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REMARK ABOUT CHARACTERIZATION
OF 2-INNER PRODUCT

Katerina Anevska® and Risto Mal&eski?

Abstract. Characterization of 2-inner product is focus of interest of
many mathematicians. In this paper proofs of two characterizations of
2- inner product, which are actually consequences of the Theorem 1
[15], are given. Also, generalizations of already know Hayashi (see
[4], pg. 297) and Zarantonello ([5]) inequalities are fully elaborated.

1. INTRODUCTION

The concepts of 2-norm and 2-inner product are two-dimensional analogies
to the concepts of norm and inner product. S. Gahler ([13]), 1965, gave the term
of 2-norm and R. Ehret ([11]), 1969, proved the following:

If (L,(,-]-))is a2-pre-Hilbert space, then

1%y ll= 0 x 1 y)Y2, (1)
for all x,y eL, defines a 2-norm. So, we get the 2-normed space (L,||-||) and
furthermore for all x, y, z € L the following equalities are satisfied:

2 2
X+Y,2||° XY,z
| l 4|| I , @)

(x.y|z) =

Ix+yzIP +lx=y,zIP=2(xz|* +Il y, 2 ]I%). ©)
The equality (3) is analogue to the parallelogram equality, and it is said to be
parallelepiped equality. Moreover, 2-normed space L is 2-pre-Hilbert if and
only if the equality (3) is satisfied for all x,y,zeL.
The papers [1]-[3], [6], [12], [14]-[16] consist of many proven
characterizations about 2-inner product.
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Theorem 1 ([15]). Let (L,||-,-]) be a real 2-normed space. Then, L is a 2-pre-

Hilbert space if and only if the following condition is satisfied:
if n>3, x,X,...x,,ZzeL and aj,a,,..,a, are real numbers such that

n
> aj =0, then
i=1

4 2 2
| Xaixi,z[I=- X aajllxi—xj,z[|". = (4)

i= 1<i< j<n
2. CHARACTERIZATION OF 2-PRE-HILBERT SPACE

The characterization of 2-inneer product by applying the Euler-Lagrange
type of equality is elaborated in [6] or in other words generalization of Corollary
2.2 [8], is elaborated. The following theorem is one other proof of the above
stated generalization.

Theorem 2 ([6]). Let (L,|]|--|[) be a real 2-normed space. The 2-norm is
generated by 2-inner product if and only if the following equality is satisfied

2 _ 2 2 2
|lax+by, z| +|Iﬂb>< aay,z||” _ |Ix.zl +|Iy,2|l , (5)
4 yof3 a B

forallx,y,zeL andforall a,beR, @, >0, y =aa® + fo?.
Proof. Let L be a real 2-normed space such that for all x,y,zeL and for all

abeR, «,5>0, y =qa’ +ﬁb2 the equality (5) is satisfied. For
a=pfF=a=b=1, the equality (5) is transformed to an equality which is
equivalent to the parallelepiped equality, (3), what actually means that L is 2-
pre-Hilbert space in which the 2-inner product is defined as (2) and moreover
(2) holds true.

Conversely, let 2-inner product, which determines the 2-norm, exist and let

x,y,zelL and a,beR, a, >0 be such that ;/:aaz +ﬁ'b2 is satisfied. For
alzﬁ,az=%,a3=—37+ﬁ;,x1=x,x2=y,x3:0

theorem 1 is transformed as the following

ax+by,z|”  a(a+b 2 b(atb 2 2

Further, for
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alzb\/? azz_ﬂ asz_bﬁfaa’xlle Xp=Y,%3=0

\/J’ \/E, «/0{,8}/
theorem 1 is transformed as the following
|| Bbx—cay,z|’ _ b(bf—-a) 2 a(bp-aq) 2 abiy. )
7aﬂ - ay ”X’Z” '37, ” y’Z” + ¥ ”X y,Z” . (7)

Finally, if we summarize the equalities (6) and (7) and have also on mind that
y= aa® +/;’b2 we get the following

ax-+by, z||? bx—cay,z||° a(a+b) b(bp-ac 2
I Y, Z|| +||ﬂ y,z|| :( ( )+ (ﬂ ))”X,Z” +

4 yof3 4
b b b
+ (22 a”“”")nyzn
aa“+pb aa +ﬂb
== 1% 2|2 + 2222 |y, 2|12
_ x| lly.2P
== + ﬂ ,

i.e. the equality (5) is satisfied. m

The following theorem is actually generalization of M. S. Moslehian and J.
M. Rassias (Corollary 2.2, [9]) result.

