Математички Билтен 43 (LXIX) No.1 2019 (27 – 46) Скопје, Македонија ISSN 0351-336X (print) ISSN 1857-9914 (online) UDC: 514.144:512.714

THE CONSTRUCTION OF A CORP IN THE SET OF POINTS IN A LINE OF DESARGUES AFFINE PLANE

KRISTAQ FILIPI, ORGEST ZAKA, AND AZIR JUSUFI

Abstract. In the article [1], we show that the set of points on a line, in the affine Desargues plans, connected with addition forms an Abelian group. In this article, we will define multiplication of points on a line in the affine Desargues plans. We will show that this set forms a multiplicative group. And we will show that every straight line of Desargues affine plans, along with both addition and multiplication operations, forms the corp (skew-field).

1. Introduction, Desargues affine plane, commutative group (OI, +)

Definition 1. [3, 10, 11] Affine plane is called the *incidence structure* $\mathcal{A} = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ that satisfies the following axioms:

Axiom 1. For every two different points P and $Q \in \mathcal{P}$, there exists exactly one line $\ell \in \mathcal{L}$ incident with that points.

The line ℓ , determined from the point P and Q will be denoted by PQ.

Axiom 2. For a point $P \in \mathcal{P}$, and an line $\ell \in \mathcal{L}$ such that $(P, \ell) \notin \mathcal{I}$, there exists one and only one line $r \in \mathcal{L}$ incident with the point P and such that $\ell \cap r = \emptyset$.

Axiom 3. In \mathcal{A} there are three non-incident points with a line.

²⁰¹⁰ Mathematics Subject Classification. 51-XX, 51Axx, 51Exx, 51E15, 12Exx, 12E15.

Key words and phrases. Affine Desargues plane, additions of point, multiplication of points, subgroup, group, Abelian group, skew-field (corp).

FIGURE 1.

The fact $(P, \ell) \in \mathcal{I}$, (equivalent to $P\mathcal{I}\ell$) we mark $P \in \ell$ and read point P is incident with a line ℓ or a line passes through points P (contains point P). Whereas a line of the affine plane we consider as sets of points of affine plane with her incidents. Axiom 1 implicates that tow different lines of \mathcal{L} many have a common point, in other words tow different lines of \mathcal{L} either have no common point or have only one common point.

Definition 2. Two lines $\ell, m \in \mathcal{L}$ that are matching or do not have common point are called *parallel* and in this case we write $\ell \parallel m$; when they have only one common point we say that they are expected.

For a single line $r \in \mathcal{L}$, which passes through a point $P \in \mathcal{P}$ and is parallel with line AB, that does not pass through the point P, we will use the notation ℓ_{AB}^{P} .

Proposition 1.1. [4, 10, 12, 13] Parallelism relation $\parallel = \{(r, s) \in \mathcal{L}^2 \mid r \parallel s\}$ on \mathcal{L} is an equivalence relation in \mathcal{L} .

Definition 3. Three different points $P, Q, R \in \mathcal{P}$ are called *collinear*, if there is incidence with the same straight line.

Definition 4. The set of three different non-collinear points A, B, C together with the line AB, BC, CA is called *three-vertex* and is marked as ABC.

Proposition 1.2. [6, 7, 9, 10, 22] (The Desargues affine plane theorem). If ABC, A'B'C' are two three-vertex but not with the same vertices in an affine plane (Fig. 1), then

$$\begin{array}{c} AC \parallel A'C' \\ BC \parallel B'C' \end{array} \Longrightarrow AB \parallel A'B' \\$$

In affine Euclidean plane this proposition holds

FIGURE 2.

FIGURE 3.

Proposition 1.3. (Axiom I of Desargues) If AA_1, BB_1, CC_1 are three different parallel lines (Fig. 2), then

$$\begin{array}{c} AB \parallel A_1B_1 \\ BC \parallel B_1C_1 \end{array} \Longrightarrow AC \parallel A_1C_1$$

There are affine plans where Proposition 1.3 is not valid. Such is the Moulton plane [10].

Definition 5. [2, 7, 10] An affine plane complete with Desargues axiom (Proposition 1.3), is called *Desarques affine plane*.

Let A, B, C be three different points of a line and A_1, B_1, C_1 three different points of another parallel to the first (Fig.3). If $AB_1 \parallel BC_1$ and $A_1B \parallel B_1C$ is $AA_1 \parallel CC_1$? Otherwise, we add the problem if we have this

Proposition 1.4. [1, 17, 18] ("Little Pappus Theorem"). Let A, B, C and A_1, B_1, C_1 be two triple points located in two parallel lines (Fig. 3). If $AB_1 \parallel BC_1$ and $BA_1 \parallel CB_1$ then $AA_1 \parallel CC_1$ holds.

Theorem 1. [1, 17] ("Little Hessenberg Theorem") For a Desargues plane Propositions 1.4 is true.

FIGURE 4.

