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Abstract. In this paper, we prove coincidence and common fixed point results 

for one a pair of mappings that satisfy the (E.A) property and its generalized 

variants in the setup of b-dislocated metric spaces. Our results generalize and 

extend some existing results in the literature.  

  

 

1. INTRODUCTION 

 

     The study of metric fixed point theory in b-metric space was introduced and 

studied by Bakhtin [4] and Czerwik [10]. After that a series of papers have been 

published with interesting results about fixed point and common fixed points for 

different classes of mappings such as single value and multi valued, involving a 

single map, two mappings, compatible and weakly compatible mappings in the 

framework of B-metric spaces. One another generalization is dislocated metric 

spaces considered by P. Hitzler and A. K. Seda in [5] who introduced this 

metric as a generalization of usual metric, and generalized the Banach 

contraction principle on this space. Further many papers has been given as in 

references [2,6,7,11,13,14,15 ].  

    Recently a generalization of b-metric space and dislocated metric space such 

as b -dislocated metric spaces was introduced and studied by N. Hussain et.al 

[7]. Also in [7] are presented some topological aspects and properties of b -

dislocated metrics. Subsequently, some fixed point and common fixed point 

results have been investigated for different types of contractions in these spaces. 

On the other hand, (E:A)property was introduced in 2002 by Aamri and 

Moutaawakil in [18]. Later, some authors employed this concept to obtain some 

new fixed point results, can see ([19, 20, 21, 22]).  
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In this paper, we prove results for a pair of mappings which satisfy the (E.A) 

and (E.A) Like property in b-dislocated metric spaces. We generalize some 

coincidence and fixed point theorems for mappings using the concepts of 

weakly compatible pair of mappings, as well as by using  -contractive 

conditions and linear type in a class of spaces such as b- dislocated metric 

spaces. 

 

2. PRELIMINARIES  

 

Definition 2.1 [6]. Let X be a nonempty set and a mapping : [0, )ld X X    

is called a dislocated metric (or simply ld -metric) if the following conditions 

hold for any , ,x y z X : 

i. If ( , ) 0ld x y  , then x y  

ii. ( , ) ( , )l ld x y d y x  

iii. ( , ) ( , ) ( , )l l ld x y d x z d z y   

The pair ( , )lX d  is called a dislocated metric space (or d -metric space for 

short). Note that when x y , ( , )ld x y  may not be 0 . 

 

Definition 2.2[8]. Let X be a nonempty set and a mapping : [0, )db X X    

is called a b -dislocated metric (or simply db -dislocated metric) if the following 

conditions hold for any , ,x y z X and 1s  :  

a. If ( , ) 0db x y  , then x y  

b. ( , ) ( , )d db x y b y x  

c. ( , ) [ ( , ) ( , )]d d db x y s b x z b z y   

The pair ( , )dX b  is called a b -dislocated metric space. And the class of b -

dislocated metric space is larger than that of dislocated metric spaces, since a b -

dislocated metric is a dislocated metric when 1s  . 

 

Example 2.3. If X R , then ( , ) | | | |ld x y x y   defines a dislocated metric on

X . 

 

Definition 2.4 [7]Let ( , )dX b  a db -metric space, and  nx  be a sequence of 

points in X . A point x X  is said to be the limit of the sequence { }nx  if 
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lim ( , ) 0d n
n

b x x


  and we say that the sequence { }nx  is db -convergent to x  

and denote it by nx x  as n . 

The limit of a db -convergent sequence in a db -metric space is unique [8, 

Proposition 1.27]. 

 

Definition 2.5 [7]. A sequence { }nx  in a db -metric space ( , )dX b  is called a 

db -Cauchy sequence iff given 0  , there exists 0n N  such that for all 

0,n m n , we have ( , )d n mb x x   or 
,
lim ( , ) 0d n m

n m
b x x


 . 

Every db -convergent sequence in a db -metric space is a db -Cauchy sequence. 

 

Definition 2.6 [7]. A db -metric space ( , )dX b  is called complete if every db -

Cauchy sequence in X is db -convergent.  

 

Definition 2.7 [20]. Let f and g be two self mappings on a metric space ( , )X d . 

The mappings f  and g  are said to be compatible if 

lim ( , ) lim ( , ) 0n n n n
n n

d fgx gfx d fx gx
 

   

whenever { }nx  is a sequence in X  such that lim limn n
n n

fx gx z
 

  , for some

z X . 