Theorem 3.A real 2- normed space (L,||-||) is 2- pre-Hilfert space if and only
if for each n>2 and for all x,x,,..., X,z € L the equality (8) is satisfied

n n
Yo+ Yax.zlF= Y (e zl+Xalx.zI)?. 8)
ae{-113 i=2 ae{-11} i=2

Proof. Let (8) be satisfied for each n>2 and for all x,x,,...,x,,z€L. For
n=2, x=x and X, =y the equality (8) is transformed to the parallelepiped

equality (3). That actually means that L is 2-pre-Hilbert space in which the 2-
inner product is defined as (2) and furthermore (1) holds true.
Conversely, let a 2-normed space (L,||-,-|]) be a 2-pre-Hilbert space, n>2 and

X1: X9, Xy, Z €L
n
For a . =—-1+ > a) and X,,4 =0, Theorem 1 is transformed as the

k=2
following:
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n 2 n+1 2
X+ 2 aixi, z[|°=ll % + 2 &%, z]|
i—2 i—2

n 2 2
=@+ X2 a)lxzII” + 2 a1 %, zl17) -
K=2 i=2

n
2 2
2 allx =%,z - X aajllx—xjz|

i=2 2<i<j<n
n 2 2 n n n 2

=2 01%, 17+ X, z )1 2+ 20 > ad Il %, z|l” -
i=1 k=2  k=2i=2

izk

n
2 2
-2l —%.zII° - X aajllxi—xjz
i=2 2<i<j<n

and since g e{-11}, for i=2,3,...,n, we get 2"t equalities of the above type.
By summarizing the such obtained equalities, we get the following.

n 2 ondd 2 n 2
2 b+ 2 ax,zlF=2""2lIx.zII°+ X X allx.z|*+
ael 11} i=2 i-1 a {_11pk=2

n n 5
+ X X Xaallxz| -
ay ,; e{-13k=2i=2
izk

n
2
- 2 2gllx-x.zlf -
88 -11}i=2

2
- 2 Y giajllx —xjz|l

a,8e{-11}2<i<j<n

n
=2"13 1%, 2|7
i=1
d 2
= Y (Ixzl+2alx.zI)?,
ae{-11} i=2

i.e. the equality (8) holds true. m
3. GENERALIZATION OF HAYASHI AND ZARANTONELLO INEQUALITIES
The following theorems, are actually generalization of two already known

equalities, obtained by using theorem 1. Thus, we will firstly give a
generalization of Hayashi (see [4], pg. 297) inequality for complex numbers.
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Theorem 4. Let (L,||-,-]|) be areal 2-normed space. Then

2 Ix=xp,zll-Ix=Xp, zll- 11 % =X, [ 21 X = X2, 2| | X2 = X3, Z[| - | X3 = X, 2| (9)
cyclic

for all x,%;,Xy,%3,z € L. The inequality is transformed to an equality, if at least
one of the sets {x—xq,z},{x—Xo,z},{x—x3,2} is linearly dependent or more
over if the set

IXy—e.2I — =y
X—X1)+ X—Xo)+ X—Xq),2
hoqa XX+ gy X X2) + g (X %8). 23

is linearly dependent.
Proof. Let at least one of the sets {x—xq,z},{X—Xo,z},{x—X3,2} be linearly
dependent. With no loose of the generality, let {x—x;,z}be such the set, i.e.