In an Desargues affine plane $\mathcal{D}=(\mathcal{P},\mathcal{L},\mathcal{I})$ we fix two different points $O,I\in\mathcal{P},$ which, according to Axiom 1, determine a line $OI\in\mathcal{L}$. Let A and B be two arbitrary points of a line OI. In plane \mathcal{D} we choose a point B_1 not incident with OI: $B_1\notin OI$ (we call the auxiliary point). Construct line $\ell_{OI}^{B_1}$, which is only according to the Axiom 2. Then construct line $\ell_{OB_1}^{A}$, which also is the only according to the Axiom 2. Marking their intersection $P_1=\ell_{OI}^{B_1}\cap\ell_{OB_1}^{A}$. Finally construct line $\ell_{BB_1}^{P_1}$. For as much as BB_1 expects OI in point B, then this line, parallel with BB_1 , expects line OI in a single point C (Fig.4).

The process of construct the points C, starting from two whatsoever points A, B of the line OI, is presented in the algorithm form

Algorithm 1.

Step.1.
$$B_1 \notin OI$$

Step.2.
$$\ell_{OI}^{B_1} \cap \ell_{OB_1}^A = P_1$$

Step.3.
$$\ell_{BB_1}^{P_1} \cap OI = C$$

The point C is determined in single mode (does not depend on the choice auxiliary point B_1) by Algorithm 1 [1].

Definition 6. [1] In the above conditions, operation

$$+: OI \times OI \longrightarrow OI$$

defined by $(A, B) \mapsto C$ for all $(A, B) \in OI \times OI$ we call the addition in OI.

According to this definition, one can write

$$\begin{aligned} \mathbf{Step.1.} & B_1 \notin OI \\ (\forall A, B \in OI) & \mathbf{Step.2.} & \ell_{OI}^{B_1} \cap \ell_{OB_1}^A = P_1 & \Leftrightarrow A+B=C. \\ \mathbf{Step.3.} & \ell_{BB_1}^{P_1} \cap OI = C \end{aligned}$$

Figure 5.

Theorem 2. [1] The groupoid (OI, +) is commutative (Abelian) group; the zero element is the point O.

2. Multiplication of points on a line in Desargues affine plane and its properties

Choose in the plane \mathcal{D} one point B_1 not incident with lines OI, which together with point I forming the line IB_1 . Construct the line $\ell^A_{IB_1}$, which is the only according to the Axiom 2 and cutting the line OB_1 . Marking their intersection with $P_1 = \ell^A_{IB_1} \cap OB_1$. Finally, construct the line $\ell^{P_1}_{BB_1}$. Since BB_1 meets the line OI in point B, then this line, parallel with BB_1 , meets the line OI in one single point C (Fig.5).

The process of construct the points C, is presented in the algorithm form

Algorithm 2.

Step.1.
$$B_1 \notin OI$$

Step.2.
$$\ell_{IB_1}^A \cap OB_1 = P_1$$

Step.3.
$$\ell_{BB_1}^{P_1} \cap OI = C$$

In the process of construct the points C, except pairs (A, B) of points $A, B \in OI$, is required and the selection of point $B_1 \notin OI$, which we call the auxiliary point to point C. The following theorem demonstrates that the choice of auxiliary point does not affect the position of point C in line OI, determined by the Algorithm 2.

FIGURE 6.

Theorem 3. For every two points $A, B \in OI$, the Algorithm 2 determines a single point $C \in OI$, which does not depend on the choice of its auxiliary point B_1 .

Proof. According to the Algorithm 2, by selecting the point $B_1 \notin OI$ for a given pair of points (A, B) of the line OI, construct the point C. Now we choose another point B_2 . Then, according to Algorithm 2, construct analog the point C', that in these conditions is found as:

$$\begin{bmatrix} \textbf{Step.1.} \ B_2 \notin OI \\ \textbf{Step.2.} \ \ell_{OI}^{B_2} \cap \ell_{OB_2}^{A} = P_2 \\ \textbf{Step.3.} \ \ell_{BB_2}^{P_2} \cap OI = C' \end{bmatrix}, \tag{2.1}$$

We distinguish these four cases of the position of points A, B in relation to fixed point I of the line OI.

Case 1. A = B = I. By the choice of the point B_1 , according to Algorithm 2, have:

$$P_1 = \ell^I_{IB_1} \cap OB_1 = B_1 \Longrightarrow C = \ell^{B_1}_{BB_1} \cap OI = IB_1 \cap OI = I;$$

From the choice of the point B_2 , according to (2.1) have:

$$P_2 = \ell^I_{IB_2} \cap OB_2 = B_2 \Longrightarrow C' = \ell^{B_1}_{IB_2} \cap OI = IB_2 \cap OI = I.$$

Therefore accept the C = C' = I (Fig.6).

Case 2. $A = I \neq B$. By the choice of the point B_1 have

$$P_1 = \ell^I_{IB_1} \cap OB_1 = B_1 \Longrightarrow C = \ell^{B_1}_{BB_1} \cap OI = BB_1 \cap OI = B;$$

From the choice of the point B_2 have

$$P_2 = \ell^I_{IB_2} \cap OB_2 = B_2 \Longrightarrow C = \ell^{B_2}_{BB_2} \cap OI = BB_2 \cap OI = B.$$

Therefore in this case accept the C = C' = B (Fig.7).

Figure 7.

FIGURE 8.

