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ABOUT THE ZEROS AND THE OSCILLATORY CHARACTER
OF THE SOLUTION OF ONE AREOLAR EQUATION OF
SECOND ORDER

Slagjana Brsakoska

Abstract In the paper, one linear areolar equation of second order with
constant coefficients is considered, regarding the zeroes and the oscillatory
character of its general solution. In this equation the first derivative is missing.
Some theorems will be proven and some examples will be given for different
cases of the coefficients.

1. INTRODUCTION

The notion of the term complex number, complex variable and complex
function f (z) is a few centuries old and more than a century old is the idea for
expanding the operations derivative and integral to a function of complex-
conjugated variable, Z=x—1iy.

In 1909, G. V. Kolosov [1], during his efforts to solve a problem from the
theory of elasticity, has introduced the expressions

1rdu v _au
g[g & TG )= 1)
lrou v, ou dW
g[g & TG aN="3 )
known as operatory derivatives of a complex functlon
W =W (z)=u(x,y)+iv(x,y)
from a complex variable z=x+1iy and Z =x-iy, respectively. The operator

rules for these derivatives are given in the monograph of I'.H.ITonoxwutl [2]
(pages 18-31). In the mentioned monograph, are also defined the so called
operatory integrals
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f f(z)dz and f f(2)dz

by z=x+iy and Z=x-iy, respectively, from the complex function
f =1f(z) inthe area D C, where their operatory rules are proven as well,
page 32 - 41.

2. REASONS FOR INTRODUCING THIS EQUATION AND
FORMULATION OF THE PROBLEM

In the theory of real functions a big role has the term oscillatory and
especially the term periodical, as a direct consequence of the Newton's laws.

. 2 . . . i
The equation %+%x =0 is one of the oldest differential equations and at the

same time the equation of oscillatory processes (from stretching the spring
pendulum, to rotating motion of bodies bounded by mutual action of
gravitational forces).

In the case when k i.e. m is variable - it is a resistance to the
environment, i.e. variable mass, respectively, in the general case we have a
differential equation

X+k(t)x=0
so, if we introduce here a general function y(x) and a regulator of the
appearance a(x) (which contains and causes the appearance and the elements

throughout the appearance - internal resistance, etc.) we get a differential
equation

y"+a(x)y=0 (3)
which is called an equation of oscillations, if
1. a(x)>0 and

2. a(x) is big enough to cause oscillations, which is expressed analytically

0
with the condition the integral [a(x)dx to be divergent.
0
Analogous to the equation (3) for the functions of two complex variables

W =W (z,Z), would be the equation with areolar derivatives from second order
W Az )W =0 @)

Z
where A(z,Z) is a given function and W(z,Z)=u(x,y)+iv(xy) is an
unknown function by the variables z and Z, which is a subject of analysis in

i ivative W _ d dw ivative U |
this paper. Here, the derivative 2 ‘dz(df)’ and the derivative & 1S



About the zeros and the oscillatory character of the ...57

defined with (2). One of the questions raised here is the following: Is there an
analogy with real oscillations and whether (4) can be called areolar equation of
oscillations? Whether the solutions of the equation (4) have zeros and what is
their nature?

3. MAINRESULT

Let us try to answer with the simplest case, which is also the closest to the
real oscillations, i.e. let A(Z,Z): K=a+if where K is a complex constant.
Then, we have an areolar equation with constant coefficients

%+(a+iﬂ)W=0 5)
Let us try to find a solution of this equation with the substitute

W =g (6)
where r is a constant to be determined. From the derivatives %" =re'?,

dW _ 1267 \we have 12 + (o +i8) =0 what leads to

dz?
fyp =\-(a+ip) (7)

If we put —(a+ip) =pei9, where pzxfaz +,82 and @ =arctg L for (7) we

E ’

have
B B
B f 2 2 arctg’ +2kz . . arctg, +2kz.
o = «fa +p [cosTHsmT],k_O,l

i.e.

