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A CHARACTERIZATION OF STRICTLY
CONVEX 2-NORMED SPACE

Samoil Mal&eski®, Katerina Anevska? and Risto Mal&eski®

Abstract. The terms of 2-norm and 2-normed are given by S. Géhler in the
paper [10], Ch. Diminnie, S. Gahler and A. White ([3]) gave the term of strictly
convex 2-normed spaces. This paper consists of several characterizations of
strictly convex 2-normed spaces.

1. INTRODUCTION

Let L be a real vector space with dimension greater than 1 and ||-,-|| be a real
function on Lx L such that:
a) |Ix Yy|=0 if and only if the set {x, y} is linearly dependent;

b) X ylHly.x]l, forall x,yelL;
¢) |lax,y|He|-||xy], forall x,yeL and foreach o €R,
d |[x+y,z|€Ix z||+]y,z]|, forall x,y,zeL.
The function ||-,-|| is said a 2-norm on L, and (L,||-,-||) is said a vector 2-
normed space ([10]). Some of the fundamental properties of the 2-norm are the
following:
1. |Ix,y|>0,forall x,yeL and
2. [Ix, y+ax|HI xy], forall x,yeL and foreach ¢ eR.
Let n>1 be a positive integer, L be a real vector space, dimL>n and
(-,-]+) beareal function on LxLxL such that
i)  (X,x|y)=0, forall x,yeL and (x,x|y)=0 ifand only if x and y are
linearly dependent;
i) (xy|z)=(y,x|z2), forall x,y,zeL,
i) (xXx|y)=(y,y|x),forall x,yel;
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iv) (ax,y|z)=a(x,y|z), forall x,y,zeL and for each « €R ; and

V) (X+x,YlZ)=(XYy|z2)+(X,Yy|z), forall X,x,y,zeL.

The function (-,-|-) is said a 2-inner product, and (L,(--|-)) is said a 2-pre-
Hilbert space ([1]).

The concepts of 2-norm and 2-inner product are two-dimensional analogous
to the concepts of a norm and an inner product. R. Ehret proved ([7]), that if

(L,(,,-]7)) is a 2-pre-Hilbert space, then || X,y ||= (X, X| y)ll2 defines a 2-norm.
Thus, we get a vector 2-normed space (L,||-,-|]) and moreover, for all x,y,zeL
it is true that

2 A p ol
(a,b|C)=”a+b'c” 4||a b.cl ’ 1)

Ix+y.zI? +Ix=y,zIP=2(x 2> +] y,]*), )
The equality (2) is actually two-dimensional analogy to the parallelogram
equality and it is said parallelepiped equality. Further, if (L,||-,-|]) is a vector 2-
normed space such that for all x,y,zeL, (1) holds true, then (2) defines 2-

inner product on L, whereby forall a,belL, ||, y|=(x X]| y)”z,holds true

Let z be a fixed non-null element of L, V(z) be a subspace of L generated
by z and L, be a factor space L/V(z). Let x, be the class of equivalence of
X with respect to V(z). Clearly, L, is a vector space in which the operations
vector addition and scalar multiplication are defined as following
X; +Y, =(X+Yy), and aX, =(aX),. In [6] is proven that ||X,||,=lX,z]|
definesanormon L, .

Let x,yeL be non-null elements and let V(x,y) be the subspace of L
generated by the vectors x and y. The vector 2-normed space (L,|[--|]) is

X+Y
2

X,¥,zeL, implies x=y ([3]). Several characterizations of strictly convex 2-
normed space are given in papers [1], [5] — [8], [12] — [14], [16], [17], [23] and
[24], and a few of them will be stated in the following theorem.

called a strictly convex if ||x,z|=lYy,z|H| ,Z|I=1 and zeV(x,y), for

Theorem 1. Let (L,||--]]) be a 2-normed space. The following claims are

equivalent:
1) (L,||--]]) is strictly convex

2) Foranynon-null zeL, the space L, is strictly convex
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3)

4)

5)

If [|x+y,z|HIxz||+]ly,z]l and zeV(x,y), for x,y,zeL then y=ax
for some a >0.