Case 3. $A \neq I = B$. The situation is analogous to the second case, where point B takes the role of point A and conversely, so in this case we have C = C' = A (Fig.8).

Case 4. $A \neq B \neq I$. Here we distinguish two sub-cases.

a) In the case where points I, B_1, B_2 are collinear points, by the choice of the point B_1 have

$$P_1 = \ell_{IB_1}^A \cap OB_1 \Longrightarrow C = \ell_{BB_1}^{P_1} \cap OI;$$

from the choice of the point B_2 have

$$P_2 = \ell^A_{IB_2} \cap OB_2 \Longrightarrow C' = \ell^{P_2}_{BB_2} \cap OI.$$

From Algorithm 2 and (2.1) appears also that, collinearity of points I, B_1, B_2 induce collinearity of the points A, P_1, P_2 .

Examine three-vertices BB_1B_2 and CP_1P_2 (Fig.9). We note that $B_1B_2||P_1P_2$. But $C \in \ell_{BB_1}^{P_1} \parallel BB_1$ therefore $BB_1||CP_1$.

Figure 9.

FIGURE 10.

From here, the Desargues affine plane theorem (Proposition 1.2), results that $B_2B||P_2C$. On the other hand, $C' \in \ell_{BB_2}^{P_2} \Longrightarrow P_2C' \parallel B_2B$, which is parallel to P_2C . Consequently $C' \in P_2C$, which means that C = C'.

- b) The points I, B_1, B_2 are non-collinear. Here we distinguish two subcases related to fixed point O:
 - \mathbf{b}_1) The points O, B_1, B_2 are non-collinear (Figure 10);
 - \mathbf{b}_2) The points O, B_1, B_2 are collinear (Figure 11).

In case $\mathbf{b_1}$), from the choice of point B_1 , have: $P_1 = \ell^A_{IB_1} \cap OB_1 \Longrightarrow C = \ell^{P_1}_{BB_1} \cap OI$;

from the choice of point B_2 , according to (2.1) have: $P_2 = \ell_{IB_2}^A \cap OB_2 \Longrightarrow C' = \ell_{BB_2}^{P_2} \cap OI$.

From Algorithm 2, and (2.1) we get also that, non-collinearity of points I, B_1, B_2 delivers non-collinearity of points A, P_1, P_2 .

FIGURE 11.

We consider three-vertices IB_1B_2 and AP_1P_2 . By Desargues affine plane theorem, we obtain that $B_1B_2 \parallel P_1P_2$.

Now consider three-vertices BB_1B_2 and CP_1P_2 . Again by Desargues affine plane theorem, we take $B_2B \parallel P_2C$. On the other hand, C', that delivers $P_2C' \parallel B_2B$. Consequently $C' \in P_2C$, which means that C = C'.

In the case b_2), again we have

$$P_1 = \ell_{IB_1}^A \cap OB_1 \Longrightarrow C = \ell_{BB_1}^{P_1} \cap OI; P_2 = \ell_{IB_2}^A \cap OB_2 \Longrightarrow C' = \ell_{BB_2}^{P_2} \cap OI.$$

In the line CP_2 we take another point P_2' and construct the line OP_2' . Mark $B_1' = OP_2' \cap IB_1$ and $P_1' = OP_2' \cap AP_1$. We examine three-vertices $IB_1'B_2$ and $AP_1'P_2$. We have: $IB_1' \parallel AP_1', IB_2 \parallel AP_2$, therefore, by Desargues affine plane theorem, we take from $B_1'B_2 \parallel P_1'P_2$. Now examine three-vertices BB_1B_1' and CP_1P_1' ; by Desargues affine plane theorem, we take from $BB_1' \parallel CP_1'$. Finally we examine three-vertices $BB_1'B_2$ and $CP_1'P_2$. We have: $BB_1' \parallel CP_1', B_1'B_2 \parallel P_1'P_2$, therefore we take from $BB_2 \parallel CP_2$. But $BB_2 \parallel CP_2$, and therefore C = C'.

Let A and B be two arbitrary points of the line OI. We associate pairs $(A, B) \in OI \times OI$ point $C \in OI$, that determine algorithm Algorithm 2.

According to the preceding Theorems, point C is determined in single mode. Thus we obtain an application $OI \times OI \longrightarrow OI$. **Definition 7.** In the above conditions, we call the operation

$$*: OI \times OI \longrightarrow OI$$
,

defined by $(A, B) \mapsto C$ for all $(A, B) \in OI \times OI$, multiplication in OI.

According to this definition, one can write

$$(\forall A, B \in OI,) \left[\begin{array}{l} \mathbf{Step1}. \ B_1 \notin OI, \\ \mathbf{Step2}. \ \ell^A_{IB_1} \cap OB_1 = P_1 \\ \mathbf{Step3}. \ \ell^{P_1}_{BB_1} \cap OI = C. \end{array} \right] \iff A*B = C. \quad (2.2)$$

From here, the following proposition is obvious.

$$(\forall A \in OI) O * A = A * O = O. \tag{2.3}$$

3. Properties of the multiplication in the line OI

By Theorem 3, this is immediately true.

