·, ·||) be a real 2-normed space. Then L is a 2-
pre-Hilbert space if and only if for all n ≥ 2, for each a1, a2, ..., an ∈ R\{0}

so that
n∑

i=1

ai 6= 0 and for all x1, x2, ..., xn, z ∈ L the following equality holds

true

n∑

i=1

||xi,z||2

ai
− 1

n
P

i=1

ai

||

n∑

i=1

xi, z||
2 = 1

n
P

i=1

ai

∑

1≤i<j≤n

||ajxi−aixj ,z||2

aiaj
. (9)
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Proof. Let for each n ≥ 2, for all a1, a2, ..., an ∈ R\{0} so that
n∑

i=1

ai 6= 0

and for all x1, x2, ..., xn, z ∈ L the equality (9) holds true. For n = 2,
a1 = a2 = 1, x1 = x, x2 = y the equality (9) is the following

||x, z||2 + ||y, z||2 − 1
2 ||x + y, z||2 = 1

2 ||x− y, z||2,

for allx, y, z ∈ L. The latter is equivalent to (3). Thus, Lis 2-pre-Hilbert
space.

Conversely, let L be a 2-pre-Hilbert space and n ≥ 2, a1, a2, ..., an ∈

R\{0} are arbitrary real numbers so that
n∑

i=1

ai 6= 0 holds true and x1, x2, ...,

xn, z are arbitrary vectors on L. Let an+1 = −1 and xn+1 = 0.
Theorem 2 implies the following

||
n∑

i=1

aixi, z||
2 = ||

n+1∑

i=1

aixi, z||
2 = −

∑

1≤i<j≤n+1

aiaj||xi − xj, z||
2

= −
n∑

i=1

aian+1||xi − xn+1, z||
2 −

∑

1≤i<j≤n

aiaj||xi − xj , z||
2

=

n∑

i=1

ai||xi, z||
2 −

∑

1≤i<j≤n

aiaj||xi − xj, z||
2,

The latter means that (9) holds true.

Corollary 5. Let (L, ||·, ·||) be a real 2-normed space. L is a 2-pre-
Hilbert space if and only if for each n ≥ 2 and for all x1, x2, ..., xn, z ∈ L

the following holds true

1
n ||

n∑

i=1

xi, z||
2 =

n∑

i=1

||xi, z||
2 − 1

n

∑

1≤i<j≤n

||xi − xj, z||
2. (10)

.
Proof. Let (10) hold true for each n ≥ 2 and for all x1, x2, ..., xn, z ∈ L.

For x1 = x, x2 = y (10) is transformed as the following

1
2
||x + y, z||2 = ||x, z||2 + ||y, z||2 − 1

2
||x− y, z||2,

for all x, y, z ∈ L. The above equality is equivalent to (3). Thus, Lis 2-pre-
Hilbert space. Conversely, let L be a 2-pre-Hilbert space and n ≥ 2 and
x1, x2, ..., xn, z are arbitrary vectors on L. Let an+1 = −1, ai = n, i =
1, 2, ..., n and xn+1 = 0. Theorem 2 implies the following
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||
n∑

i=1

1
nxi, z||

2 = ||
n∑

i=1

1
nxi − xn+1, z||

2 =

= 1
n

n∑
i=1

||xi − xn+1, z||
2 −

∑
1≤i<j≤n

1
n2 ||xi − xj , z||

2

= 1
n

n∑
i=1

||xi, z||
2 − 1

n2

∑
1≤i<j≤n

||xi − xj , z||
2,

The latter is equivalent to (10).
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