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Abstract. Research is usually preceded by natural aspiration to discover new 

knowledge based on well-known facts. Many scientific facts are known for 

centuries, however new peculiarities are discovered by contemporary means. 

Information technologies together with abundant arsenal of knowledge and 

skills for effective application initiate specific way of thinking. The dynamic 

geometric software turns out to be a basic instrument to study objects from the 

Euclidean geometry. The present paper uses the possibilities of “THE 

GEOMETER’S SKETCHPAD” (GSP) in the generalization of some classic 

and some not very popular theorems after analyzing basic properties of the 

objects under study. 

 

 

1. INTRODUCTION 

 

In the plane of a given triangle ABC  some special points are determined, 

which characterize various properties of the triangle. Such points are the 

orthocentre, the in-centre, the circum-centre and ex-centres. Remarkable 

relations, which are connected with these six points (in the general case), are the 

Euler line, the Euler circle of the ABC  and the isogonal conjugates with 

respect to ABC . It is curious to examine whether in substituting any of the 

mentioned points by arbitrary one from the plane of the ABC  (with possible 

exceptions of natural character), the other five points are determined uniquely, 

thus transforming the known lines and circles into generalizations with similar 

properties. We propose an analysis of some characteristic properties of the 

already mentioned notable points of the triangle by an essential assistance of the 

GSP, and we show the existence of corresponding generalizations, which are 

analogous to already known figures from the geometry of the triangle.  
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In such a way we demonstrate the joint work of the analogy and the computer 

software GSP to notice generalizations of well-known theorems from the 

geometry of the triangle. By the help of the GSP we examine the dependence of 

some triangle properties on an arbitrary point. The whole process should be 

considered as finalized only in case the results are proved in a strictly 

mathematical way. The proofs are elaborated using barycentric coordinates with 

respect to the given triangle ABC , namely (1,0,0)A , (0,1,0)B  and (0,0,1)C  

[1]. The midpoints of the sides BC , CA  and AB  are denoted by 1 1
2 2

(0, , )aM , 

1 1
2 2

( ,0, )bM  and 1 1
2 2

( , ,0)cM , respectively. 

 

2. EULER LINE AND EULER CURVE, DEPENDING ON A POINT 

 

Every non-equilateral triangle has a special line, known to be Euler line and 

also a special circle – Euler circle [1], [2]. Following reasoning by analogy we 

will show by means of the computer program GSP how a similar line and a 

curve of second degree for a given triangle could be obtained in dependence on 

an arbitrary point in the plane of the triangle. 

 

 
 

In the general case, characteristic points of ABC  on the Euler line are the 

circum-centre, the orthocentre, the gravity centre and the centre of the Euler 

circle (Fig. 1). The circum-circle of the ABC  is one element only of an 

infinity set of second degree curves, which are circumscribed round ABC . 

Something more, if 0 0 0( , , )O x y z  0 0 0( 1)x y z    is an arbitrary point, which 

Figure 1 Figure 2 
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is not concurrent with the lines BC , CA , AB , b cM M , c aM M  and a bM M  in 

the plane of the ABC , then A , B , C  and correspondingly their symmetric 

points with respect to O   

0 0 0(2 1,2 ,2 )A x y z  , 0 0 0(2 ,2 1,2 )B x y z  , 0 0 0(2 ,2 ,2 1)C x y z   

lie on a curve of second degree ( )k O  with centre O  (Fig. 2, 3). The curve 

( )k O  has the following equation: 

 0 0 0 0 0 0( ) : (1 2 ) (1 2 ) (1 2 ) 0k O x x yz y y zx z z xy      .            1  

 

 
The point O , thus determined is analogous to the circum-centre of ABC . 

Now, we will define a point, which is analogous to the orthocentre of ABC . 

The altitudes of ABC  are parallel to the lines, which pass through the circum-

centre and the points aM , bM  and cM  (Fig. 1). This is a reason to construct 

the lines ah , bh  and ch  by the GSP, passing through the vertices A , B , C , 

respectively and parallel to the lines aOM , bOM  and cOM , respectively. It is 

seen that these lines have a common point H  (Fig. 2, 3). Additionally, no 

matter how the position of O  is changed, the lines under consideration have a 

common point always. In such a way the following assertion is obtained: 

Figure 3 
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Property 1. The lines ah , bh  and ch  have a common point H . 