Proposition 3.1. Multiplication * in OI has identity element the point I:

$$(\forall A \in OI) I * A = A * I = I. \tag{3.1}$$

The following propositions are also valid.

Proposition 3.2. The multiplication * is associative in OI:

$$(\forall A, B, D \in OI) \ (A * B) * D = A * (B * D).$$
 (3.2)

Proof. In the case where at least one of the points A, B, D is point O, from (2.3), equation (3.2) is evident, whereas in the case where at least one of the points A, B, D is point I, it comes from (3.1). We eliminate in the case where $A, B, D \neq O$; $A, B, D \neq I$ and $A \neq B \neq D$ (when at least two points are the same, equally justify).

Firstly we construct the product (A * B) * D. In this case (Fig.12), according to (2.2), for A * B, connected to auxiliary point for multiplication we have

$$\begin{cases}
\mathbf{1.} & B_1 \notin OI, \\
\mathbf{2.} & \ell_{IB_1}^A \cap OB_1 = P_1, \\
\mathbf{3.} & \ell_{BB_1}^{P_1} \cap OI = C.
\end{cases} \Longrightarrow A * B = \ell_{BB_1}^{P_1} \cap OI$$

$$\Longrightarrow \begin{cases}
IB_1 \parallel AP_1 \\
BB_1 \parallel (A * B) P_1
\end{cases} \tag{3.3}$$

FIGURE 12.

Choose the point B_2 (Fig.12) as auxiliary points for the construction of

multiplication (A*B)*D.

Construct the line $\ell_{IB_2}^{A*B}$ and mark $P_2 = \ell_{IB_2}^{A*B} \cap OB_2$. Then, according to (2.2) have

$$\left\{
\begin{array}{l}
\mathbf{1.} B_{2} \notin OI, \\
\mathbf{2.} OB_{2} \cap \ell_{IB_{2}}^{A*B} = P_{2}, \\
\mathbf{3.} \ell_{DB_{2}}^{P_{2}} \cap OI = C.
\end{array}\right\} \Longrightarrow (A*B)*D = \ell_{DB_{2}}^{P_{2}} \cap OI$$

$$\Longrightarrow \left\{
\begin{array}{l}
IB_{2} \parallel (A*B) P_{2} \\
DB_{2} \parallel [(A*B)*D] P_{2}
\end{array}\right\}$$
(3.4)

Now construct multiplication A * (B * D). Choose as the auxiliary point for multiplication B*D the point B_2 . Construct the line $\ell^B_{IB_2}$ and mark $D_1 = \ell^B_{IB_2} \cap OB_2$. Then, according to (2.2) have

$$B * D = \ell_{DB_2}^{D_1} \cap OI \Longrightarrow \left\{ \begin{array}{c} IB_2 \parallel BD_1 \\ DB_2 \parallel [B * D] D_1. \end{array} \right\}$$
 (3.5)

Choose the point B_1 (Fig.12) as auxiliary points for the construction of multiplication A*(B*D). Construct the line $\ell_{(B*D)B1}^{P_1}$. Then, according to (2) have:

1.
$$B_1$$
 ∉ OI ,

2.
$$OB_2 \cap \ell_{IB_1}^A = P_1,$$
 $\Longrightarrow A * (B * D) = \ell_{(B*D)B_1}^{P_1} \cap OI$ (3.6)

$$\Longrightarrow \left\{ \begin{array}{c} IB_1 \parallel AP_1 \\ (B*D) B_1 \parallel [A*(B*D)] P_1 \end{array} \right\}$$

Whereas, the (3.4) and (3.5), have

$$\left\{ \begin{array}{c}
BD_1 \parallel (A * B) P_2 \\
(B * D) D_1 \parallel [(A * B) * D] P_2
\end{array} \right\}$$
(3.7)

We examine three-vertices BB_1D_1 and $(A*B)P_1P_2$, to which, by (3.3) have $BB_1 \parallel (A*B)P_1$ and from (3.7) we have $BD_1 \parallel (A*B)P_2$. Therefore, the Desargues affine plane theorem , have $B_1D_1 \parallel P_1P_2$. We examine further three-vertices $(B*D)B_1D_1$ and $[(A*B)*D]P_1P_2$, for which, from above we have $B_1D_1 \parallel P_1P_2$ and from (3.7) we have $(B*D)D_1 \parallel [(A*B)*D]P_2$. Therefore we take from $(B*D)B_1 \parallel [(A*B)*D]P_1$. But by (3.6) we have also $(B*D)B_1 \parallel [A*(B*D)]P_1$, that brings $[(A*B)*D]P_1 \parallel [A*(B*D)]P_1$, and since the points (A*B)*D, $A*(B*D) \in OI$, we take (A*B)*D = A*(B*D).

Proposition 3.3. For every point except O in OI, there exists its right symmetrical according to multiplication:

$$(\forall A \in OI - \{O\})(\exists A^{-1} \in OI - \{O\}) A * A^{-1} = I$$

Proof. We distinguish two cases: A = I and $A \neq I, O$.

Case 1. If A = I, then $A^{-1} = I$ because, according to (3.1), I * I = I.