 

Definition 2.8 [23]. Let f and g be self mappings of a set X . Then, f and g

are said to be weakly compatible if they commute at their coincidence point; 

that is fx gx for some x X implies gfx fgx . 

 

   Some examples in the literature shows that in general a b -dislocated metric is 

not continuous. 

 

Lemma 2.9 [7]. Let ( , )dX b  be a b -dislocated metric space with parameter

1s  . Suppose that { }nx  and { }ny  are db -convergent to ,x y X , respectively. 

Then we have 

2

21 ( , ) lim inf ( , ) lim sup ( , ) ( , )d d n n d n n d
s n n

b x y b x y b x y s b x y
 

    

In particular, if ( , ) 0db x y  , then we have lim ( , ) 0 ( , )d n n d
n

b x y b x y


  .  
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Moreover, for each z X , we have 

1 ( , ) lim inf ( , ) lim sup ( , ) ( , )d d n d n ds n n
b x z b x z b x z sb x z

 
    

In particular, if ( , ) 0db x z  , then we have lim ( , ) 0 ( , )d n d
n

b x z b x z


  . 

 

Example 2.10. If {0}X   , then the function 2( , ) ( )db x y x y   defines a 

b -dislocated metric on X with parameter 2s  . 

   

Consistent with [18,19] are the following definitions in a b-dislocated metric 

space. 

 

Definition 2.11. Let X be a b-dislocated metric space. Selfmaps f and g on X

are said to satisfy the (E.A)-property if there exists a sequence { }nx  in X  such 

that { }nfx  and { }ngx  are db convergent to some t X and ( , ) 0db t t  , 

(equivalently lim ( , ) lim ( , ) ( , ) 0d n d n d
n n

b fx t b gx t b t t
 

   ). 

 

Definition 2.12. Let f and g be two self-mappings of a b -dislocated metric 

space ( , )dX b . We say that f and g satisfy the (E. A) Like property if there 

exists a sequence ( )nx such that { }nfx  and { }ngx  are db convergent to t , for 

some ( )t f X  or ( )t g X , i.e. ( ) ( )t f X g X   and ( , ) 0db t t  . 

 

Remark. From the definitions 2.9-2.10, it is evident that a pair  ,f g satisfying 

the (E.A) like property always enjoys the property (E.A) but the implication is 

not reversible. 

 

Definition 2.13 [6]. Let f and g  be two self-mappings on a non-empty set X

then, 

(1) Any point x X  is said to be fixed point of f  if fx x . 

(2) Any point x X is called coincidence point of f  and g  if fx gx , and we 

called u fx gx   is a point of coincidence of f  and g . 

(3) A point x X  is called common fixed point of f  and g  if fx gx x  .  
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3. MAIN RESULT 

 

In this section, some common fixed point results for two mappings satisfying 

“max” type of contractive conditions and by using altering distance functions

  , in the framework of a b-dislocated metric space, are obtained.  

Let  denote the set of all continuous and non decreasing functions 

:[0, ) [0, )     such that ( ) 0t   iff 0t  , and we start with the following 

theorem.  

 

Theorem 3.1 Let ( , )dX b  be a b-dislocated -metric space with parameter 1s 

and , :f g X X are two self mappings such that for all ,x y X  , constant 

0 1c  and    , 

2

( , ) ( , )

2

(2 ( , )) (max{ ( , ), ( , ), ( , ),

})d d

d d d d

b fx gy b gx fy

s

s b fx fy c b gx gy b fx gx b fy gy 




     (3.1) 

Suppose that the pair ( , )f g  satisfies (E.A) Like property in X . Then the pair

( , )f g  has a common point of coincidence in X . Moreover if the pair ( , )f g  is 

weakly compatible then f and g  have a unique common fixed point in X . 

Proof. Since f and g satisfy the E. A. Like Property therefore exists a sequence 

{ }nx  in X such that lim limn n
n n

fx gx t
 

   for some ( )t f X  or ( )g X . 

Assume that lim ( )n
n

fx t g X


  . Therefore, t gu  for some u X .  

