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ON THE CONCEPT OF CONNECTEDNESS 

 

Nikita Shekutkovski  
 

 

Abstract Definition of quasicomponents by coverings is given and It is shown 

the equivalence with standard definition. Intrinsic definition of pointed 1-mo-

vability is given, that uses only coverings. It is shown that two definitions 

coincide.   

 

 

1. DEFINITION OF CONNECTEDNESS BY COVERINGS 

 

The standard definition of connectedness from the books of topology is: 

 

Definition 1.1. Suppose A  and B  are nonempty subsets of the topological 

space X . A  and B  are separated if A B A B    . X  is conncted, if X  

cannot be expressed as union of two separated sets. 

 

This definition of connectedness is given in the beginning of 20
th
 century by 

Riesz and Hausdorff.  

The main minus of the definition is that definition is given by negative 

sequence.. Here will be presented another definition based on coverings. 

Suppose F is a family of subsets of X , and x  and y  are two points in X . A 

chain in F from x  and y  is a finite sequence 1 2, ,..., nF F F  of members of F 

such that 1x F , ny F  and 1i iF F  , for 1 1i n   . 

 

Definition 1.2. Suppose X  is a topological space. X  is connected if for any 

two points x  and y  in X  and any open covering of X  there is a chain of 

members of the covering from x  to y  

__________________________________________________ 

2010 Mathematics Subject Classification. Primary: 54D05   

Key words and phrases. Connectedness, coverings, quasicomponents, path 

connectedness, pointed 1-movability, proximate path connectedness 



6    Nikita Shekutkovski 

 

 

Proposition 1.1. The two definitions of connectedness coincide. 

Proof. Suppose X  is a topological space, X  is connected by Definition 1, and 

U is an open covering of X . For two points x  and y  in X , define A  to be the 

set of all points p  of X  such that there is a chain in U from x  to p  and define 

B  to be the set of all points p  of X such that there is a chain in U from y  to 

p  . 

If we suppose that A B   then it must be A B   (on the contrary if 

b A  and b B , then there will be a chain U from x  to b  i.e. b A ). 

Similarly it must be A B   and we will obtain a contradiction.  

It follows A B  , i.e. there exists a chain in U from x  to y .  

Now, suppose X  is connected by Definition 2. If X  can be expressed as union of 

two separated sets A  and B , then both sets are open, and if we choose points 

x A  and y B , then in the open covering { , }A B  there is no chain from x  to y   

It follows X  cannot be expressed as union of two separated sets i.e. X  is 

connected by definition 1.  

 

In the case of compact metric spaces Definition 2 can be simplified i.e. 

 

Definition 1.2’. Suppose X  is a compact metric spaces. X  is connected if for 

any two points x  and y  in X , and any r > 0 there is a finite chain of open r –

balls from x  to y  

 

Proof. Def 2)Def 2’) Take the covering of X  consisting of all oen r –balls. 

By Definition 2 we can choose a finite chain of open r –balls from x  to y . 

For compact metric spaces we will prove the converse i.e. Def 2’)Def 2) . 

Take an open covering U of X . By Lebesgue number Lemma we can choose r 

> 0 such that all balls with radius r and centers in points of X  are contained in 

some meber of U. By Definition 2’ there is a finite chain r –balls from x  to y , 

say 1 2( ), ( ),..., ( )r r r nB x B x B x . Since, there exist members 1 2, ,..., nU U U  of the 

covering U such that  

1 1 2 2( ) , ( ) , ... , ( )r r r n nB x U B x U B x U    

The finite sequence 1 2, ,..., nU U U  is a chain in U from x  to y . 

 

The Definition 2’ is in fact the same with definition of connectedness given 

by Cantor in the period from 1879 till 1884 : 
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(Cantor definition of connectedness) Space is connected if for any two points x 

and y and any 0r   there is a finite number of points  

0 1 2 1, , ,..., nx x x x x y   

such that  

1( ),i id x x   . 

Of course, if compact metric space is connected by Definition 2’ i.e. for two 

points x  and y  there is a chain 1 2( ), ( ),..., ( )r r r nB x B x B x  of r –balls from x  to 

y , then for the points 0 1 2 1, , ,..., nx x x x x y   is satisfied 1( ),i id x x   . 

 On the other hand if compact metric space is connected by Cantor definition, 

and for two points x  and y  there is a finite number of points 0 1 2, , ,...,x x x x  

1nx y   such that 1( ),i id x x   , then 1 2( ), ( ),..., ( )r r r nB x B x B x  is a chain of 

–r balls from x  to y , 

 

The definition of connectedness by coverings has advantages in some 

situations, for example a simpler definition of qasicomponents. 

A quasicomponent of a point x  is ussualy defined as the intersection of all 

clopen (= open and closed) sets containing the point x .  