Case 2. If $A \neq I, O$, requested points $A^{-1} \in OI$, such that

1.
$$A_1^{-1} \notin OI$$
,

2.
$$\ell_{IA_1^{-1}}^A \cap OA_1^{-1} = P_1$$
,

3.
$$\ell_{A^{-1}A_{1}}^{P_{1}} \cap OI = I$$
.

Given this, we take initially a point $A_1^{-1} \notin OI$ and construct the line IA_1^{-1} , and then the line $\ell_{IA_1^{-1}}^A$. Mark $P_1 = \ell_{IA_1^{-1}}^A \cap OA_1^{-1}$. Furthermore construct the line IP_1 and parallel with it by the points A_1^{-1} construct the line $\ell_{IP_1}^{A_1^{-1}}$. The latter is not parallel with the line OI, therefore expects that at some point: $\ell_{IP_1}^{A_1^{-1}} \cap OI \neq O$. It is clear that this point is the point A^{-1}

FIGURE 13.

(Fig.13), such that the $A*A^{-1}=I$ and $A^{-1}\neq O$. So the A^{-1} thus the resulting the right identity element of point A.

Due to the definition of group, [4], from Propositions 3.1, 3.2 and 3.3 we obtain this

Theorem 4. In an Desargues affine plane the groupoid (OI,*) is a group; identity element is the point I.

Based on one theorem of algebra, right neutral element of an element of one group is neutral element of that element, [4],[5]. Therefore,

$$(\forall A \in OI - \{O\})(\exists A^{-1} \in OI - \{O\}) A * A^{-1} = A^{-1} * A = I$$
 (3.8)

4. The algebra (OI, +, *) is a corp in Desargues affine plane

Proposition 4.1. The multiplication * is distributive related to the addition + in the line OI:

(i)
$$(A+B)*D = A*D + B*D$$

(ii) $A*(B+D) = A*B + A*D$ (4.1)

for every $A, B, D \in OI$.

Proof. (i) In the case where at least one of the points A, B, D is the point O, by the (2.3), equivalence (i) is evident. We eliminate in the case where $A, B, D \neq O$ and $A \neq B \neq D$ (when at least two points are the same, equally justify). We distinguish two sub-cases: a) at least one of the points A, B, D is the point I; b) $A, B, D \neq I$.

a) When D = I, according to (3.1), equalization (i) is evident. Let it be now A = I (the case B = I behaves in case A = I, based on a

FIGURE 14.

commutative addition property in OI). For as much as $A \neq B \neq D$, have $B \neq I$ and $D \neq I$ (Fig.14). Equalisation (i), in this case takes the view (I+B)*D=D+B*D.

For the construction of multiplication (I+B)*D, construct firstly multiplication B*D, taking its auxiliary point the point $P_1 \notin OI$. Mark $P_2 = OP_1 \cap \ell_{IP_1}^B$. Then, according to the algorithm Algorithm 2, where in the role of A is B, in the role of B is D, in the role of B_1 is P_1 , in the role of P_1 is P_2 , have

$$\begin{cases}
\mathbf{1}. \ P_{1} \notin OI, \\
\mathbf{2}. \ OP_{1} \cap \ell_{IP_{1}}^{B} = P_{2}, \\
\mathbf{3}. \ \ell_{DP_{1}}^{P_{2}} \cap OI = C.
\end{cases} \Longrightarrow B * D = \ell_{DP_{1}}^{P_{2}} \cap OI$$

$$\Longrightarrow \begin{cases}
IP_{1} \parallel BP_{2} \\
DP_{1} \parallel (B * D) P_{2}
\end{cases} \tag{4.2}$$

Construct further the sum I+B, by taking its auxiliaries point the point $P_2 \notin OI$. Mark $D_1 = \ell_{OI}^{P_2} \cap \ell_{OP_2}^{I}$. Then, according to the Algorithm 1, where in the role of A is I, in the role of B_1 is P_1 , in the role of P_1 is P_2 , have

$$\begin{cases}
\mathbf{1}. \ P_{2} \notin OI, \\
\mathbf{2}. \ \ell_{OI}^{P_{2}} \cap \ell_{OP_{2}}^{I} = D_{1}, \\
\mathbf{3}. \ \ell_{BP_{2}}^{D_{1}} \cap OI = C.
\end{cases} \Longrightarrow I + B = \ell_{BP_{2}}^{D_{1}} \cap OI$$

$$\Longrightarrow \begin{cases}
OP_{2} \parallel ID_{1} \\
BP_{2} \parallel (I + B) D_{1}.
\end{cases} \tag{4.3}$$

Finally construct multiplication (I + B) * D, by taking its auxiliaries point the point $P_1 \notin OI$. Mark $P_3 = OP_1 \cap \ell_{IP_1}^{(I+B)}$. Then, according to the Algorithm 2, where in the role of A is I + B, in the role of B is D, in the role of B_1 is P_1 , in the role of P_1 is P_3 , have

1.
$$P_{1} \notin OI$$
,
2. $OP_{1} \cap \ell_{IP_{1}}^{(I+B)} = P_{3}$, $\Longrightarrow (I+B) * D = \ell_{DP_{1}}^{P_{3}} \cap OI$
3. $\ell_{DP_{1}}^{P_{3}} \cap OI = C$. (4.4)
 $\Longrightarrow \left\{ \begin{array}{c} IP_{1} \parallel (I+B) P_{3} \\ DP_{1} \parallel [(I+B) * D] P_{3}. \end{array} \right\}$

