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TRANSFORM WHICH MAPS DERIVATIVES INTO GENERALIZED
DIFFERENCES

Miomir S. Stankovié
1. INTRODUCTION

In the papers [1], [2] and [3] D. S. Mitrinovié investigated the num-
bers R defined by

T c—(a+bi) = 2R, @ b € R)
i=0

In the paper [4] using the numbers R} = (— 1% R we defined
a linear transform which maps the set of real functions having continuous de-
rivatives of all orders into the set of all real sequences with the property
that derivatives are mapped into differences defined by Dvy = vpy,—
—(a-+bn) vn, D¥vy = D(D*—vy) (a,b G R, k € N)). We -use the nota-
tions introduced iu [4].

In this paper we will consider a lmear ‘transform which maps “the
set C= (R) of functions f: R? — R having continuous - partial derivatives
with respect to one variable into the set of real sequences {(vs (¥))} with
the property that partial derivatives are mapped into differences D. Fur-
ther, we will consider a linear transform which maps the set C*(RxR)
of functions f: R? — R having continuous partial derivatives of all orders
with respect to both variables into the set of real sequences {(vm, n)}
with the property that partial derivatives are mapped into partial dife-
rences

Dmvi,n = ¥y — (@ + bm) vm, D, ﬁ = Dy (D:,:n_l Vmsn) and Dpvm,n =

= VYmn+1 -—(a + bn)vmm Danm =Dy (Dk_lv o)
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Also, we will apply these transforms and their inverse transfoms to
solve some differential-difference and partial difference equations by esta-
blishing analogies between these equations and corresponding differential
equations.

We list some basic properties of the numbers R/ which shall be
of use later:

I°R"=0fori 0,inR,=1
n—1

2 Ri= [] (@a+bi), Ro=1 (i, n €Ny
i=o

3% R =Ry + @+ bR

2. BASIC DEFINITION AND PROPERTIES OF V AND
R-TRANFSFORMS

DEFINITION 1. V-transform of a function f(x,y) € C=(R) is the sequ-
ence (vu(»)) where vu () is defined by
)

V(Cify (x,3) + Cofy(x, ) = C, Vi(%,¥) + Co VN (%, )

¥ f(x,9)

Vf(x,y)= (v,.(y))=(i§ Ri— xi

It is easy to prove that

where C, and C, are arbitrary constants.

THEOREM 1. If Vf(x,¥)= (v (¥)), then we have the follawing rela-
tions

(51 rme s
1 v ™ o™ Vn(J’))

- J?
2 yp 2SN ( pepm 20O ) p e wy
dIx™ dyP P

® V[ f,y)dt = ('21 T @+G+ D8 )
0 .

{20 ju=i
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PROOF.

1° By definition 1 wc have

mef(x,z)_z(imaimf(x,y)i )=
i i x==0

Ax™ =} dxi+m

(§ ratien|

j=m dxi

Since D™R] = R;_,, we have that

Dm Vf(x,y)z(nim R:l—-n bf(x’y) %x:o ) i, €.

xl
m )
v i{_(;f’lL = D™Vf(x,y). which proves 1°
. .

2 The proof of 2° is similar to 1°.

3% Supposc tha Vf fF3(t,y)dt = (wa(¥)). By d>finition of V-tran-

sform we have

n ¥ f(x,y)
Wn()’) Z R; i1 o
and hence
¢)) W1 () — (@ + bn) wn (¥) = va(y),

Since  the general solution of the equation (1) is the sequence

n—1 n-’
(Z l1@+G+ l)b)v,(y) + C), where C is an arbitrary constant,
i=0 j=i

and w; (¥) = v, (¥), we have 3°.

By S» we denote the set of sequences {(ea(y))} for which
D¥eyn(¥) | n—g (k € N,) exists.
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DEFINITION 2. E-transform of a sequence (ea(y)) € Sun is the function
S (%, y) defined by

+o0 k _
E@n ) =f0n=> D_e_’f,gy_)ll':‘lxk.
i=0 k.’

THEOREM 2. Transforms V and E are inverde to each other.
The proof of theorem 2 is analogous to the proof of the correspo
nding theorem from [5].

DEFINITION 3. R-transform of a function f(x, y)€ C> (R xR) is the se-
quence Rf(x.y) = (rmsn) where rm,n is defined by

)

-0

THEOREM 3. IfRf(x,y) = (rm.n), then we have the following relations:

Rf(x,y) = (rmsn) = (Z Z R'R} A f(x ¥)

=0 /=0 dxidyd

19 Rw = D D’Nf(x,y)
dxi oyt

x . n—! peel
2 RIf(ty)dt = (z T @ +G+ Db
0 ie=
By Sm.,n we denote the set of sequences {(im,n)} for which

DDy imyn! m=o, neo (i J € Np) exist.

