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Abstract In the paper, one linear areolar equation of second order with 

constant coefficients is considered, regarding the zeroes and the oscillatory 

character of its general solution. In this equation the first derivative is missing. 

Some theorems will be proven and some examples will be given for different 

cases of the coefficients.  

 

 

1. INTRODUCTION 

 

The notion of the term complex number, complex variable and complex 

function  f z  is a few centuries old and more than a century old is the idea for 

expanding the operations derivative and integral to a function of complex-

conjugated variable, z x iy  .  

In 1909, G. V. Kolosov [1], during his efforts to solve a problem from the 

theory of elasticity, has introduced the expressions  

   
ˆ1

2
[ ( )]u v v u dW

x y x y dz
i   

   
    and      (1) 

   
ˆ1

2
[ ( )]u v v u dW

x y x y d z
i   

   
           (2) 

known as operatory derivatives of a complex function   

     , ,W W z u x y iv x y    

from a complex variable z x iy   and  z x iy  , respectively. The operator 

rules for these derivatives are given in the monograph of Г.Н.Положиǔ [2] 

(pages 18-31). In the mentioned monograph, are also defined the so called 

operatory integrals  
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( )f z dz


   and  ( )f z dz


  

by z x iy   and z x iy  , respectively, from the complex function  

 f f z  in the area D , where their operatory rules are proven as well, 

page 32 - 41.  

 

2. REASONS FOR INTRODUCING THIS EQUATION AND  

FORMULATION OF THE PROBLEM  

 

In the theory of real functions a big role has the term oscillatory and 

especially the term periodical, as a direct consequence of the Newton's laws. 

The equation 
2

2
0d x k

mdt
x   is one of the oldest differential equations and at the 

same time the equation of oscillatory processes (from stretching the spring 

pendulum, to rotating motion of bodies bounded by mutual action of 

gravitational forces). 

  In the case when k  i.e. m  is variable - it is a resistance to the 

environment, i.e. variable mass, respectively, in the general case we have a 

differential equation 

     0x k t x   

so, if we introduce here a general function  y x  and a regulator of the 

appearance  a x  (which contains and causes the appearance and the elements 

throughout the appearance - internal resistance, etc.) we get a differential 

equation  

     0y a x y              (3) 

which is called an equation of oscillations, if  

 1.   0a x 
 
and  

 2.  a x  is big enough to cause oscillations, which is expressed analytically 

with the condition the integral  
0

a x dx



 

to be divergent. 

  Analogous to the equation (3) for the functions of two complex variables 

 ,W W z z , would be the equation with areolar derivatives from second order 

    
2

2

ˆ
, 0d W

dz
A z z W           (4) 

where  ,A z z  is a given function and      , , ,W z z u x y iv x y   is an 

unknown function by the variables z  and z , which is a subject of analysis in 

this paper. Here, the derivative 
2

2

ˆ ˆ ˆ
( )d W d dW

dz dzdz
 , and the derivative d̂W

dz
 is 
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defined with (2). One of the questions raised here is the following: Is there an 

analogy with real oscillations and whether (4) can be called areolar equation of 

oscillations? Whether the solutions of the equation (4) have zeros and what is 

their nature?  

 

3. MAIN RESULT  

 

Let us try to answer with the simplest case, which is also the closest to the 

real oscillations, i.e. let  ,A z z K i     where K is a complex constant. 

Then, we have an areolar equation with constant coefficients  

   
2

2

ˆ
( ) 0d W

dz
i W             (5) 

Let us try to find a solution of this equation with the substitute  
rzW e              (6) 

where r  is a constant to be determined. From the derivatives 
ˆ

,rzdW
dz

re  

2

2

ˆ 2 rzd W

dz
r e  we have 2 ( ) 0r i     what leads to  

    1/2 ( )r i               (7) 

If we put ( ) ii e      , where 2 2     and arctg



  , for (7) we 

have 

arctg 2 arctg 22 2
1/2 2 2

[cos sin ], 0,1
k k

r i k

 

 
 

 
 

     

i.e. 

arctg arctg2 24
1 2 2

[cos sin ]r i

 

      

and  

arctg 2 arctg 22 24
2 2 2

[cos sin ]r i

 

 
 

 
 

   . 