X=X +az. Then, the properties of 2-norm imply the following
2 Ix=xg, zll- X =xp, z -1 % = %o, Z || =l X = %o, Z |- [| X = X3, Z || Xp = X3, Z |
cyclic
¥ +az—Xp, 2| Ix +az—x3. 2| X — X3, 2|
=X =x2, 2|11 x2 =3, 2|1 X3 =0, 2,
The above means that (9) is an equality.
Let’s suppose that the sets {x—xq,z},{x—xX5,2},{x—x%3,z} are linearly

3

independent. For a;=-> a; and x4 =x in Theorem 1, we get that for all
i=1

X, %1, X0, %3,Z€ L and for all a,a,,a3 €R the equality

3 3 , 3 3 ,
||Zaixi—x_§ai’z||=(Zai)'(zai||x—xi,zll)— 2 giajllxi—xj,z|

i= i=1 i=1 I<i<j<3
holds true.
The right side of the above equality is nonnegative. Therefore, for all
X, %1, X,%3,2 € L and for all a,a,,a3 €R the inequality (10) holds true

3 3 ,
Xa) Eallx—x,zIDz > aajllx—xjz[°. (10)

i=1 i=1 I<i<j<3
For

x|
17 Tl 92 7 Tixxg,2l " B 7 x—xa,7]]

the inequality (10) is transformed as the followings

lIX;—x;. | X=X Zll || =%, 2] 2
Xi =X, Z ||| X=X, 2 || = L2 % — X, 2

ii_Z =N Z ” i -1l ozl ) Z Tl Tx=x;.z] I j |

jEk i# 2k i j#k#i
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lXi—x;.zll
||XI_XJZ|| ) ”Xi_Xj:Z”'”X_inz”Z
KoM i ki

2

i j=k=i

< =X, 2lHXp X3, 2|HIX3 %3, 2]l
[Ix=xq, ZIHIX—X2, Z|HIX—X3,Z|

2 X =%zl x =, z]]
i j=k=i

¥ % =2l Jx=%o 2IHIXp —Xg. ZlHIX3—q 2l
IX=x,zll = lIx=x3,ZlHIx=x2, Z[HIx=x3, 2]l

i j=k=#i
Clearly, the last inequality is equivalent to the inequality (9). The proof implies
that the inequality (9) might be transformed to an equality if (10) is an equality,

3 3
i.e. if the set {3 ajxj — x> qj,z} is linearly dependent, that is if the set
i=1 i=1

[I%o—X3,Z| [IX3—xq¢, ]| [, =X, 2l
X—X1)+ X—Xo)+ X—Xq),Z
o KX+ o a1 X X2) + ooz X %e). 23

is linearly dependent. m

On the end of our considerations we will generalize the Zarantonello ([5]),
inequality, i.e. we will prove the following theorem.

Theorem 5. Let L be a real 2-pre-Hilbert space and f:L — L be a function
such that
I £0)—f(y).zlIIx=y.zll, (11)

n

holds true, for all x,y,xeL, Then for all &,a,,...,a, >0, such that > g =1
i=1

and for all y1,y5,...,Yn,z€L

||§aif(yi)—f(ki_lakykxzuzs S aacllyi - viozl2 -1 o) - Fnzld) (12)

i=1 1<i<k<n
holds true.
Proof. For

n
X = f(yi), i=12..,n, Xn1 = f(_zlaiYi)
i=

and a,,; =-1, in Theorem 1 and then by using the inequality (11) and the

n
properties of 2-norm, we get that for all &,a,,...,a, >0 such that > a; =1 and
i=1

forall y;,y,,....,¥n, Z€L, the following holds true
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n n 2
1> & f(y)— (2 acye).zll°=
i1 k=1

= Ya I (i) - f(ki_lakyk),zn2 CS aa 170D - S0z P

i=1 I<i<k<n

<Yalyi-YavozlP- X aacl SO0 0zl

i=1 k=1 1<i<k<n
n n n 2 2
=22 ayi— 2 aye.zllo = X aia Il i) — Ty zll
i=1 k=1 k=1 1<i<k<n
n n
=YalXati-v)zlP- Y agallf0)-r) =P
i= k=1 1<i<k<n

On the other hand, for x =Yy —VYx,k=12,..,n X5, =0 and a,,;=-1 in
Theorem 1 and also by using that a; >0, for i =1,2,...,n, we get that

4 2_ < 2 2
I 2 ac(yi =) zll*= 2 allVi—y. 2l = 2 aajllyi—yj.z|l
k=1 =

k= Ki<j<n
4 2
<2 acllyi—yk.zlI.
k=1
Finally, the last two inequalities imply the inequality (12). m
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