DEFINITION 4. I-tranform of a sequence (zm,n)ESm,n is the function
f(x,y) detined by L

Iimm) =1 )=+°°+°° Din Dy _imyn | megy nmp_sl 1
() =f(x, ) =3 > T xly
i=0 j=0

assuming that the above sum exist.

THEOREM 4. Transform R and I are inverse to each other.

The proofs of theorem 3 and theorem 4 are similar to the proofs of
the theorem 1 and the theorem 2 and we shall omit them.
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3. SOME APPLICATIONS OF THE V AND R-TRANSFORM TO
SOLVING DIFFERENCE EQUATIONS

In this part we will give some appli-ations of the V, R and its in-
verse transformations in solving some differential-difference and partial
difference equations.

EXAMPLE 1. By an application of the E-transform to the equation
© Vp10) — () — @+ d + bn)v, () + ¢ (@ +d + bryva(y) =O.
we get the equation
3) Say—fx—dfy + cdf =0.
Since the general solution of the equation (3) is given by
FE=f0) et +fo (e,

where f,(y) and f,(x) are arbitrary functions, we have by an application of the V-tran-
sform that the general solution of (2) is given by

n—1

) =£0) 1 @+ a+bi)+ faecy
{=0

where f1(») is an arbitrary function and f» is an arhitrary sequence

EXAMPLE 2. By an application of the E-tranform to the eguation

4 yv:.+1 ) —kvna ) — (1 + d + bnm) yw’: ) +kd+a + byva(y) = 0 we
get the equation
) Yy —kfe—3fy + kf =0.
Since the solution of the equation (5) is given by
f &) =1 (x) ¥+ 1, 0) e,

where f,(x) an1 £, (y) are arbitrary functions, we have by an application of the V-tran-
sform that the general solution of (4) is given by

n—1
)=k +70) 1 A +a+b),
1=0

where f () is an arbitrary function and f» is an arbritrary sequence.
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EXAMPLE 3. By an application of the I-transform to the equation
©) Vmips ner —Vmigen + (1 Fa+ b (A —n+ 2m)) Vmirs n—
A +a-+bm vany +b (A +a+ bm) (n-m) vn, n =0

we get the equation
©) foy—Fx + fx—fy = 0.
Since a particular solution of the eqration (7) is given by
[ p)=C (x+yk+f0)e

where f (y) is an arbitrary fuaction and C is an arbitfa.ry constant, we have by an
appli ation of the R-transform that a particular solution of (6) is given by

k m—1

ympn=Ck! D Ry Ry +fo [T (1 +a+ b,
i=0 i=0

where fa is an arbitrary sequence and C an arbritrary constant.
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Muomup CiiiaHkosuk
Pesume

Bo oBOj TpyA ce pasriedyBa JuHeapHa TpauchopMamuja Kkoja ro
peciinkysa MHoxkecTBoT10 C*(R) dymxnum f:R® — R XoM HMaaT Hempe-
KMHATHM TIapliHjaJlHA M3BOAM BO OJHOC HAa CAHA IPOMCHIMBA BO MHOXECT-
BOTO Ha peajiu HE3E {(vs(y)} cO CBOJCTBO J[eKa NapUMjaTHHTe H3BOAM CC
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rparchopmupaar Bo ambepermur D. Iomatamy pasriefiysame iTHHeapHA
tpaschopManmja Koja TO NpeciuKyBa MHOXecTBoTo C® (RXxR) dy=-
KIEE f:R* > R KOH MMaaT HENPCKWHATH NapUMjatH¥ W3BOAM OH CEKOj
pell BO ONHOC ¥ Ha [BATa apryMeHTa BO MHOXECTBOTO pCayHA HE3W
{ (Vs, )} co CBOjCTBOTO JieXa NapHWjaIHATE H3BOAM C¢ IPeC/HKYBAaaT BO
napujansy  ABdepennHa. .

Ozge TpanchopMamey, 3acAHO CO HHBHWTE HHBEP3HH TpaHCPopMa-
IV, TH NpEMeRyBaMe NPH pemiaBame Ha Hekod AdepeRIMjarHO-mnbe-
PCHIHH DaBeHKH M Hapu#jaiEy Ju(epeHIHH DaBeHKH CO BOCHOCTaBYBAEC
Ha aHQIOTMH Mefy OBHe DaBeHKM H COOABCTHE IH(pepeHIMjaTHE paBeHKH.
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