Now construct the right side D+B*D of equivalence, by taking as the auxiliaries point of sum the point $P_2 \notin OI$. Mark $D_2 = \ell_{OI}^{P_2} \cap \ell_{OP_2}^{D}$. Then, according to the Algorithm 1, where in the role of A is D, in the role of B is B*D, in the role of B_1 is P_2 , in the role of P_1 is D_2 , have:

1.
$$P_{2} \notin OI$$
,
2. $\ell_{OI}^{P_{2}} \cap \ell_{OP_{2}}^{D} = D_{2}$, $\Longrightarrow D + (B * D) = \ell_{(B*D)P_{2}}^{D_{2}} \cap OI$
3. $\ell_{(B*D)P_{2}}^{D_{2}} \cap OI = C$. (4.5)
 $\Longrightarrow \left\{ \begin{array}{c} OP_{2} \parallel DD_{2} \\ (B * D) P_{2} \parallel [D + (B * D)] D_{2} \end{array} \right\}$

By (4.2), (4.3) and (4.4) we have that $IP_1 \parallel BP_2 \parallel (I+B)D_1 \parallel (I+B)P_3$, which indicates that the points (I+B), D_1 and P_3 are collinear.

We note that three-vertices IDP_1 and $D_1D_2P_3$ have respective vertices in parallel lines $ID_1 \parallel P_1P_2 \parallel DD_2$ and satisfy the Desargues affine plane theorem (DAPT) conditions, therefore

$$\begin{array}{ccc}
IP_1 \parallel D_1P_3 & \xrightarrow{(DAPT)} ID_1 \parallel D_2P_3. & & & \\
ID \parallel D_1D_2 & & & & & \\
\end{array} \tag{4.6}$$

But, by (4.2) and (4.5), we have $DP_1 \parallel [D+B*D] D_2$. Since the parallelism is equivalence relation (Proposition 1.1), by the (4.6), we have $D_2P_3 \parallel [D+(B*D)] D_2$. So the, points P_3 , D_2 and [D+(B*D)] are collineary. By (4.4) have $DP_1 \parallel [(I+B)*D] P_3$, that brings $[D+(B*D)] P_3 \parallel [(I+B)*D] P_3$. Consequently the resulting true equalization

$$(I+B)*D = D + B*D$$

b) $A, B, D \neq I$, where $A \neq B \neq D$

Figure 15.

To the construction of multiplication (A+B)*D, initially construct A*D and B*D, (Fig.15). To multiplication A*D, according to Algorithm 2, where in the role of B is D, in the role of P_1 is D_1 , have

1.
$$B_1 \notin OI$$
,
2. $OB_1 \cap \ell^A_{IB_1} = D_1$, $\Longrightarrow A * D = \ell^{D_1}_{DB_1} \cap OI$. (4.7)
3. $\ell^{D_1}_{DB_1} \cap OI = C$.

Whereas for production B * D have

1.
$$B_1 \notin OI$$
,
2. $OB_1 \cap \ell^B_{IB_1} = D_2$, $\Longrightarrow B * D = \ell^{D_2}_{DB_1} \cap OI$. (4.8)
3. $\ell^{D_2}_{DB_1} \cap OI = C$.

From (4.7) and (4.8), have

$$IB_1 \parallel AD_1 \parallel BD_2$$

 $DB_1 \parallel (A*D) D_1 \parallel (B*D) D_2$ (4.9)

Construct further the sum A+B, by taking as its auxiliaries point, the point $D_2 \in OB_1$. Mark $D_3 = \ell_{OI}^{D_2} \cap \ell_{OD_2}^A$. Then, according to the Algorithm 1, where in the role of B_1 is D_2 , in the role of P_1 is D_3 , have

$$\begin{cases}
\mathbf{1.} & D_{2} \notin OI, \\
\mathbf{2.} & \ell_{OI}^{D_{2}} \cap \ell_{OD_{2}}^{A} = D_{3}, \\
\mathbf{3.} & \ell_{D_{2}B}^{D_{3}} \cap OI = C.
\end{cases} \Longrightarrow A + B = \ell_{D_{2}B}^{D_{3}} \cap OI$$

$$\Longrightarrow \begin{cases}
D_{2}D_{3} \parallel OI \\
AD_{3} \parallel OD_{2} \\
BD_{2} \parallel (A+B)D_{3}
\end{cases} \tag{4.10}$$

Finally construct production (A + B) * D, by taking as its auxiliaries point, the point $B_1 \notin OI$. Mark $D_5 = OB_1 \cap \ell_{IB_1}^{(A+B)}$. Then, according to the Algorithm 2, where in the role of A is A + B, in the role of B is D, in the role of P_1 is D_5 , have

1.
$$B_1 \notin OI$$
,

2.
$$OB_{1} \cap \ell_{IB_{1}}^{(A+B)} = D_{5}, \implies (A+B) * D = \ell_{DB_{1}}^{D_{5}} \cap OI$$