If we put   and   to be positive (then in (7) they are negative) and if we use 

some of the trigonometric formulas that are useful here, with short 

transformations we get  

 
2 2 2 2

1 2 2
r i

        
          (8) 

 
2 2 2 2

2 2 2
r i

        
          (9) 

If 1r  and 2r  are defined with (8) and (9), then we get the following particular 

integrals of (5): 

   1 2
1 2,

r z r z
W e W e           (10) 
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By analogy with the case of ordinary differential equation of second order, we 

can assume that with  

   1 2
1 2( ) ( )

r z r z
W C z e C z e           (11) 

is given the general solution of (5), where 1( )C z  and 2( )C z  are arbitrary 

analytic functions from z , in the role of generalized constants.  

 

Theorem 1. The general solution of the areolar equation (5), where i   is a 

constant with positive real and imaginary part, is given with (11), where 1( )C z  

and 2( )C z  are arbitrary analytic functions from z , in the role of generalized 

constants.    

Proof. The particular integrals 1W  and 2W  according to (6), satisfy the equation 

(5). We should prove that with elimination of  1C z  and  2C z  from (11) we 

get the equation (5) and only that one. So, we have: 
2

1 2 1 2
2

ˆ ˆ 2 2
1 1 2 2 1 1 2 2,

r z r z r z r zdW d W
dz dz

C r e C r e C r e C r e     

but since 2
1r  and 2

2r , according to (7), have one same value  i   , from 

the second derivative, we get  
2

1 2
2

ˆ
1 2( )[ ] ( )

r z r zd W

dz
i C e C e i W           

or  
2

2

ˆ
( ) 0d W

dz
i W     

i.e. (11) satisfies the equation (5). So (11) is the general solution of (5), what is 

the end of this proof.  

 

 But, does the oscillations in W  exist? Oscillation by definition is a change 

of the sign from 0W   to 0W   or vice versa. This is not very well determined 

in the case of complex functions. It can be discussed only on the real or only on 

the imaginary part. Then, if Re ImW W i W   is continuous, there will be 

parts where Re 0 Im 0W W    and then it is possible that 0 | | 0W W   . 

So, 0W   and continuity, replaces oscillatority.  

 If we put 0W   in (11), then  

1 2
1 2( ) ( ) 0

r z r z
C z e C z e   

so,   

2 1 2

1

( ) ( )

( )

C z r r z

C z
e


            (12) 

Since the ratio from two analytic functions is an analytic function, here we are 

stating the question: could one analytic function can be equal to no analytic 

function, in some point or on some continuous lines and what would be the 

zeroes of  ,W z z  in that case?  
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 According to (8) and (9) we have  

  
2 2 2 2

1 2 2 2
2( )r r i

     


   
           (13) 

  2

1

( ) 2 2 2 2
( )

exp[ 2( ) ]
C z

C z
i z               (14) 

or   

2 1( ) ( ) zC z C z e   

and because 1( )C z  and 2( )C z  are analytic functions from z , this can be 

fulfilled only in certain determined number of points or countable many points. 

The equation ( , ) 0W z z   corresponds with the equation  

1 2
1 1( ) ( ) 0

r z r z zC z e C z e e   

or  

1 2
1( )( ) 0

r z r z z
C z e e


   

and since 1 2r r   , then 1( ) 0C z  , i.e. 2( ) 0C z  . Because an analytic 

function ( )f z u iv   ( , )x y y xu v u v       can have only isolated zeroes, that 

means that the solution ( , )W z z  of the areolar equation (5) with constant 

coefficient can have only isolated zeroes.  

 We proved the next  

  

Theorem 2. The areolar equation from II order  
2

2

ˆ
0d W

dz
KW   

where ( , )W W z z  and K  is an arbitrary complex constant, can have only 

isolated zeroes, which depend from the analytic functions 1( )C z  and 2( )C z , in 

the form of generalized constants and that zeroes are either common zeroes of 

1( )C z  and 2( )C z , or they are countable many zeroes of the complex 

combination  

1 2
1 2( ) ( ) 0

r z r z
C z e C z e  . 

 

 In the ordinary differential equations, there is a drastic difference between 

the equations:  

1 0y y   
  

and  1 0y y     

They have only one sign that is different, but the first one has oscillatory 

solutions and the second one has monotonous solutions. So it is natural to ask 

whether it is the case with the corresponding areolar equation and what is the 

intensity of the influence of this on the oscillatory or monotony character of the 

solution. Lets see some examples. 