 

For the proof we find parametric equations of the lines ah , bh  and ch : 

1 1
0 02 2

1 1
0 0 02 2

1 1
0 0 02 2

: 1 , ( ) , ( ) ,0

: ( ) , 1 , ( ) ,

: ( ) , ( ) , 1 .

a a a

b b b b

c c c

h x x t y y t z z ta

h x x t y y t z z t

h x x t y y t z z tc

     

     

     

 

Further, we solve the system with the equations of the lines ah  and bh . We 

find that the common point is 0 0 0(1 2 ,1 2 ,1 2 )H x y z   . Finally, we check 

that the coordinates of this point satisfy the equations of ch . 

For a more convincing analogy between the point H  and the orthocentre of 

ABC , this point should possess other properties, which are characteristic for 

the orthocentre. Let the lines ah , bh  and ch intersect the lines BC , CA  and 

AB  in the points 1A , 1B  and 1C , respectively, and also the curve ( )k O  – in 

the points 2A , 2B  and 2C , respectively (Fig. 2, 3). It is well-known that the 

points, which are symmetric to the orthocentre with respect to the sides and the 

midpoints of the sides, lie of the circum-circle of ABC  (Fig. 1) [1]. For this 

reason we check by the GSP whether the points 2A , 2B  and 2C  are symmetric 

to H  with respect to 1A , 1B  and 1C , correspondingly. We check also whether 

the points A , B  and C  are symmetric to H  with respect to aM , bM  and 

cM , correspondingly. All constructions lead to the conclusion that H  has the 

following properties: 

 

Property 2. The points 2A , 2B  and 2C  are symmetric to H  with respect to 

1A , 1B  and 1C , correspondingly. 

 

Property 3. The points A , B  and C  are symmetric to H  with respect to 

aM , bM  and cM , correspondingly. 

 

The proofs of these properties could be obtained using the coordinates of the 

coresponding ponts. 

Because of the shown analogy of the constructed point H  with the 

orthocentre of ABC , we will call this point to be orthoid of ABC , 

depending on the point O . 
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In the GSP let us construct now the line OH  and the gravity centre 

1 1 1( , , )
3 3 3

G  of ABC . We establish, that:  

 

Property 4. The points O , H  and G  are collinear and the point G  divides 

the segment HO  in  ratio 2 :1 . 

The proof ot this property could be obtained by a reasoning, that the 

coordinates of the points O , H  and G  imply the vector equality 2.HG GO . 

The property 4 shows, that the line  l O , containing the points O , H  and G  

is an analogue to the Euler line and for this reason we will say, that  l O  is 

Euler line of ABC , depending on the point O . 

The centre of the Euler circle of ABC  lies on the Euler line too. Let us 

look for a curve, which is analogous to the Euler circle. In the general case the 

Euler circle contains the points aM , bM  and cM , the feet of the altitudes and 

the midpoints of the segments connecting the vertices of the triangle with its 

orthocentre (Fig. 1) [1]. 

For an arbitrary point ( , , )P     ( 1)      from the plane of ABC , 

the points aM , bM  and cM , the common points of the lines AP , BP  and 

CP , denoted with 3A , 3B  and 3C , respectively, lie on a curve of second 

degree ( )P  (Fig. 2, 3). We call it to be Euler curve for the point P  with 

respect to ABC . This curve has the following equation: 

2 2 2( ) : (1 ) (1 ) (1 ) 0P x y z yz zx xy                   . 