 

Theorem 1.1. Suppose X  is a topological space, x  and y  points in X . The 

following statements are equivalent 

1) x  and y  belong to the same quasicomponent  

2) for any covering of X  there is a chain of members of the covering from x  

to y  

Proof: 1)2) Suppose x and y belong to the same quasicomponent and there is 

a covering U such that there is no chain in U from x  to y . Define A  to be the 

set of all points p  of X  such that there is a chain in U from x  to p . Then A  

is open. Also, A  is closed since for any point p A , there is a chain in U from 

x  to p . If we put \B X A  then A  and B  are clopen, x A  and y B , a 

contradiction with the fact that they belong to the same quasicomponent. 

2)1) Suppose for any covering of X  there is a chain of members of the 

covering from x  to y . If we suppose that there exists a clopen set A , x A  

and y A . Then in the open covering { , \ }A X A  there is no chain from x  to 

y . 



8    Nikita Shekutkovski 

 

 

 

By the previous Theorem, the quasicomponent of a point x  can be defined 

by 

 

Definition 1.3. The quasicomponent of a point x  consists of all points p  such 

that for all open coverings U there is a chain in U from x  to p . 

 

Since the notions of component and quasicomponent coincide for compact 

metric spaces the above definition is definition of a component in compact 

metric spaces.  

 

2. A CONNECTIVITY NOTION BETWEEN CONNECTEDNESS  

AND PATH CONNECTEDNESS 

 

The notion of path connectedness is very natural i.e. a topological space X  

is connected if for any two points x  and y  there is a path from x  to y . 

Historically it appeared before the notion of connectedness  

The subject of this section is a kind of strong connectivity that stays between 

connectedness and path connectedness.  

At the end of sixties of 20
th 

century was introduced the notion of pointed 1-

movability by K. Borsuk. The original definition uses embeddings of compact 

metric spaces in Hilbert cube.  

Instead of Borsuk definition of pointed 1- movability here is presented 

modified definition given in [3] and [4] under name joinability. 

In [3] is proved that the two notions coincide. 

 

Definition 2.1. Suppose X Q  is a continuum and ,x y X . We say that 

:[0,1] [0, )h Q    is approximative X -path between x  and y  if 

 1) (0, )h s x  and (1, )h s y  for each s  in [0, )  

 2) for each neighborhood U  of X  in Q  there is 0s   such that 

([0,1] [ , ))h s U    

X is joinable (pointed 1-movable) if between any two points in X there is an 

approximative X-path.  

  

Here will be presented another definition of this notion that uses only 

coverings of the space. The notion was first presented in [5] and used to study 

connectivity properties of chain recurrent set in a dynamical system. 
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For collections U and V of subsets of X , U  V means that U refines V, i.e. 

each U U is contained in some V  V. If U  U , then the star of U  is the set 

St(U ,U) = {W U |W U } and by St U is denoted the collection of all 

St(U ,U), U  U . 

By a covering we understand a covering consisting of open sets.  

 

Definition 2.2. Suppose Vis a covering of Y . A function :f X Y  is V - 

continuous at point x X , if there exists a neighborhood xU  of x , and V  V, 

such that ( )xf U V .  

A function :f X Y  is V–continuous, if it is V–continuous at every point 

x X .  

 

Definition 2.3. The functions , :f g X Y  are V -homotopic, if there exists a 

function :F X I Y   such that: 

1) :F X I Y   is st
 
(V) - continuous  

2) :F X I Y   is V - continuous at all points of X I   

3) ( ,0) ( )F x f x , ( ,1) ( )F x g x   

 

Here [0,1]I   is the unit interval. If :f X Y  is V – continuous, then 

:f X Y  is W – continuous for any W such that V W . By this, since 

V st(V), if the function :F X I Y  in above definition is is V – continuous 

then conditions 1) and 2) are satisfied,  

 

A V - continuous path is V - continuous function :[ , ]k a b X . 

 

Further on, we will consider only compact metric spaces. In this case it is 

enough to consider only finite coverings.  

 

A sequence of finite coverings, V1 1  V 2  … of a compact metric space 

such that for any covering V, there exists n, such that V  V n  we call a cofinal 

sequence of finite coverings.  

A proximate path is defined by a cofinal sequence of finite coverings V1  

V 2 … and a sequence ( )nk , of V n  - continuous paths :nk I X , and for all 

indices m n , nk  and mk  are V n  - homotopic relative {0,1}.  
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Definition 2.4. X is proximate path connected if for any two points x and y 

there is a proximate path ( )nk  from x to y, i.e. (0)nk x , (1)nk y  for all 

integers n . 

 

By the definition above it is clear that path connectedness implies proximate 

path connectedness , and proximate path connectedness imples connectedness. 

 

To the end of the section the following theorem will be proven. 

 

Theorem 2.1. Pointed 1-movable in the sense of Borsuk  strongly connected. 

 

First we will prove direction ( ). We need the following:  

A covering V of M in X is called regular if it satisfies the following conditions: 

1) If V  V, than V M  . 

2) If ,U V  V and U V  , than U V   V. 

About the condition 1) see definition of proper covering, ([2], Definition 8.1., p. 