If Ix-uzl=allx-y.z|l, [ly-uz|=A-a)lx-y.z||, «<(01) and
zgV(x—u,y—u),then u=(1-a)x+ay.

if |Ixz|4ly z||=1, x=y and zgV(xy), for xy,zelL, then

152 zl<1.

Example 1 ([3]). Let L be 2-preHilber space and Xx,y,z <L be such that || x,z|=
|y,z|F1, x=y and z&V(x,Yy). Then the parallelepiped equality implies

155, 2|+ 5, 2 P=1. 3)

But, x=y and zgV(xy), thus |52, z[|>0 and the equality (3) implies

X+
152

,Z||<1. Finally, thereby Theorem 1, L is strictly convex. m

Example 2 ([18]). In the set of bounded series of real numbers 1%

X]
1% yll= sup

i,jeN
i<j

 X=04)i2, y=(y)izg 1™

Yj

defines a 2-norm. That is, (I°O |I--|]) is areal 2-normed space. The vectors

x=(1—%,1—2—12, ., 2”’ ), y= (0,1—%,1—2—12,...1 i ) and

2=(1,0,0,...,0,...)

satisfy || x,z[H| v, z|I51 5%, z]l=1 and 2V (x,y), but x=y. Therefore, 1™ is

not strictly convex 2-normed space. m

2. MAINS RESULTS

Let x,yeL. The set
[ yl={ax+(@1-a)y| a<[01]}

is said a line segment (segment) with end points x and y . The set

(xy) ={ax+(@1-a)y| a<(01)}

is said an opened line segment with end points x and y .
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Corollary 1. Let (L,||-,-]) be a 2-normed space. The following claims are

equivalent:
1) (L,|I--I) is strictly convex

2) If || x+y,z|HIxz||+]y,z|| and zgV(X,Yy), for x,y,zeL, then the set
[x, y]={ax+(@-a)y| «<[0,1]} is linearly dependent.

Proof. Let the condition 2) holds true. Since x,ye[x,y], the set {x,y} is
linearly dependent, i.e. it exists « € R such that y =ax. If we substitute in the
condition ||x+V,z|H|X z||+]y,z|| and consider that z¢V(x,y) , we get
|1+ a|=1+| |, which implies a>0. Thus, y=ax for some a >0, soO
Theorem 1 implies that L is strictly convex.

Let L be a strictly convex space. If || x+y,z|H| % z||+]|y,z]| and z&V (X,Y),
then Theorem 1 implies that y=ax for some o >0. Letx =tx+(1-t)y, for
te[0,]. Thus, x =({t+@-t)a)x, for te[0,1] and thereby all t, pe[0,1]
satisfy t+ (L—-t)a>0 and p+(1— p)a >0 we get

t+(1-t)x
p+(1-p)a

So, the set {x;,Xp} is linearly dependent, for all t,pe[0,1]. Thus, the set

t+(1-t)x

X = (t+ L-t)a)x = (p+ (= P)a)Xp = 5o ya e

[x,y]={ax+(Q—-a)y| o €[0,1]} is linearly dependent. m

Let L be a2-normed space, X,zeL and r>0. The set

B,(x,r)={yeL|lly-xzll<r}

is called an opened ball with respect to z centered at x and radius r. If x=0

and r =1, then B,(0,1) is called a unit opened ball with respect to z. The set
B.[x.r]1={yeL|lly—-xz[<r}

is called a closed ball with respect to z centered at x and radius r. If x=0

and r =1, then B,[0,1] is called a unit closed ball with respect to z. The set
S;(xr)={yeL[lly-xz|=r}

is called a sphere with respect to z centered at x and radius r. If x=0 and

r=1, then S,(0,1) is called a unit closed sphere with respect to z. Clearly,

B,(x,r)c B,[x,r] and B,[x,r]=B,(x,r)usS,(x,r).

Lemma 1. Let L be a 2-normed space and x,y,zeL . If
Ix+y,zlHIxz I+, zll,
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then, forall t,s>0
ltx+sy,z|l=t||x z[|+s]ly,z]l, 4)

holds true. If z ¢V (x,y), then [m,ﬁ]gsz(o,l).