Obviously, the Euler circle of ABC  is Euler curve of its orthocentre. Since 

H  is an analogue to the orthocentre, it is reasonable in this case to consider the 

Euler curve ( )H  of the point H .  It follows from the definition, that ( )H  

passes through the points aM , bM , cM , 1A , 1B , 1C  and the midpoints of the 

segments AH , BH  and CH , and its equation is 

2 2 2
0 0 0 0 0 0

0 0 0 0 0 0

(1 2 )(1 2 ) (1 2 )(1 2 ) (1 2 )(1 2 )

2(1 2 ) 2(1 2 ) 2(1 2 ) 0.

y z x z x y x y z

x x yz y y zx z z xy

        

      
 

We say, that ( )H  is Euler curve of ABC , depending on the point O . 

Experimenting by the GSP we establish for the points 3A , 3B  and 3C , that 

 

Property 5. The lines 3A A , 3B B  and 3C C ,  pass through the point G  and 

the relations 3 3 3: : : 2:1GA GA GB GB GC GC      are satisfied. 
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The coordinates of the points under consideration imply the vector equalities 

1
3 2

GA GA  , 1
3 2

GB GB   and 1
3 2

GC GC  , which prove the property.  

Now, let 1
2

( , )h H  be a homothety with centre H  and coefficient 1
2

, while 

1
2

( , )h G   be a homothety with centre O  and 1
2

 . We obtain from properties 2, 

3, 5 and the main property of the gravity centre, that: 

 

Property 6. The homotheties 1
2

( , )h H  and 1
2

( , )h G   transform ( )k O  to 

( )H . 

 

It follows directly from the last property, that 

 

Property 7. The curves ( )k O  and ( )H  are of the same type. 

 

Let 0 0 01 1 1

2 2 2
( , , )

x y z
F

  
 be the midpoint of the segment OH . It follows from 

property 6, that 

 

Property 8. The point F  is centre of the Euler curve  H . 

 

We have also the following 

 

Property 9. The homotheties 1
2

( , )h H  and 1
2

( , )h G   transform all points 

from ( )k O  to diametrically opposite points from ( )H . 

 

The obtained results imply, that the line  l O  does not exist exactly when 

O G . In this case ( )G  is an ellipse, inscribed in ABC . This fact explains 

why the equilateral triangle has no Euler line. 

 

Up to now, we have considered the cases, when the circum-curve of ABC  

is an ellipse or a hyperbola with center in a given point O . The circum 

parabolas of ABC  could be considered as conic sections with infinity centers 

[3]. The infinity center O  of the parabola could be determined by the directrix 

of a given vector O . Let 0 0 0( , , )O x y z  0 0 0( 0)x y z    be a vector, which is 
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not collinear with any of the lines BC , CA  and AB . A unique parabola ( )k O  

exists, which passes through the points A , B  and C . It has an axis, which is a 

collinear line with O  (it touches the infinity line of the plane in the infinity 

point O ) [3]. The parabola ( )k O  has the following equation: 

2 2 2
0 0 0( ) : 0k O x yz y zx z xy   . 

 
In this case the point H  could be considered as coinciding with the infinity 

center of ( )k O . We consider the line ( )l O  through G  and collinear with O  to 

be Euler line of ABC ,  depending on the directrix O  (or, which is the same, 

depending on the infinity point O , denoting it by ( )l O ) .  

We construct the lines 0a , 0b  and 0c , which pass through the vertices A , 

B  and C , correspondingly and are collinear with the vector O .  Let 

0 1a BC A  , 0 1b CA B   and 0 1c AB C  . The coordinates of the points 

aM , bM , cM , 1A , 1B , 1C  and the vector O  satisfy the equation 

2 2 2 2 2 2
0 0 0 0 0 0 0 0 0( ) : 0O y z x z x y x y z x yz y zx z xy       . 

The parabola
( )O

 is considered to be Euler curve of ABC , depending on 

the direcrix O  (or, which is the same, depending on the infinity point). 

The parabolas ( )k O  and ( )O  are connected with the following 

 

Property 10. The homothety 1
2

( , )h G   transforms the parabola 
( )O

 into 

the parabola 
( )k O

. 

Figure 4 
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The last property shows, that the circum parabolas of ABC  look like the 

circum ellipse of ABC  with center in the point G  because in each of the two 

cases there is only one homothety, transforming the circum curve into the 

corresponding Euler curve. 

