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Abstract. S. Gähler ([8]), defined a 2-normed and A. White ([1]) a 2-banach 

space Further, the contractive mapping in 2-normed space in [4] is defined by 

in P. K. Hatikrishnan, K. T. Ravindran. In [2] and [10], there are given 

generalizations of Kannan ([5]) and Chatterjea ([9]) fixed points theorems in 2-

Banach spaces. In this paper by using sequentially convergent mappings, the 

results given in [2] and [10] will be generalized in 2-Banach spaces. They 

might also be considered as generalizations of the results given in [11]. 

 

 

1. INTRODUCTION 

 

S. Gähler ([8]), 1965 defined a 2-normed space, and White ([1]), 1968, a 2-

Banach space. 2-Banach spaces are focus of interest of many authors, and 

certain results can be seen in [6]. Furthermore, analogously as in the normed 

spaces, P. K. Hatikrishnan and K. T. Ravindran in [4] defined a contractive 

mapping in 2-normed space as following.  

 

Definition 1 ([4]). Let ( ,|| , ||)L    be a real 2-normed space. The mapping 

:S L L is said to be contraction if [0,1)  exists so that 

|| , || || , ||Sx Sy z x y z   , for all , ,x y z L , holds true.  

 

Hatikrishnan and Ravindran in [4], proved that a contractive mapping has a 

unique fixed point in a closed and bounded subset of 2-Banach space. 

Furthermore, M. Kir and H. Kiziltunc in [2] proved that if L  is 2-Banach space 

and for 1
2

(0, ) , :S L L  satisfies one of the following conditions 
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|| , || (|| , || || , ||)Sx Sy z x Sx z y Sy z     , for all , ,x y z L     (1) 

or 

|| , || (|| , || || , ||)Sx Sy z x Sy z y Sx z     , for all , ,x y z L     (2) 

 

then, S  has a unique fixed point in L . The case where the condition (1) is 

satisfied is actually a generalization of Kannan’s Theorem and the case where 

the condition (2) is satisfied is a generalization of Chatterjea’s Theorem. 

Furthermore, the generalizations of M. Kir and H. Kiziltunc results and their 

consequences are reviewed in [10]. Next, we will make a generalization of the 

above mentioned results, by using sequentially convergent mappings, defined as 

following.  

 

Definition 2. Let ( ,|| , ||)L    be a 2-normed space. A mapping :T L L  is said 

to be sequentially convergent if for each sequence { }ny the following condition 

is satisfied: 

If { }nTy  converges, then { }ny  is also converges. 

 

2. EXTENSIONS OF KANNAN AND CHATTERJEA THEOREMS 

 

Theorem 1. Let ( ,|| , ||)L    be a 2-Banach space, :S L L  and the mapping 

:T L L  is continuous, injection and sequentially convergent. If 0  , 0,   

are such that 2 1   , for all , ,x y z L , and 

|| , || (|| , || || , ||) || , ||TSx TSy z Tx TSx z Ty TSy z Tx Ty z        ,   (3) 

then, S  has a unique fixed point and for each 0x L  the sequence 0{ }nS x  

converges to the above fixed point.  

Proof. Let 0x  be any point in L  and let the sequence { }nx  be defined as 

1n nx Sx  , 0,1,2,...n  . The inequality (3) and the definition of { }nx  imply 

that  

1 1 1 1|| , || (|| , || || , ||) || , ||n n n n n n n nTx Tx z Tx Tx z Tx Tx z Tx Tx z            

This holds true for each 0,1,2,3,...n   and for each z L . So, the inequality 

above implies  

1 0 1|| , || || , ||n
n nTx Tx z Tx Tx z          (4) 

for each 0,1,2,3,...n   and each z L , 
1

0 1
 







   . Furthermore, (4) 

implies that for all , ,m nN  n m  and for each z L  
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0 11
|| , || || , ||

m

n mTx Tx z Tx Tx z


   ,  

holds true. The sequence { }nTx  is Caushy and L  is a 2-Banach space. So, the 

sequence { }nTx  is convergent. Furthermore, the mapping :T L L  is 

sequentially convergent, so the sequence { }nx  is convergent, i.e. it exists u L  

so that lim n
n

x u


 . 

 Since T  is continuous, lim n
n

Tx Tu


  and  

1 1
0 0 0 0

1 1
0 0 0

|| , || || , || || , || || , ||

(|| , || || , ||) || , ||

n n n n

n n n

TSu Tu z TSu TS x z TS x TS x z TS x Tu z

Tu TSu z TS x TS x z Tu TS x z 

 

 

      

     

 

1 1
0 0 0

1 1

1 1

|| , || || , ||

(|| , || || , ||) || , ||

|| , || || , || .

n n n

n n n

n n n

TS x TS x z TS x Tu z

Tu TSu z k Tx Tx z Tu Tx z

Tx Tx z Tx Tu z

 

 

 

 

   

     

   

 

holds true for each 0,1,2,3,...n  and each z L .  