From condition (3.1) we have: 

   

2

, ,

2

(2 ( , )) (max{ ( , ), ( , ), ( , ),

})d n d n

d n d n d d n n

b fu gx b gu fx

s

s b fu fx c b gu gx b fu gu b fx gx 




  (3.2) 

Taking the upper limit as n using lemma 2.9 and definition 2.11, we get 

2 21

( , ) ( , )

2

( , )

2

(2 ( , )) (2 ( , )) (2 lim sup ( , ))

( lim supmax{ ( , ), ( , ), ( , ), })

(max{0, ( , ),0, })

d d

d

d d d ns n

sb fu t b t t
d d d sn

b fu t
d

sb fu t s b fu t s b fu fx

c b t t b fu t sb t t

c b fu t

  











 





 

As a result we have, 

(2 ( , )) ( ( , ))d dsb fu t c b fu t  .       (3.3) 
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By property of  , since 0 1c  and 1s   the above inequality implies 

( ( , )) 0db fu t   that is fu t . 

Therefore we have that u is a coincidence point of f and g ( fu gu t  ). 

The weak compatibility of f and g implies that,  

ft fgu gfu gt    

Let we show that t  is a fixed point of f . According to the condition 3.1, 

consider: 

2

( , ) ( , )

2

(2 ( , )) (max{ ( , ), ( , ), ( , ),

})d n d n

d n d n d d n n

b ft gx b gt fx

s

s b ft fx c b gt gx b ft gt b fx gx 




  (3.4) 

Taking the upper limit as n and using lemma 2.9, we get  

2 21

( , ) ( , )

2

( , ) 0

2

(2 ( , )) (2 ( , )) (2 lim sup ( , ))

( lim supmax{ ( , ), ( , ), ( , ),

})

(max{ ( , ), ( , ),0, })

(2 ( , ))

d n d n

d

d d d ns n

d n d d n n
n

b ft gx b gt fx

s

sb ft t
d d s

d

sb ft t s b ft t s b ft fx

c b gt gx b ft gt b fx gx

c sb ft t b ft ft

c sb ft t

  















 







   (3.5) 

This inequality implies (2 ( , )) 0dsb ft t  , and as result ft gt t  . Hence, t  is a 

common fixed point of f and g . 

Uniqueness.  Let 1t t be two common fixed points of the mappings f and g .  

Then from (3.1) we have: 

1 1

1 1

2
1 1

( , ) ( , )
1 1 1 2

( , ) ( , )
1 1 1 2

1

(2 ( , )) (2 ( , ))

(max{ ( , ), ( , ), ( , ), })

(max{ ( , ), ( , ) ( , ), })

(2 ( , ))

d d

d d

d d

b ft gt b gt ft
d d d s

b t t b t t
d d d s

d

sb ft ft s b ft ft

c b gt gt b ft gt b ft gt

c b t t b t t b t t

c sb t t

 



















   (3.6) 

This inequality implies that 1(2 ( , )) 0dsb t t  , since 0 1c  . we get, 1t t . 

Hence the proof is complete. 

The following example illustrates theorem. 

Example 3.2 Let [0,1]X   and 2( , ) ( )db x y x y   for all ,x y X is a b-

dislocated metric on X . Then ( , )dX b  be a b-dislocated metric space. We take 

the function ( )t t   and define the mappings 
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 1
10

1
12

, 0,1

, 1

x if x
fx

if x

 
 



and 
1

2
gx x . 

If we consider the sequence { }nx , where 1
n n

x   for all n N  it is clear that f ,

g satisfy (E.A) Like property lim lim 0n n
n n

fx gx
 

  for 0 ( )f X  or ( )g X . 

For  , 0,1x y  we have  

2 21 1 1 1
10 10 10 10

28 1 1
25 2 2

2 ( , ) 8 ( , ) 8( )

( )

( , )

d d

d

s b fx fy b x y x y

x y

b gx gy

  

 



 

For 1y x   we have  

2 2 2 281 1 1 1
12 10 12 10 10 10 25 2 2

8
25

2 ( 1, ) 8 ( , ) 8( ) 8( ) ( )

( 1, ) ( 1, ) ( , )

y y y y
d d

d d d

s b f fy b

b g gy b g gy b gx gy 

      

  
 

For 1x y   we have  

2 2 281 1 1
10 12 10 12 25 2 2

8
25

2 ( , 1) 8 ( , ) 8( ) ( )

( , 1) ( , 1) ( , )

x x x
d d

d d d

s b fx f b

b gx g b gx g b gx gy 

    

  
 

For 1y x   we have  

2 2 281 1 1 1 1 1
12 12 12 12 25 2 2

8
25

2 ( 1, 1) 8 ( , ) 8( ) ( )

( 1, 1) ( , )

d d

d d

s b f f b

b g g b gx gy

    

 
 

As a result we have that, 

 2 8
25

( , ) ( , )

2

2 , ( , )

max{ ( , ), ( , ), ( , ), }d d

d d

b fx gy b fy gx
d d d s

s b fx fy b gx gy

c b gx gy b gx fx b gy fy





 

holds for all ,x y X , 1
2

0 c   and obviously 0x   is the unique common 

fixed point of f and g . 