Proof. Let 0<s<t. Then the properties of the 2-norm imply
tlx zl[+slly, z[=[tx+sy,z||

= t(x+y)—(t-s)y,z|
2 tx+y)zl -l t-s)y,z|l
=tlIx+y,zl[-(t-s)|ly.z|
=tlixzll+tly. zlI-tlly. zl[+slly. z|
=tlixzll+sly.zll,

i.e. in this case the equality (4) holds true. Analogously can be considered a case

for 0<t<s.

Let zegV(xY). If a<[0,1], then the equality (4) implies

a—2—+01-« I X,Z 41 JZ|[=1.
lo g+ W) zll= gzl .zl

iv.d

Therefore, [|| m Z||]cS 01).m

ZI" |l
Theorem 2. The 2-normed space L is strictly convex if and only if
IxzIHly,zl=1 and [x,y]=S;(0,1) imply x=y.

Proof. Let L be a strictly convex 2-normed space and let the conditions
1% z|Hly,z]F1 and [x,y]l<S,(0,1) be satisfied. Then, [x,y]<S,(0,1), for

a=1 implies X =1x+(1-1)yes,(00). Thatis ||, z[=1. Moreover,
since L is strictly convex, we get that Xx=Y .
Conversely, let ||x z|=|y,z|=1 and [X,y]<S,(0,1) imply x=y. Let’s

assume that || x+y,z|HI X, z||+]y,z]|| and z&V(x,y). Thus, Lemma 1 implies

—X_ Y 15 (0,1), which according to assumption means —X-=-—Y_ je
ez Ty.ail < 52 (0. 9 P ol Ty

X= ”; ZHy Finally, the Theorem 1 implies L is strictly convex 2-normed
space.m

Theorem 3. A 2-normed space L is strictly convex if and only if the following
condition is satisfied
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X,y €S,(0,1), x= y implies )
lax+ By, z||<1, fora, f>0and a + S =1.
Proof. Let the condition (5) be satisfied and || x,z|H|y,z|=1, x=#y and

Xty

5 21,

z¢V(X,y). Then x,yeS,(0,1) and since a:ﬂ:% we get that ||
which according to theorem 1 means that L is strictly convex.
Conversely, let’s assume that there exist X,yeS,(0,1),x=yand «,£>0,
a+ =1 such that ||ax+pBy,z||=1. The latter implies that there exist
X,¥,zeL suchthat||x,z|H|y,z|l=1, x=y and «, >0, a+ =1 such that
lax+py.zlHlax,z||+] B,z

Since Lemma 1,

lt(ax) +s(By). zll=tllax, z|| +s || By z]l,

holds true for all t,s>0. For t=5, s=i, in the last equality, we get that

there exist X,y,z e L such that

IxzlHly.zI=1 x=y and | X, z|=1.

The latter, according to theorem 1, means that the space L is not strictly
convex. m

In the purpose of the next characterization of strictly convex 2-normed space
we will use the extremal points of the convex sets. Let C be a convex set into
2-normed space L. The point z<C is said to be an extremal (end) point for the
set C if z=tx+(1—-t)y, for some t<(0,1) and some x,y €C implies x=y.

Theorem 4. 2- normed space L is strictly convex if and only if for each zeL
each point of the unit sphere with respect to z is an extremal point of the closed
unit ball with respecttoz.

Proof. Let L be strictly convex space. It will be proven that each point of the
set S,(0,1) is an extremal point of the set B,[0,1]. Let ueS,(0,1) and let

u=tx+@-t)y for some te(0,1) and some Xx,yeB,[0,1]. Thereby
uesS,;(0,1), it is true that ||u,z|=1 and since x,yeB,[0,1] we get that
1% z]I<]y,z||<1. It will be proven that || x,z|H|Y,z|=1holds true. Indeed,

in otherwise it holds that
1quz|HItx+@-t)y, z[|<t][x, z||+@-D [y, z|l<1,
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which is contradictory. Thus, || x+VY,z|[<l| X, z||+]Y,z|=2. At the end, it will
be proven that || x+ Y, z|=2 holds. Indeed, in otherwise it holds that
15|u, z |9 tu+ @-t)u, z||
= titx+ A -1)y]+ A-)[tx+ A -1)y], z|]
It2X+tA-t)(x+y) + @A—t)2y,z||
<t?+2t(1-t)+(1-1)° =1,