For n , the continuous of T and the properties of 2-norm imply that 

|| , || || , ||TSu Tu z TSu Tu z    holds true for each z L . Since, 1  , this 

implies that || , || 0TSu Tu z  , for each z L , i.e. TSu Tu . Finally, T  is 

injection, so, Su u , and S  has a fixed point.  

Let ,u v X  be fixed points of S , i.e. Su u  and Sv v . Then, (3) implies that 

|| , || || , || (|| , || || , ||) || , ||Tu Tv z TSu TSv z Tu TSu z Tv TSv z Tu Tv z           

holds true for each z L . Since 1  , we get that || , || 0Tu Tv z  , for each 

z L , i.e.Tu Tv . Since T  is an injection, u v , so T  has a unique fixed point. 

Finally, the arbitrarily of 0x L  implies that for each 0x L  the sequence 

0{ }nS x  converges to the unique fixed point of S . ■ 

 

Consequence 1. Let ( ,|| , ||)L    be a 2-Banach space, :S L L  and the mapping 

:T L L  be continuous, injection and sequentially convergent. If (0,1)  and 

3|| , || || , || || , || || , ||TSx TSy z Tx TSx z Ty TSy z Tx Ty z        

holds true for all , ,x y z L , then S  has a unique fixed point. 

Proof. For 
3
   , the arithmetic-geometric inequality mean and the 

theorem 1, directly imply the statement.. ■  
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Consequence 2. Let ( ,|| , ||)L    be a 2-Banach space, :S L L  and the mapping 

:T L L  be continuous, injection and sequentially convergent. If there exist 

0,   and 0  , so that 2 1    and 

2 2|| , || || , ||

|| , || || , ||
|| , || || , ||

Tx TSx z Ty TSy z

Tx TSx z Ty TSy z
TSx TSy z Tx Ty z 

  

  
    , 

holds true for all , ,x y z L , then S  has a unique fixed point.  

Proof. The inequality sated in the condition implies (3), and the required 

statement is directly implied by the theorem 1. ■  

 

Consequence 3. Let ( ,|| , ||)L    be a 2-Banach space, :S L L  and the mapping 

:T L L  be continuous, injection and sequentially convergent. If 1
2

(0, )  

and 

|| , || (|| , || || , ||)TSx TSy z Tx TSx z Ty TSy z      

holds true for all , ,x y z L , then S  has a unique fixed point. 

Proof. For 0  , and applying the theorem 1, we get the required statement. ■  

 

Remark 1. The theorem 1 and the consequences 1 and 2, for Tx x , imply the 

validity of the theorem 1 and the consequences 1 and 2, [10], and the 

consequence 3, imply the validity of the theorem 1, [2].  

 

Theorem 2. Let ( ,|| , ||)L    be a 2-Banach space, :S L L  and the mapping 

:T L L be continuous, injection and sequentially convergent. If 0  , 0,   

such that 2 1   and 

|| , || (|| , || || , ||) || , ||TSx TSy z Tx TSy z Ty TSx z Tx Ty z           (5) 

holds true for all , ,x y z L , then S  has a unique fixed point and for each 

0x X  the sequence 0{ }nS x  converges to the above fixed point.  

Proof. Let 0x  be any point in L  and the sequence { }nx  be defined as the 

following 1n nx Sx  , 0,1,2,3,...n  . The inequality (5) implies that 

1 1

1 1 1

1 1 1

1 1 1

|| , || || , ||

(|| , || || , ||) || , ||

|| , || || , ||

(|| , || || , ||) || , ||

n n n n

n n n n n n

n n n n

n n n n n n

Tx Tx z TSx TSx z

Tx TSx z Tx TSx z Tx Tx z

Tx Tx z Tx Tx z

Tx Tx z Tx Tx z Tx Tx z

 

 

 

 

  

  

  

  

     

   

     

 

holds true for each 0,1,2,3,...n   and each z L . The previous inequality 

implies that 
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1 0 1|| , || || , ||n
n nTx Tx z Tx Tx z          (6) 

holds true for each 0,1,2,3,...n   and each z L , for 
1

0 1
 







   . 

Furthermore, by using (6), analogously as in the theorem 1is is proven that the 

sequence { }nx  is convergent, i.e. it exists u L  so that lim n
n

x u


  and 

lim n
n

Tx Tu


 . From the inequality (5), for each 0,1,2,3,...n   and each z L ,  

1 1
0 0 0 0

1 1
0 0 0

1 1
0 0 0

|| , || || , || || , || || , ||

(|| , || || , ||) || , ||

|| , || || , ||

n n n n

n n n

n n n

TSu Tu z TSu TS x z TS x TS x z TS x Tu z

Tu TS x z TS x TSu z Tu TS x z

TS x TS x z TS x Tu z

 

 

 

 

      

     

   

 

1 1

1 1

(|| , || || , ||) || , ||

|| , || || , || .

n n n

n n n

Tu Tx z Tx TSu z Tu Tx z

Tx Tx z Tx Tu z

  

 

     

   
 

holds true. Analogously, as in the theorem 1, we come to the conclusion that 

Su u , i.e. u  is a fixed point of S . Finally, if v  is another fixed point of S , 

the inequality (5) implies that  

|| , || (2 ) || , ||Tu Tu z Tu Tv z     , 

holds true for each z L . This implies that u v . ■ 

 

Consequence 4. Let ( ,|| , ||)L    be a 2-Banach space, :S L L  the mapping 

:T L L  be continuous, injection and sequentially convergent. If (0,1)  and  

3|| , || || , || || , || || , ||TSx TSy z Tx TSy z Ty TSx z Tx Ty z        

for all , ,x y z L , then S  has a unique fixed point.  