3. $\ell_{DB_{1}}^{D_{5}} \cap OI = C.$ (4.11)

$$\Longrightarrow \left\{ \begin{array}{c} IB_{1} \parallel (A+B) D_{5} \\ DB_{1} \parallel [(A+B) * D] D_{5} \end{array} \right\}$$

Now construct the right-hand of the equalization (i) A*D+B*D, by taking as auxiliaries point of the sum the point $D_2 \notin OI$. Mark $D_4 = \ell_{OI}^{D_2} \cap \ell_{OD_2}^{A*D}$. Then, according to the Algorithm 1, where in the role of A is A*D, in the role of B is B*D, in the role of B_1 is D_2 , in the role of P_1 is D_4 , have

$$\begin{cases}
\mathbf{1}. \ D_{2} \notin OI, \\
\mathbf{2}. \ \ell_{OI}^{D_{2}} \cap \ell_{OD_{2}}^{A*D} = D_{4}, \\
\mathbf{3}. \ \ell_{D_{2}(B*D)}^{D_{4}} \cap OI = C.
\end{cases} \Longrightarrow A*B + B*D = \ell_{D_{2}(B*D)}^{D_{4}} \cap OI \\
\Longrightarrow \begin{cases}
OD_{2} \parallel (A*D) D_{4} \\
(B*D) D_{2} \parallel [(A*B) + (B*D)] D_{4}
\end{cases} \tag{4.12}$$

From (4.9), (4.10) and (4.11) we have

$$IB_1 \parallel AD_1 \parallel BD_2 \parallel (A+B) D_5 \parallel (A+B) D_3$$
 (4.13)

which indicates that the points A + B, D_3 , D_5 , are collinear points. Consequently $D_3 \in (A + B) D_5$, that brings

$$AD_1 \parallel D_3D_5$$
 (4.14)

Also, from the (4.9), (4.11) and (4.12), it turns out that

$$D_{1}B_{1} \parallel (A*D) D_{1} \parallel (B*D) D_{2} \parallel [(A+B)*D] D_{5} \parallel \parallel [(A*D) + (B*D)] D_{4}$$
(4.15)

We note that three-vertices $A(A*D)D_1$ and $D_3D_4D_5$ meet the conditions of the Desargues axiom (D1) (Proposition 1.3), since, from the (4.10) and (4.12), we have that:

$$D_1D_5 \parallel AD_3 \parallel (A*D) D_4.$$
 (4.16)

Therefore from (4.10) and (4.14) we have

$$\begin{array}{c}
A(A*D) \parallel D_3D_4 \\
AD_1 \parallel D_3D_5
\end{array} \xrightarrow{\mathbf{D1}} (A*D)D_1 \parallel D_4D_5$$
(4.17)

Whereas, from (4.15) and (4.17) the resulting that also points $(A + B) * D, D_4, D_5$ are collinear points. Consequently $D_4 \in [(A + B) * D] D_5 \parallel DB_1$, that implies

$$[(A+B)*D] D_5 \parallel [(A*D)+(B*D)] D_4.$$

Namely

$$(A + B) * D = (A * D) + (B * D)$$

(ii) The proof of equation (ii) is analog. However, we present another proof, accepting that, is in similar way with the proof in point a) of equation (I + B) * D = D + B * D, it is also a proof of the equation

$$A * (I + D) = A + A * D (4.18)$$

in the case where $A, B, D \neq O$ and $A \neq B \neq D$. In this case, since $B \neq O$, from (3.8), exists the point B^{-1} . Then:

$$[A*(B+D)]*B^{-1} \stackrel{(6)}{=} A*[(B+D)*B^{-1}]$$

$$\stackrel{(4.1.i)}{=} A*(B*B^{-1}+D*B^{-1})$$

$$\stackrel{(3.8)}{=} A*(I+D*B^{-1})$$

$$\stackrel{(4.18)}{=} A+A*(D*B^{-1})$$

$$\stackrel{(3.1),(3.3)}{=} A*I+(A*D)*B^{-1}$$

$$\stackrel{(3.8)}{=} A*(B*B^{-1})+(A*D)*B^{-1}$$

$$\stackrel{(3.2)}{=} (A*B)*B^{-1}+(A*D)*B^{-1}$$

$$\stackrel{(4.1.i)}{=} [(A*B)+(A*D)]*B^{-1}$$

From here we have

$$[A*(B+D)]*B^{-1} = [(A*B) + (A*D)]*B^{-1} \Longrightarrow$$

$$A*(B+D) = (A*B) + (A*D).$$

Bearing in mind the Theorem 2 and the Propositions 3.1, 3.2 and 4.1 we obtain this

Theorem 5. In Desargues affine plane the algebra (OI, +, *) is the unitary ring.

Theorem 6. In Desargues affine plane the algebra (OI, +, *) is a corp (skew field).

Proof. Since $I \neq O$, in the ring OI has at least one non-zero element. Then, by definition of the a skew-fields (see [5, 19, 20, 21]) requested to prove as follows:

1. $OI^* = OI - \{O\}$, is stable subset of OI about multiplication. To really, if the points $A, B \in OI^*$, then also $A*B \in OI^*$. We suppose A*B = O. For as much as $A \neq O$, by (3.2) and (3.8) we have $B = I*B = (A^{-1}*A)*B = A^{-1}*(A*B) = A^{-1}*O = O$.