Notice, that the infinity points also generate Euler lines and Euler curves 

(parabolas) of the given triangle. However, in this case the properties are less 

abundant because they are connected with circum parabolas round the triangle. 

The parabolas are placed more especially in the set of the three conic sections 

with respect to the centre notion. For this reason they transfer the peculiarity to 

the questions under consideration. 

The above investigations show, that Euler line ( )l O  and Euler curve  H  

could be associated to each finite or infinite point O  from the plane of a given 

triangle ABC , which is not concurrent with any of the lines BC , CA , AB , 

b cM M , c aM M , a bM M  and which is different from the gravity center G . The 

line ( )l O  and the curve ( )H  coincide with the classic ones exactly when O  

is the circumcenter of a non-equilateral triangle ABC . 

 

3. GENERALIZATION OF THE FEUERBACH THEOREM 

 

A well-known Feuerbach theorem from the geometry of the triangle asserts, 

that the Euler circle of a triangle is tangent to the four in-circles of this triangle 

[2], [4]. What follows in the sequel is a generalization of this theorem. 

By analogous reasoning, notifying some main dependences among the circles 

from the Feuerbach theorem, we will show how to obtain a generalization of this 

theorem by the computer program GSP, in which the participation of circles is 

not obligatory. Firstly, we will notify the generation of a triangle, which is  

conjugated to arbitrary point P  with respect to the given ABC . 

Let the points 1A , 1B  and 1C  be on the lines BC , CA  and AB , respectively 

and be such, that the lines 1AA , 1BB  and 1CC , pass through a point P  (finite or 

infinite). If the points 2A , 2B  and 2C  are the harmonic conjugated to 1A , 1B  

and 1C , respectively, with respect to the couples of vertices of the given 

triangle, then the lines 2AA , 2BB  and 2CC  are called to be harmonic 

conjugated to the lines AP , BP  and CP  with respect to ABC  [3]. Let 

2 2 aBB CC P  , 2 2 bCC AA P   and 2 2 cAA BB P  , then the triangle 

a b c
P P P  is called to be conjugated (harmonic) to the point P  with respect to 
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ABC  [1]. It is easy to show, that the conjugated triangle of aP  is 
b c

P P P , of 

bP  is 
c a

P P P , and of cP  is 
a b

P P P  [1]. For this reason we will say for such 

four points in the plane of ABC , that they form a harmonic four of points with 

respect to ABC . 

The first thing, on which we should pay attention in the Feuerbach theorem, 

is that five circles participate in it and four of them are tangent to the lines BC , 

CA  and AB . Since the circle is a special type ellipse and the ellipse is a type 

central conic section, then the desired generalization should be in search through 

the inscribed conic sections of the given triangle. At the beginning the 

generalization will be in searching through ellipses and hyperbolas, after that 

through the inscribed parabolas. 

The next thing, on which we should pay attention, is that the four in-circles 

participate in the Feuerbach theorem jointly and not separately — each for itself. 

Consequently, their centers participate jointly too. A remarkable property of the 

four centers is that they form a harmonic four of points with respect to ABC . 

Construct a triangle ABC  in the GSP program and also an arbitrary 

harmonic four I , AI , BI  and CI . Let ( , , )I I II x y z , 
1 2 1 2 1 2

( , , )I I I

I I I

x y z
A x x x

I
  

 , 

1 2 1 2 1 2
( , , )I I I

I I I

x y z
B x x x

I
  

  and 
1 2 1 2 1 2

( , , )I I I

I I I

x y z
C x x x

I
  

  [1] be points, which 

form a harmonic four of points with respect to ABC . 

Another remarkable property of the in-centers is that they define segments, 

whose midpoints lie on the circum-circle of ABC . For this reason we consider 

the midpoints AM , BM , CM , BCM , CAM  and ABM  of the segments of AII , 

BII , CII , B CI I , C AI I  and A BI I , respectively. Now, we should expect, that 

the points AM , BM , CM , BCM , CAM  and ABM  lie on a central conic 

section, circumscribed round ABC .  The case when the points I , AI , BI  and 

CI  are the centers of the in-circles of ABC , the points AM , BM , CM , 

,BCM
 CAM  and ABM  are midpoints of arcs on the circum-circle of ABC .  