249), while the condition 2) together with 1) shows that V is a regular family 

relative to M in the sense of [2] (Definition 3.5. p. 262). 

For a covering V of M we introduce the notation | V | =
V

V


V

. For a regular finite 

covering V of M, we define a function rV  : | V | →M in the following way:  

For points y M  we put rV (y) = y. 

For points y |V |\M, by induction we can choose the smallest member V  

V such that y V , then choose a fixed point [ ]V V M   and put 

  ( ) [ ]y Vr V . 

The defined function rV  is V -continuous. 

 

Now, suppose V1 V 2 ... is a cofinal sequence of regular finite coverings 

of X in the Hilbert cube Q . 

For any two points ,x y X , there is an approximative X -path 

:[0,1] [0, )h Q    between x  and y .  

Then, there is 0js   such that ([0,1] [ , ))jh s   |V j |. Define :jh I Q  

by 

( ) ( , )j jh t h t s  
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and define a V j = path :jk I X  by 

( )jk t  r V j ( )jh t  

To prove that ( )jk , is a proximate path we have to prove that for all indices 

j, jk  and 1jk   are V j  - homotopic relative {0,1}.  

Define 1: [ , ]j j jH I s s Q   by 

( , ) ( , )jH t s h t s  

and define a V j  – continuous function 1: [ , ]j j jK I s s X   by 

( , )jK t s  r
jV

( , )jH t s  

Then  

( , ) ( , ) ( )j j j j jK t s h t s k t   

and 

1 1 1( , ) ( , ) ( )j j j j jK t s h t s k t     

Also     

(0, )jK s  r
jV

(0, )jH s = r
jV

(0, )h s = r
jV

 (x)=x 

and similarly 

(1, )jK s  y. 

These proves that ( )jk  is a proximate path from x  to y . 

  

To prove the the direction ( ) we need some preliminaries: 

 

Definition 2.3. If U is an covering of X ,we say that points .x y X are U – 

near if there is U  U, such that .x y U . 

 

Let V be a covering of Y . Two functions , :f g X Y  are V - near, if for 

any x X  the points ( )f x  and ( )g x  are V – near.  

For a metric space X with a metric d a notion of “r – near” can be defined. 

 

Definition 2.3’. X a metric space with metric d. For a given r > 0, we say that 

points .x y X are r – near if ( . )d x y r  

Two functions , :f g Y X  are r – near, if for any y Y  the points ( )f y  and 

( )g y  are r – near i.e. ( ( ). ( ))d f y g y r . 
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(Lemma of Ho, [1] ) Let X  be a paracompact space, and C a convex subset 

of a normed linear space L. For any r – continuous function :f X C  there 

exists a r – near function :g X C  which is continuous. 

The proof of this Lemma [1] can be easily modified with additional 

assumption that in a point 0x X , to be satisfied 0 0( ) ( )f x g x . 

 

For the proof of direction ( ), suppose ( )jk  is a proximate path from x  to 

y  over a cofinal sequence V1 V 2 ... of finite coverings of X in Hilbert cube 

Q. 

The proximate path ( )jk  from x  to y , consists of V j  - continuous paths 

:jk I X , and for all indices jk  and 1jk   are V j - homotopic relative {0,1}, 

i.e there exists V j – continuous function : [0,1]jK I X   such that  

( ,0) ( )j jK t k t  

and 

1( ,1) ( )j jK t k t  

Also     

(0, )jK s  x 

and  

(1, )jK s  y. 

 

By induction on j we will construct continuous functions : [0,1]jH I Q  . 

such that (0, )jH s  x, (1, )jH s  y , and such that 1(1, ) (0, )j jH s H s  . 

Suppose continuous functions 1 2 1, ,..., jH H H   are constructed. By Lemma 

of Ho, for : [0,1]jK I X  there is a V j - near continuous function 

: [0,1]jH I Q   such that (0, )jH s  x , (1, )jH s  y and 1( ,0) ( ,1)j jH t H t . 

By the last condition we can glue these continuous function and obtain a 

continuous function :[0,1] [1, )h Q    by formula 

    ( , ) ( , )jh t s H t j s   

for s I  and [ , 1]s j j  . This continuous function satisfies  

 1) (0, )h s x  and (1, )h s y  for each s  in [1, )  
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 2) for each neighborhood U  of X  in Q  there is 0s   such that 

([0,1] [ , ))h s U    

i.e. :[0,1] [1, )h Q    is an approximative X -path between x  and y  

 

Example. Dyadic solenoid i of Van Dantzig/Vietoris s not pointed I-movable/ 

joinable/proximatepath connected.  

Dyadic solenoid is the inters of members of the sequence 1 2 n...Т Т Т    

...  The first member of sequence 1Т  is a solid torus. Each next member of 

this sequence, iТ , is a solid torus twice twisted and embedded in the previous 

1iТ    

 

1Т     2Т  twice twisted and embedded in 1Т     2Т  

Fig. 1 
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