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Abstract. In the paper main object of research is the Vekua equation. 

Тwo types of functions are found that are strongly connected to each 

other because it will be proven that if one of them is a solution of the 

Vekua equation, so will be the other one with a corresponding 

condition. Three different cases are considered.   

 

 

1. INTRODUCTION 

 

G. V. Kolosov in 1909 [1], when he was solving a problem from the theory 

of elasticity, introduced the expressions  
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2
[ ( )u v v u dW

x y x y dz
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     and  
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[ ( )u v v u dW
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known as operatory derivatives of a complex function  ( ) ( , )W W z u x y   

( , )iv x y  from a complex variable z x iy   and  z x iy  , respectively. The 

operator rules for these derivatives are given in the monograph of Г. Н. 

Положиǔ [2] (pages 18-31). In the mentioned monograph, are also defined the 

so called operatory integrals 

( )f z dz


   and  ( )f z dz


  

by z x iy   and z x iy  , respectively, from the complex function  ( )f f z  

in the area D , where their operatory rules are proven as well, page 32 - 41.  
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2. FORMULATION OF THE PROBLEM  

 

Main object of this research is the Vekua equation 

 d̂W
dz

АW BW F       (1) 

where the functions ( )A A z , ( )B B z , ( )F F z  are arbitrary functions from 

complex variable without any limitation or condition that they have to fulfill.  

 

Because in general case there is no method for finding its general solution, 

we explore the idea to find some solution of the Vekua equation (1) in the 

following form:  

 ( ( ), ( ))W W z z      (2) 

where ( )z   is antyanalytic function and ( )z   is analytic function.  

 

3. MAIN RESULT 

  

Case 1. Let 
( )

( )

z

z
W




  be a solution of the equation (1) (and is from the form 

(2)), i.e. it is a ratio from one antyanalytic and one analytic function. That means 

that this function satisfies the equation (1), so if we find the operator derivative 

by z  from W and replace it in (1) we get: 
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If we make one more transformation, we can get a proof to one more interesting 

statement. If we add on both sides the expression 
ˆ ( )

( )
d z

dz
z


   and given into 

consideration that 
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then, we get 
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So, if  
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 ( ) ( ) 1z z    and 
ˆ ( )

( ) 0
d z

dz
z


      (3) 

we get another solution to the Vekua equation (1), i.e. the function 

1 ( ) ( )W z z    which is not from the form (2). It is an antyanalytic function. 

If we want a solution that 0W  , then   0z  , which means that the second 

condition in (3) is 
ˆ ( )

0
d z

dz


 .    

 

So, now we can formulate the proven fact as a theorem. 

 

Theorem 1. Let ( )z   be an antyanalytic function and ( )z   be an 

analytic function. If 
( )

( )

z

z
W




  is a solution to the Vekua equation (1), then 

1 ( ) ( )W z z   is also a solution to the Vekua equation (1), if the conditions (3) 

are satisfied.  

 

Case 2. Let 
( )

( )

z

z
W




  be a solution of the equation (1) (and is from the form 

(2)), i.e. it is a ratio from one analytic and one antyanalytic function. That means 

that this function satisfies the equation (1), so if we find the operator derivative 

by z  from W and replace it in (1) we get: 
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If we make one more transformation, we can get a proof to another 

interesting statement. Here we expect a new solution of the Vekua equation to 

be the function 1 ( ) ( )W z z   . It is analytic function, so its areolar derivative 

is 0. So, if we add on both sides the expression 1d̂W

dz
, then we get 
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So, if  
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( ) ( ) 1z z    and 
ˆ( ) ( )

( )
( ) 0

z d z

z dz
z

 


      (4) 

we get another solution to the Vekua equation (1), i.e. the function 

1 ( ) ( )W z z    which is not from the form (2). It is an analytic function. 

Again, the second condition in (4), means that 
ˆ ( )

0
d z

dz


 .  

 

So, now we can formulate the proven fact as a theorem. 

 

Theorem 2. Let ( )z   be an antyanalytic function and  ( )z   be an 

analytic function. If 
( )

( )

z

z
W




  is a solution to the Vekua equation (1), then 

1 ( ) ( )W z z    is also a solution to the Vekua equation (1), if the conditions 

(4) are satisfied.  

 

Case 3. Let ( ) ( )W z z   is a solution of the equation (1) (and is from the 

form (2)), i.e. it is a product from one antyanalytic and one analytic function. 

That means that this function satisfies the equation (1), so if we find the 

operator derivative by z  from W and replace it in (1) we get: 
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If we make one more transformation, we can get a proof to one more interesting 

statement. If we add on both sides the expression 
2
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then, we get 
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So, if  
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2

ˆ( ) ( )

( )
0

z d z

dzz

 


      (5) 
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we get another solution to the Vekua equation (1), i.e. the function 
( )

1 ( )

z

z
W




  

which is not from the form (2). Again, (5) means that 
ˆ ( )

0
d z

dz


 . 

 

So, now we can formulate the proven fact as a theorem. 

 

Theorem 3. Let ( )z   be an antyanalytic function and  ( )z   be an 

analytic function.  If ( ) ( )W z z   is a solution to the Vekua equation (1), then 

( )
1 ( )

z

z
W




  is also a solution to the Vekua equation (1), if the conditions (5) are 

satisfied.  

 

Note. As we can see in all three cases, the second twin solution is not from the 

form (2). The functions are different, but the conditions are similar. 
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