The perpendicular bisectors of the segments BC , CA  and AB  pass through the 

same midpoints too. On the other hand, these perpendicular bisectors pass also 

through the midpoints aM , bM , cM  of the segments BC , CA  and AB , 

respectively. Therefore, we could expect, that in this case the lines A aM M , 

B bM M  and C cM M  are analogous to the perpendicular bisectors and for this 

reason they should have a common point. Construct the lines A aM M , B bM M  
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and C cM M  in the computer program GSP. The construction shows, that these 

lines pass through a point 0 0 0( , , )O x y z  0 0 0( 1)x y z    and BC A aM M M , 

CA B bM M M  and AB C cM M M , which visualizes the correctness of the 

supposition. The analytic computations in [9] confirm the observed 

concurrence. Additionally, it is established that the points AM , BM , CM , 

BCM , CAM  and ABM  lie on the circumscribed conic section  k O  of ABC  

with equation  1 ,  while the coordinates of its center are determined by the 

equalities 

 
   

 
   

 
   

2

2

2

1 2 2
0 1 2 1 2 1 2

1 2 2
0 1 2 1 2 1 2

1 2 2
0 1 2 1 2 1 2

,

,

.

I I I I

I I I

I I I I

I I I

I I I I

I I I

x y z x

x y z

y z x y

x y z

z x y z

x y z

x

y

z

 

  

 

  

 

  







 

Another property of the in-centers is that the lines determined by the centers 

and the tangent points are perpendicular to the lines BC , CA  and AB .  For this 

reason these lines are parallel to the perpendicular bisectors of the segments 

BC , CA  and AB . Use the notations ( )k I , ( )
A

k I , ( )
B

k I  and ( )
C

k I  for the 

inscribed conic sections of ABC ,  whose centers are the points I , AI , BI  and 

CI , respectively. Further we will examine  k I  only, because the remaining 

inscribed conic sections have the same properties. 

Use the notations IA , IB  and IC  for the tangent points of  k I  with the 

lines BC , CA  and AB , respectively. It follows from the already done 

observations, that the lines IIA , IIB  and IIC  should be parallel to the lines 

aOM , bOM  and cOM , respectively. Thus, using the GSP program we 

construct the lines IIA , IIB  and IIC  through the point I , which are parallel to 

the lines aOM , bOM  and cOM ,  respectively. Further, we construct the points 

IA , IB  and IC , as intersections of the lines IIA , IIB  and IIC , with the lines 

BC , CA  and AB , respectively and also the curve ( )k I , which passes through 

these points and whose center is the point I . We see, that ( )k I  has no other 

common point with the lines BC , CA  and AB .  Consequently, ( )k I  is an 

inscribed curve of ABC . The observations are proved strictly in [5], where it 

is shown, that the points IA , IB  and IC  lie on the in-curve ( )k I  of ABC , 
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whose equation is the following: 

2 2 2 2 2 2(1 2 ) (1 2 ) (1 2 ) 2(1 2 )(1 2 )

2(1 2 )(1 2 ) 2(1 2 )(1 2 ) 0.

I I I I I

I I I I

x x y y z z y z yz

z x zx x y xy

        

      
 

 

 
 

Let H  be the point depending on O  by which O  determines the Euler line 

( )l O .  Construct the Euler curve ( )H  for the point H  using the computer 

program GSP. Notice, that this curve is tangent to ( )k I , ( )
A

k I , ( )
B

k I  and 

( )
C

k I  consequently, this is the generalization of the Feuerbach theorem in 

search. Thus, it is confirmed one more time again, that ( )H  is the true 

analogue to the Euler circle, which depends on a point from the plane of ABC

. After using the equations of the curves ( )k I , ( )H  and also the dependence 

among the coordinates of the centers O  and I , it is shown in в [5], that  k I  

and ( )H  are tangent in the point 

        
2 2 2

2 1 2 1 2 1
( , , )I I I I I I I I Ix y z y z x z x y

f f f
F

     
, 

Figure 5 
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where 2((1 2 )(1 2 )(1 2 ) )I I I I I If x y z x y z     . 