Y, z|=1 and since L is strictly

convex space, we get that x=y, i.e. u is an extremal point of the closed unit
ball with respectto z.

which is contradictory. So, || x,z|H|y,z]|H|

X+y

Conversely, let’s assume that ||x,z|H|Y,z|Hl 5

,z|l=landz ¢V (x,y), for

X,y,z €L . Thus, the point u :%x +% y is on the unit sphere with respect to z.

Therefore, it is an extremal point of the closed unit ball with respect to z, that is
X=y,i.e. L isstrictly convex space. m

Example 3. Over the vector space Cpgqj, of continuous functions on the
interval [0,1], the function ||-,-[|: Cjo 13 X Cjoq) = R defined as

X(t) x(s)
y(®) y(s)

is a 2-norm. So, (C[o,1]v|| --|[) is 2-normed space. The functions

| X, yll= max
s,te[0,1]

x(t) =1, y(t) =1-t, z(t) =t* e Cjg
satisfy

= max |32—t2 |=1 and
s,te[0,1]

” ” 1 1
X, Z||= max
s,te[0,1] t2 52

1-t 1-s
= max |s2 —t? +st? —ts? |=1.
s,te[0,1]

ly,z|= max
s,te[0.1] t2 52

Therefore, X,y €S,(0,1) . Further the functions u(t) =2 x(t) + 3 y(t) =1— 5 satisfy

tog_s
212

2 &2

|lu,z||= max

= max |s®—t? —%ts2 +%st2 I=1.
s,te[0.1]

s,te[0,1]
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Therefore ueS,(0,1) and since it is not an extremal point of B,[0,1] we
deduce that the space (C[o,1],|| ++|[) is not strictly convex space. m

In the purpose of the next characterization of strictly convex 2-normed space
we will introduce the term of minimal point with respect to the set M c L.

The point veLis said to be minimal point with respect to the set M if
[u-m,z|<[v—-m,z||, zgVUuU-M)=V{u-m|meM}), u,zelL and for
each me M implies that u=v.

Theorem 5. 2-normed space L is strictly convex if and only if for all x,yelL
the points of the segment [x,y]={tx+(1-t)y| t<[0,2]} are minimal with
respect to the set {x, y}.
Proof. Let L be strictly convex space. Clearly, the points x and y are minimal
with respect to the set {x,y}. Thus, let v, =tx+(1-t)y, te(0,1) be any point
of the opened line segment [x,y]. Let’s assume that for some uelL and
zeV(XY)
lu=xzldlv —xzl=A-1) [ x=y,z]| ()
lu-y.zlidlv -y, zll=tll x -y, z]l. (6)
hold true.
Further, the inequalities (5) and (6) imply
[ x=y. zlIx—u,z||+][[u-x,z]|
<@-tlx-y.z[l+tlIx=y,z|l
=l x-y.z].
Thus, the following equalities hold true
lu—xzl=A-0 [ x=y,z][, [u=y. zl=tlIx=y,zl
and since te(0,1) and zegV(Xx—u,y—u), theorem 1 implies that
u=tx+1-t)y=v. Thatis, v, is minimal point with respect to the set {x, y}.
Conversely, let for all a,beL the points of the segment [a,b] be minimal for

the set {a,b}. If || x,z || v, z||I=| 5%, z|l=1 and 2V (x,y), then

X+
10-x 2l % 21 X5 2 1<l x+ A (-y) - x, 2]

10—(y). zliEly. zIHI X5 2 <l 3 x+ 3 (=y) = (-y). 2]
and zgV(x,y)=V(0-x0-(-y)).
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But, the point %x+%(—y) belongs to a segment [x,—y]. That s, itis minimal

with respect to the set {x,—y}. So,

1 1 —
§X+§(—Y)—Oa

i.e. X=Yy.Thatis, L is strictly convex. m
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