B B

arctg- . . arctgs

n =3a? + p%[cos S +isin =]
and

; s
arctg-+27 . . arctgs+2x
r, ={a? + 52 [cos £ tisin——g—].

If we put @ and g to be positive (then in (7) they are negative) and if we use

some of the trigonometric formulas that are useful here, with short
transformations we get

2 2 2 2
li:\/«/a +2ﬂ +a +i\/\,a +2ﬂ —-a (8)
2 2 2 2
I’2 :_\/\/a +2ﬂ +a _i\/«’a +2ﬂ -a (9)

If b and r, are defined with (8) and (9), then we get the following particular
integrals of (5):

W, =e?, W, =e'?? (10)
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By analogy with the case of ordinary differential equation of second order, we
can assume that with

W =C,(2)e? +C,(2)e?? (11)
is given the general solution of (5), where C;(z) and C,(z) are arbitrary
analytic functions from z, in the role of generalized constants.

Theorem 1. The general solution of the areolar equation (5), where a +if is a
constant with positive real and imaginary part, is given with (11), where C;(z)
and C,(z) are arbitrary analytic functions from z, in the role of generalized
constants.

Proof. The particular integrals W; and W, according to (6), satisfy the equation
(5). We should prove that with elimination of Cl(z) and Cz(z) from (11) we
get the equation (5) and only that one. So, we have:

%’! = Clrlerlz + C2 I"2er27 ) _(j;V;/ = Clrlzerl7 + C2 r22er27
Z

but since r12 and r22, according to (7), have one same value —(a+iﬂ), from
the second derivative, we get

% = (a+if)[Ce™ +Cre?l = —(a+ifW
or
%’;’ (@ +ifW =0

i.e. (11) satisfies the equation (5). So (11) is the general solution of (5), what is
the end of this proof.

But, does the oscillations in W exist? Oscillation by definition is a change
of the sign from W >0 to W <0 or vice versa. This is not very well determined
in the case of complex functions. It can be discussed only on the real or only on
the imaginary part. Then, if W =ReW +ilmW is continuous, there will be
parts where ReW =0u ImW =0 and then it is possible that W =0 <|W |=0.

So, W =0 and continuity, replaces oscillatority.
If we put W =0 in (11), then
C,(2)e"* +Cy(2)e2? =0
S0,

C(@) __(h-n)z

O e (12)
Since the ratio from two analytic functions is an analytic function, here we are
stating the question: could one analytic function can be equal to no analytic
function, in some point or on some continuous lines and what would be the

zeroes of W(z,Z) in that case?
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According to (8) and (9) we have

A= -1, =2(\/\f"’2+f2+“ +i\/\/“2+f2‘“) (13)
(éi((:)) = —exp[ﬁ(\/«faz +ﬁ2 +a+ i\/«faz +,82 -a)Z] (14)

Co(2) =-Cy(2)e™?
and because C;(z) and C,(z) are analytic functions from z, this can be

fulfilled only in certain determined number of points or countable many points.
The equation W (z,Z) =0 corresponds with the equation

Ci(z)e"? —Cy(2)e?2e?? =0

or

or
Cl(z)(erlf _er27+/17) -0

and since A=nr-rp, then C(z)=0, i.e. Cy(z)=0. Because an analytic

function f(z)=u+iv (uy=vy,uy =-vy) can have only isolated zeroes, that

means that the solution W(z,Z) of the areolar equation (5) with constant

coefficient can have only isolated zeroes.
We proved the next

Theorem 2. The areolar equation from 1l order

dW 4 kw =0

dz
where W =W (z,Z) and K is an arbitrary complex constant, can have only
isolated zeroes, which depend from the analytic functions C;(z) and C,(z), in
the form of generalized constants and that zeroes are either common zeroes of

Ci(z) and Cy,(z), or they are countable many zeroes of the complex
combination

C1(2)e" +Cy(2)e"2? =0.

In the ordinary differential equations, there is a drastic difference between

the equations:
y"+1.y=0 and y"-1.y=0

They have only one sign that is different, but the first one has oscillatory
solutions and the second one has monotonous solutions. So it is natural to ask
whether it is the case with the corresponding areolar equation and what is the
intensity of the influence of this on the oscillatory or monotony character of the
solution. Lets see some examples.