In such a way, the following generalization of the Feuerbach theorem is 

established: 

 

Theorem 1. The inscribed conic sections ( )k I , ( )
A

k I , ( )
B

k I  and ( )
C

k I  of 

ABC  are tangent to the Euler curve ( )H  (Fig. 5). 

 

It is seen from the constructions, already performed in the computer program 

GSP, that the five curves are ellipses or hyperbolas simultaneously. Something 

more, when they are hyperbolas it seems that they have the same asymptotic 

directions. It could be said in fact, that the five hyperbolas pass through two 

infinite points. The proof of these facts is performed in [5]. 

 

 

Now let ( , , )I I II x y z  be infinite point, i.e. 0I I Ix y z   . The points 

1
2 2 2

( , , )I I

I I

y z
A x x

I   , 1
2 2 2

( , , )I I

I I

x z
B y y

I    and 1
2 2 2

( , , )I I

I I

x y
C z z

I    [5] together 

with the point I  form a harmonic four with respect to ABC . These points are 

finite and they lie on the lines b cM M , c aM M , a bM M . As stated in [5], the 

points from these lines could not be centers of conic sections, inscribed in 

Figure 6 
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ABC .  Consequently, the point I  generates only one conic section, inscribed 

in ABC . 

We consider the parabola ( )k I  as a conic section with infinite center I . 

There exists exactly one parabola ( )k I ,  which has an infinite center I  and is 

tangent to the lines BC , CA  and AB . The equation of the parabola  k I  is 

2 2 2 2 2 2 2 2 2 0I I I I I I I I Ix x y y z z y z yz z x zx x y xy      , which together with 

the equation of the Euler parabola  I  results in a unique common point for 

the two curves. It has the following coordinates: 
2 2 2( ) ( ) ( )

9 9 9
( , , )I I I I I I

I I I I I I

y z z x x y

y z z x x y
F

  
   . 

Thus, we establish 

 

Theorem 2. If I  is an arbitrary infinite point from the plane of ABC , then 

the generated by this point inscribed parabola and Euler curve  I  of ABC  

are tangent (Fig. 6). 

 

The case with the parabola looks like the case with hyperbola regarding the 

common infinite point of the inscribed parabola and the Euler curve (parabola). 

In such a way it turns out, that the two parabolas have two tangent points — one 

finite and one infinite. 

The above reasoning shows, that in each concrete case all curves under con-

sideration are of the same type. 

Some interesting properties of examined constructions are contain in [6] and 

[7]. 

 

4. CONCLUSIONS 

 

The challenge to find a generalization of a geometric theorem is connected 

with a deep understanding of the considered figure properties. A necessary step 

is to clarify the relation among the elements of a given configuration, thus 

extracting the properties which could be changed. How to perform the change? 

Which elements and properties should be modified in order to change the 

corresponding theorem itself? The GSP program turns out to be useful 

instrument in the process of answering these questions. The theorems included 

in the paper are mostly from the triangle geometry and are connected with 

different classes of circles, lines and points in the plane of that triangle. After 
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the analysis of the corresponding relations the circles, the lines and the points 

are replaced by suitable conics, lines and points thus keeping the validity of the 

theorems in the new situation. A deep knowledge of conic properties and 

constructive skills are necessary for the purpose. The program GSP is applied 

for fast elimination of various conjectures which turn out to be false, but also 

for the creation of convincing configurations leading to the formulation of the 

desired assertions. The assertions themselves should be considered as true only 

in case they are strictly proven. Generalizations are obtained in many cases but 

reasons are found very often to reject some. 

The established generalizations propose a new view on well-known 

geometric theorems and expose deeper sense of the participating figures. They 

give possibilities to overcome the limits of previous perceptions. Thus, a 

gradual deepening of the understanding concerning projective properties of 

conics is realized. Experience is obtained to discover certain theorems, which 

helps further investigations making them easier. 
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