 

Corollary 3.3. Let ( , )dX b  be a b-dislocated -metric space with parameter 

1s   and , :f g X X are two self mappings such that for all ,x y X , 

constant 0 1c  , 

( , ) ( , )2
2

2 ( , ) max{ ( , ), ( , ), ( , ), }d db fx gy b gx fy
d d d d s

s b fx fy c b gx gy b fx gx b fy gy
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Suppose that the pair ( , )f g  satisfies (E.A) Like property in X . Then the pair

( , )f g  has a common point of coincidence in X . Moreover if the pair ( , )f g  is 

weakly compatible then f and g  have a unique common fixed point in X . 

Proof. Taking the altering distance function ( )t t   (identity function) in 

theorem 3.1.  

 

Theorem 3.4. Let ( , )dX b  be a complete b-dislocated metric space with 

parameter 1s   and , :f g X X  are two self mappings with ( ) ( )f X g X , 

such that satisfy  

( , ) ( , )2
2

( ( , )) (max{ ( , ), ( , ), ( , ), })d db fx gy b gx fy
d d d d s

s b fx fy c b gx gy b fx gx b fy gy 


  

for all ,x y X , where 0 1c   and   . Suppose that the pair ( , )f g

satisfies (E.A) property and ( )g X  is db -closed in X . Then the pair ( , )f g  has 

a common point of coincidence in X . Moreover if the pair ( , )f g  is weakly 

compatible then f  and g  have a unique common fixed point in X . 

Proof. Since f and g satisfy the E.A. property, therefore there exists a sequence 

{ }nx  in X such that lim limn n
n n

fx gx t
 

   for some t X . As ( )g X  is a db -

closed subspace of X; therefore, every convergent sequence of points of ( )g X  

has a limit in ( )g X . Therefore, 

lim limn n
n n

t fx gx gu
 

    for some u X  

This implies ( )t gu g X   and in this conditions the pair ( , )f g  satisfies (E.A) 

Like property and the proof follows from theorem 3.1. 

 

Theorem 3.5. Let ( , )dX b  be a b-dislocated -metric space with parameter 1s 

and , :f g X X are two self mappings such that,  

2 ( , ) ( , ) ( , ) ( , ) ( , )d d d d ds b fx fy b gx fy b gx gy b gy fy b gx fx        ( 3.7) 

for all ,x y X  where the constants , , ,     are non negative and

1
2

0         .  

Suppose that the pair ( , )f g  satisfies (E.A) Like property in X . Then the pair

( , )f g  has a common point of coincidence in X . Moreover if the pair ( , )f g  is 

weakly compatible then f and g  have a unique common fixed point in X . 
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Proof. Since f and g satisfy the (E. A.) Like Property, therefore exists a 

sequence { }nx  in X such that lim limn n
n n

fx gx gu
 

   for some u X . 

Assume that lim ( )n
n

fx t g X


  . Therefore, t gu for some u X .  

From condition (3.7) we have: 

2 ( , ) ( , ) ( , ) ( , ) ( , )d n d n d d n n d ns b fu fx b gu gx b fu gu b fx gx b fu gx        (3.8) 

Taking the upper limit as n  in (3.8), and using lemma 2.9 we get  

2 1( , ) ( , ) 0 ( , ) 0 ( , )

( ) ( , )

( ) ( , )

d d d ds

d

d

sb fu t s b fu t sb fu t sb fu t

sb fu t

sb fu t

   

 

   

       

 

   

     (3.9) 

From this inequality since 1
2

0 c   and 1s   have ( , ) 0db t fu   implies fu t .  

Therefore we have that u is a coincidence point of f and g ( fu gu t  ). 

The weak compatibility of f and g implies that,  

ft fgu gfu gt    

Let we show that t  is a common fixed point of f . According to the condition 

3.7, consider: 

2 ( , ) ( , ) ( , ) ( , ) ( , )d n d n d d n n d ns b ft fx b gt gx b ft gt b fx gx b ft gx        (3.10) 

Taking the upper limit as n  we get  

2 1( , ) ( , ) ( , ) ( , ) 0 ( , )

( 2 ) ( , )

d d d d ds

d

sb ft t s b ft t sb ft t b ft ft sb ft t

sb ft t

   

   

     

   
 

Since 1
2

0          and 1s   this inequality implies ( , ) 0db ft t  , and 

as result ft gt t  . Hence, t  is a common fixed point of f  and g . 