Example 1. For the equation
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4W L 1.w =0
K=a+if=La=1 £#=0. From (8) and (9) we have

s0, the general solution is
W =Cy(2)e? +Cy(2)e 2.
efve? _ o
Specially for C;(z) =C»(2) = We have W, +T chz
p :ch(x—ly):chx-cosy—ishx-siny
Does this function have any zeroes? For Wy, =0 should be chx-cosy=0 A

shx-siny=0. Because chx =0, it remains cosy=0 and shx=0 or cosy=0
and siny=0. We get:

y=(2k - 1)” x=0,
i.e. countless many isolated zeroes on the y -axes.

g2 . .
So, the equation %TV;’ +1-W =0 has a solution W =chZ =u+iv where
zZ

u(x,y)=chx-cosy, v(x,y)=-shx-siny
which are oscillatory functions and also have common zeroes.
So, we have analogy with this equation and the ordinary differential equation
y"+1-y =0 regarding the oscillations.

Example 2. Lets see now the equation

W _3.w =0

dz

Here K=a+if=-1,a=-1 #=0. From (8) and (9) we have

s0, the general solution is
W =Cy(2)e” +Cy(z)e .
Specially for C;(z) =Cy(z) = We get Wy, Tj =c0s(iz)
Wy —COS(I(X—Iy)) =chx-cosy—shx-siny

Because u(x,y)=chx-cosy, v(x,y)=-shx-siny, common zeroes of u and v
exist, only if shx=0 and cosy=0, i.e. for x=0, y=(2k—1)% i.e. we have
the same set of common zeroes also on the y -axes.

So, the sign in front of the coefficient in the equation ‘irW +1-W =0 does

not have any significant influence on the oscillatory character of the solutions.
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Example 3. In the equation
W 4w =0
dz

K=a+if=i;a=0, =1 that is why from (8) and (9) we have
po= [y = — 1t
1= 2

s0, the general solution is

LH l+|
W:Cl(z)eﬁ +Cy(2)e V2
Further on, we have
iy 1 gyl Ly Ay e
eﬁzze\ﬁ(xw)-e’ﬁ(x y), o ﬁzzeﬁ(x y)-eﬁ( X+Y)
if we put C;(z) =C,(z) we get
X+Yy -

W:Cl(z)[ef(cosffyﬂsmfhe */_(cosﬁ ISIHT)]

The equation W =0 gets usto C;(z) =0 or to the system
y

X+y X-y = X X
XYre? 4o 2= 2 0sXY[eE 4o 2]=
0S e +e =0 e cos ev2 +e =0
\/5[ ] . ﬁ[ ]

X+y x-y o y

XYrav? _a 27—
smf[eﬁ—e 21=0 eJ‘ smT[ef . f] 0

so, zeroes of W(z,Z)=0 are either the zeroes of the analytic coefficient
C1(z) =0, or zeroes of the system

XY . chX =0
cosﬁ chﬁ
XY . shX -0
sm\/E sh >
X -y X=y -y _
and because chﬁ;«to we have cos’\/E =0 and sin== T =0 or cos\/z =0
and sh\/__o So, we get X%ﬁyz(Zk—l)% and x=0 ie x=0,y=

—J2(2k-1)Z, k=1,23...
We get that the zeroes are again on the y -axes, but now on its negative part,
as a set of countable many isolated points.

Similar case and result is for the equatlon (r —i-W =0.
z
So, in this case also the oscillatory character of the solution does not depend

on the sign in front of the coefficient K in ‘ii—";’ii ‘W =0, (=0, f=1).
z
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4, CONCLUSION

From the previous examples we can conclude that in this linear areolar
equation from Il order, the oscillatority exists in the solution both in the real and
in the imaginary part and W(z,Z) =0 has zeroes, where the signs of « and g

in the coefficient K =« +i£ does not has any influence on that oscillarity.
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