 

 Example 1. For the equation     
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2

2

ˆ
1 0d W

dz
W    

1; 1, 0.K i         From (8) and (9) we have 

1 1 1 1 1 1 1 1
1 22 2 2 2

1, 1r i r i            

so, the general solution is  

1 2( ) ( )z zW C z e C z e  . 

Specially for 1
1 2 2
( ) ( )C z C z   we have 

2
ch

z ze e
pW z

   

ch( ) ch cos sh sinpW x iy x y i x y       

Does this function have any zeroes? For 0pW   should be ch cos 0x y    

sh sin 0.x y 

 

Because ch 0x  , it remains cos 0y   and sh 0x   or cos 0y   

and sin 0y  . We get: 

2
(2 1) , 0y k x   , 

i.e. countless many isolated zeroes on the y -axes. 

 So, the equation 
2

2

ˆ
1 0d W

dz
W    has a solution chW z u iv    where  

( , ) ch cos , ( , ) sh sinu x y x y v x y x y      

which are oscillatory functions and also have common zeroes.  

 So, we have analogy with this equation and the ordinary differential equation 

1 0y y     regarding the oscillations. 

 

 Example 2. Lets see now the equation   
2

2

ˆ
1 0d W

dz
W    

Here  1; 1, 0.K i           From (8) and (9) we have 

1 1 1 1 1 1 1 1
1 22 2 2 2

,r i i r i i            

so, the general solution is   

1 2( ) ( )iz izW C z e C z e  . 

Specially for 1
1 2 2
( ) ( )C z C z   we get 

2
cos( )

iz ize e
pW iz

    

cos( ( )) ch cos sh sinpW i x iy x y x y       

Because ( , ) ch cos , ( , ) sh sinu x y x y v x y x y     , common zeroes of u  and v  

exist, only if sh 0x   and cos 0y  , i.e. for 0x  , 
2

(2 1)y k    i.e. we have 

the same set of common zeroes also on the y -axes.  

 So, the sign in front of the coefficient in the equation 
2

2

ˆ
1 0d W

dz
W    does 

not have any significant influence on the oscillatory character of the solutions. 
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 Example 3. In the equation    
2

2

ˆ
0d W

dz
i W    

; 0, 1K i i         that is why from (8) and (9) we have 

1 1
1 2

2 2
,i ir r     

so, the general solution is  
1 1

2 2
1 2( ) ( )

i iz z
W C z e C z e

 
  . 

Further on, we have 
1 11 1

2 2 2 2 2 2
( ) ( ) ( ) ( )

,
i i i iz x y x y z x y x y

e e e e e e
       

     

if we put 1 2( ) ( )C z C z  we get 

2 2
1

2 2 2 2
( )[ (cos sin ) (cos sin )]

x y x y
x y x y x y x y

W C z e i e i

 
   

     

The equation 0W   gets us to 1( ) 0C z 
 
or to the system 

2 2

2 2

2

2

cos [ ] 0

sin [ ] 0

x y x y

x y x y

x y

x y

e e

e e

 

 





 

 

      i.e.      

2
2 2

2
2 2

2

2

cos [ ] 0

sin [ ] 0

y
x x

y
x x

x y

x y

e e e

e e e





  

  

 

so, zeroes of ( , ) 0W z z   are either the zeroes of the analytic coefficient 

1( ) 0C z  , or zeroes of the system   

2 2

2 2

cos ch 0

sin sh 0

x y x

x y x





 

 

 

and because 
2

ch 0x  , we have 
2

cos 0
x y

  and 
2

sin 0
x y

   or 
2

cos 0
x y

  

and 
2

sh 0x  . So, we get 
22

(2 1)
x y

k 
   and 0x   i.e. 0,x y    

2
2(2 1) ,k   1,2,3k   

 We get that the zeroes are again on the y -axes, but now on its negative part, 

as a set of countable many isolated points. 

 Similar case and result is for the equation 
2

2

ˆ
0.d W

dz
i W    

 So, in this case also the oscillatory character of the solution does not depend 

on the sign in front of the coefficient K  in 
2

2

ˆ
0d W

dz
i W   ,  0, 1 .     
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4. CONCLUSION  

 

 From the previous examples we can conclude that in this linear areolar 

equation from II order, the oscillatority exists in the solution both in the real and 

in the imaginary part and ( , ) 0W z z   has zeroes, where the signs of   and   

in the coefficient K i   does not has any influence on that oscillarity.  
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