 

Corollary 3.6. Let ( , )dX b  be a complete b-dislocated metric space with 

parameter 1s   and , :f g X X  are two self mappings with ( ) ( )f X g X , 

such that satisfy  

2 ( , ) [ ( , ) ( , ) ( , ) ( , )]d d d d ds b fx fy k b gx fy b gx gy b gy fy b gx fx     

for all ,x y X , where the constant 0 1k  . Suppose that the pair ( , )f g  

satisfies (E.A) property and ( )g X  is db -closed in X . Then the pair ( , )f g  has a 

common point of coincidence in X . Moreover if the pair ( , )f g  is weakly 

compatible then f and g  have a unique common fixed point in X . 
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Theorem 3.7. Let ( , )dX b  be a b-dislocated -metric space with parameter 1s 

and , :f g X X are two self mappings such that,  

2 ( , ) [ ( , ) ( , )] [ ( , ) ( , )]

[ ( , ) ( , )]

d d d d d

d d

s b fx fy b fx gy b gx fy b fx gy b gx gy

b gx fy b gx gy

 



   

 
 ( 3.11) 

for all ,x y X  where the constants , , , 0      are non negative and

1
2

0       .  

Suppose that the pair ( , )f g  satisfies (E.A) Like property in X . Then the pair

( , )f g  has a common point of coincidence in X . Moreover if the pair ( , )f g  is 

weakly compatible then f and g  have a unique common fixed point in X . 

Proof. Since f  and g  satisfy the E. A. Like Property therefore exists a 

sequence { }nx  in X such that lim lim ( )n n
n n

fx gx z f X
 

    or ( )g X . 

Assume that lim ( )n
n

fx z g X


  . Therefore, z gu  for some u X .  

From condition (3.11) we have: 

 

2 ( , ) [ ( , ) ( , )] [ ( , ) ( , )]

[ ( , ) ( , )

n n n n n

n n

s d fu fx d fu gx d gu fx d fu gx d gu gx

d gu fx d gu gx

 



   

 
  (3.12) 

Taking limit as n , we get 

2 1( , ) ( , ) [ ( , ) 0] [ ( , ) 0] [0 0]

( ) ( , )

(2 2 2 ) ( , )

s
sd fu z s d fu z sd fu z sd fu z

d fu z

d fu z

  

 

  

       

 

  

 

From this inequality have  

2 2 2
( , ) ( , )

s
d fu z d fu z

   
      (3.13).  

By (3.13) we get ( , ) 0d fu z   since 
2 2 2

0 1
s

   
  . 

By property 2d  have fu z . Hence fu gu z  . Using the weak compatibility 

we get fz gz . 

Let we show that fz z . Again consider: 

( , ) [ ( , ) ( , )] [ ( , ) ( , )]

[ ( , ) ( , )]

n n n n n

n n

d fz fx d fz gx d gz fx d fz gx d gz gx

d gz fx d gz gx

 



   

 
 

Taking the upper limit as n , we get 
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2 1( , ) ( , ) [ ( , ) ( , )] [ ( , ) ( , )]

[ ( , ) ( , )]

[ ( , ) ( , )] [ ( , ) ( , )]

[ ( , ) ( , )]

(2 2 2 ) ( , )

s
sd fz z s d fz z sd fz z sd gz z sd fz z sd gz z

d gz z d gz z

sd fz z sd fz z sd fz z sd fz z

sd fz z sd fz z

sd fz z

 



 



  

     

 

   

 

  

 

From this we have ( , ) 0d fz z   since 1
2

0       . Therefore ( , ) 0d fz z 

 fz z .  

So fz z gz  . Hence, z  is a common fixed point of f  and g . 

Uniqueness. Clearly, as in theorem 3.1 we can show that fixed point is unique. 

 

Remark 3.8 As a consequence of theorem 3.1 and 3.3 for taking  

1) the parameter 1s   

2) the parameter 1s  and the identity mapping fx x   

3) the parameter 1s  and the function  t t  ; 

we can establish many other corollaries in the setting of dislocated metric spaces 
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