This contradicts the condition that $B \neq O$.

2. The groupoid $(OI^*,*)$ is a group, because it is a subgroup of (OI,*) which, according to Theorem 4, is a group.

References

- [1] O. Zaka, K. Filipi, The transform of a line of desargues affine plane in an additive group of its points, International Journal of Current Research, 8(07) (2016), 34983–34990. https://arxiv.org/abs/1609.01155
- [2] O. Zaka, K. Filipi, One construction of an affine plane over a corps, Journal of advances in mathematics, Council for Innovative Research, 12(5) (2016), 6200– 6206
- [3] O. Zaka, K. Filipi, An Application of Finite Affine Plane of Order n, in an Experiment Planning, International Journal of Science and Research (IJSR), 6(6) (2017), 1744–1747.
- [4] K. Filipi, Abstract Algebra, First Edition, Mirgeralb Publishing House, Tirana, Albania, 2013 (in Albanian).
- [5] K. Filipi, Algebra and Geometry, Republished, Edlora Publishing House, Tirana, Albania, 2015 (in Albanian).
- [6] F. Borceux, An Axiomatic Approach to Geometry (Geometric Trilogy I), Springer International Publishing Switzerland, 2014.
- [7] F. Borceux, An Algebraic Approach to Geometry (Geometric Trilogy II), Springer International Publishing Switzerland, 2014.
- [8] M. Berger, Geometry I, Springer-Verlag Berlin Heidelberg, 1987.
- [9] O. Zaka, Contribution to reports of some algebraic structures with affine plane geometry and applications, Ph.D. thesis, Polytechnic University of Tirana, Tirana, Albania, Department of Mathematical Engineering, 2016 (in Albanian).
- [10] F. Sadiki, Models of Ternary Algebraic Structures in Projective Geometry, Ph.D. thesis, Polytechnic University of Tirana, Tirana, Albania, Department of Mathematical Engineering, 2015 (in Albanian).

- [11] D. R. Hughes, F. C. Piper, Projective Planes, Springer-Verlag New York Inc. and Springer-Verlag New York Heidelberg Berlin, 1973.
- [12] J. D. Dixon, B. Mortimer, Permutation Groups, Graduate Texts in Mathematics, Vol 163, Springer-Verlag New York Berlin Heidelberg, 1996.
- [13] P. A. Grillet, Abstract Algebra, Graduate Texts in Mathematics (Second Edition), Springer Science + Business Media, LLC, 2007.
- [14] S. Lang, Algebra, Graduate Text in Mathematics, (Vol. 211) (Third Edition), Springer-Verlag New York, 2002.
- [15] J. J. Rotman, An Introduction to the Theory of Groups, Graduate text in mathematics, 4th edition, Springer Verlag, 1995.
- [16] O. A. Gallian, Contemporary Abstract Algebra Broks/Cole (Eighth Edition), Cengage Larning, 2013.
- [17] F. Rothe, Several topics from geometry. Topics from Geometry, 2010. http://math2.uncc.edu/~frothe/
- [18] R. Hartshorne, *Geometry: Euclid and Beyond*, Springer-Verlag New York Berlin Heidelberg, 2000.
- [19] A. H. Schofield, Representation of rings over skew fields, London Mathematical Society Lecture Note Series: 92. Cambridge University Press, 1985.
- [20] K. Mathiak, Valuations of Skew Fields and Projective Hjelmslev Spaces, Lecture Notes in Mathematics, Springer-Verlag Berlin Heidelberg New York Tokyo, 1986.
- [21] E. Kleinert, *Units in Skew Fields*, Springer Basel AG. Originally published by Birkhäuser Verlag, Basel, 2000.
- [22] S. Bilaniuk, A problem course on projective planes, Trent University, Ontario, Canada, 2003.

Kristaq Filipi

POLYTECHNIC UNIVERSITY OF TIRANA,

FACULTY OF MATHEMATICAL AND PHYSICAL ENGINEERING,

DEPARTMENT OF MATHEMATICAL ENGINEERING,

STREET SULEJMAN DELVINA, TIRANA, REPUBLIC OF ALBANIA

 $E ext{-}mail\ address: f_kristaq@hotmail.com}$

Orgest Zaka

University of Vlora 'Ismail Qemali', Vlora,

FACULTY OF TECHNICAL SCIENCE,

DEPARTMENT OF MATHEMATICS,

St. Kosovo, Neighborhood Independence, 9400, Skela, Vlora,

REPUBLIC OF ALBANIA

E-mail address: orgest.zaka@univlora.edu.al

Azir Jusufi

University of Tetova, Tetovo, Macedonia

FACULTY OF NATURAL SCIENCES AND MATHEMATICS

DEPARTMENT OF MATHEMATICS

Str. Ilinden, nn.1200 Tetova,

REPUBLIC OF NORTH MACEDONIA

E-mail address: azir.jusufi@unite.edu.mk