Proof. For 
3
   , the arithmetic-geometric inequality mean and theorem 2 

imply the validity of the statement above.■  

 

Consequence 5. Let ( ,|| , ||)L    be a 2-Banach space, :S L L  and the mapping 

:T L L  be continuous, injection and sequentially convergent. If there exist 

0,  0   such that 2 1    and  

2 2|| , || || , ||

|| , || || , ||
|| , || || , ||

Tx TSy z Ty TSx z

Tx TSy z Ty TSx z
TSx TSy z Tx Ty z 

  

  
    , 

for all , ,x y z L , then S  has a unique fixed point.  

Proof. The inequality given in the condition implies the inequality (5). Finally, 

the required statement is directly implied by the theorem 2. ■  
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Consequence 6. Let ( ,|| , ||)L    be a 2-Banach space, :S L L  and the mapping 

:T L L be continuous, injection and sequentially convergent. If 1
2

(0, )  and 

|| , || (|| , || || , ||)TSx TSy z Tx TSy z Ty TSx z      

holds true for all , ,x y z L , then S  has a unique fixed point. 

Proof. For 0  , and applying the theorem 2, we get the required statement. ■  

 

Remark 2. The theorem 2 and the consequences 4 and 5, for Tx x , imply the 

validity of the theorem 2 and the consequences 3 and 4, [10], also the 

consequence 6 confirm the validity of the theorem 2, [2].  

 

3. EXTENSIONS OF KOPARDE-WAGHMODE THEOREM  

 

Theorem 3. Let ( ,|| , ||)L    be a 2-Banach space, :S L L  and the mapping 

:T L L be continuous, injection and sequentially convergent. If 0  , 0,   

such that 2 1    and 

2 2 2 2|| , || (|| , || || , || ) || , ||TSx TSy z Tx TSx z Ty TSy z Tx Ty z           (7) 

holds true for all , ,x y z L , then S  has a unique fixed point and for each 

0x X  the sequence 0{ }nS x  converges to the above fixed point.  

Proof. Let 0x  be any point in L  and let the sequence { }nx  be defined as 

1n nx Sx  , 0,1,2,3,...n  . The inequality (7) implies the following  

2 2
1 1

2 2 2
1 1 1

2 2 2
1 1 1

|| , || || , ||

(|| , || || , || ) || , ||

(|| , || || , || ) || , || ,

n n n n

n n n n n n

n n n n n n

Tx Tx z TSx TSx z

Tx TSx z Tx TSx z Tx Tx z

Tx Tx z Tx Tx z Tx Tx z

 

 

 

  

  

  

     

     

 

for each 0,1,2,3,...n  . The previous inequality and the condition given in the 

theorem, imply that for 
1

1
 







   the following holds true  

2 2
1 1|| , || || , ||n n n nTx Tx z Tx Tx z    , 

for each 0,1,...n   and for each z L . Furthermore, analogously as the theorem 

1 and 2 we get that the sequence { }nx  is convergent, i.e. there is u L  such 

that lim n
n

x u


  and also the continuous of T  imply that lim n
n

Tx Tu


 .  
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We will prove that u is a fixed point of S . Namely, by using the inequality (7), 

it is easy to prov that || , || || , ||TSu Tu z TSu Tu z   , holds true for each 

z L . Since 1  , we get that || , || 0TSu Tu z  , holds true for each z L . 

Analogously as the proof of the theorem 1, we get that u  is a fixed point of S .  

If v  is one other fixed point of S , then (7) implies || , || || , ||Tu Tv z Tu Tv z  

, for each z L . Thus, analogously to the proof of theorem 1, u v . ■ 

 

Consequence 7. Let ( ,|| , ||)L    be a 2-Banach space, :S L L  and the mapping 

:T L L  be continuous, injection and sequentially convergent. If 1
2

(0, )  

and  

2 2 2|| , || (|| , || || , || )TSx TSy z Tx TSy z Ty TSx z     , 

for all , ,x y z L , then S  has a unique fixed point.  

Proof. For 0   in the theorem 3, we get the required statement. ■ 

 

Remark 3. For Tx x , the theorem 3 and the consequence 7, we get the 

validity of the theorem 3 and the consequence 5, [10].  

 

4. CONCLUSION  

 

In our previus observations by using the sequential convergent mapping we 

generalized several results about fixed point in 2-Banach space ([10]). 

Naturally, we wonder if Kannan, Chatterjea and Koparde-Waghmode theorems 

about common fixed point of mappings defined in 2-Banach spaces might be 

generalized by using sequentially continuous mapping?  
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