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BIFURCATION ANALYSIS

OF FRACTIONAL-ORDER CHAOTIC RÖSSLER SYSTEM

GJORGJI MARKOSKI

Abstract. In the paper Fractional Multistep differential transform
method it is used for investigation of the the approximate numerical
solutions of the fractional-order Rössler chaotic system.

Numerical results are presented graphically, with bifurcation dia-
grams and Lyapunov exponents, for different values of the parameters.

1. Introduction

The basic mathematical ideas about fractional calculus were developed
long ago by the Leibniz (1695), Liouville (1834), Riemann (1892), and
others. First book on the topic was published by Oldham and Spanier in
1974 ([13]). Recently, fractional calculus has application in physics, signal
processing, electromagnetics, bioengineering, etc.

In [8], [7] Multistep differential transform method (MDTM) is applied
to fractional-order Rössler chaotic and hyperchaotic systems, and in [9] to
fractional-order Chua’s system.

More generaly about DTM one can see in [2].
Twodimensional generalized DTM is used in [12], [10], [11], [14].

2. Fractional Differential Transform Method (FDTM)

Caputo fractional derivative of order q, q > 0, of the function f(x)
is defined as

Dq
x0

f (x) =







1
Γ(m−q)

x
∫

x0

f (m)(τ )

(t−τ )q+1−m dτ, m − 1 < q < m

dm

dtm f (x) , q = m

where x > x0, m is pozitive integer, m − 1 < q ≤ m and Γ is the Gamma
function.
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More details about Caputo fractional derivative one can see, for example,
in [3], [15], [4].

Further we assume that q > 0 is rational number and m = 1.
The fractional differential transform method consists in the following.
The function f(x) is expanded in terms of a fractional power series

f (x) =

∞
∑

k=0

F (k) (x − x0)
k
α

where F (k) is the fractional differential transform of f(x) and α is pozitive
integer such that qα is pozitive integer. Usualy α is choosen as smalest
number with that property.

Let consider the equation

Dq
x0

f (x) = G (x, f) (1)

with initial conditions f(x0), f
′(x0), ..., f

(m−1)(x0).
In Caputo derivative the initial conditions are implemented to the integer

order derivatives, so the transformation of the initial conditions are

F (k) =







1

( k
α)!

d
k
α f(x)

dx
k
α

∣

∣

∣

∣

x=x0

, k
α
∈ Z

+, k = 0, 1, ..., qα− 1

0, k
α /∈ Z

+

where Z
+ is the set of nonnegative integers.

For properties and details about DTM one can see, for example, [1],
[6]. Theorems 1-6 from [1] give the nesesery properties for computing the
coefficients F (k), for k ≥ qα.

3. The Multistep Fractional Differential Transform Method
(MFDTM)

The FDTM is not suitable for large intervals ([8]), so we divide the work-
ing interval [x0, T ] into subintervals [t0, t1], [t1, t2], . . . , [tN−1, tN ], where t0 <
t1 < . . . tN , t0 = x0, tN = T and ti − ti−1 = h > 0, for i = 1, . . .N . Then
FDTM is applied on first interval with initial condition c1 = f(x0) and it
is obtained the approximate solution f1(x). At the second interval again
FDTM is applied with initial condition c2 = f1(t1) and it is obtained solu-
tion f2(x). This procedure is applied to all intervals [ti, ti−1], i = 1, . . . , N .

So the final approximate solution is

f(x) =































f1 (x) , x ∈ [t0, t1]
f2 (x) , x ∈ [t1, t2]
.
.
.
fN (x) , x ∈ [tN−1, tN ] .
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Further We assume that x0 = 0.

4. Bifurcation analysis of fractional-order Rössler chaotic
system

We consider the fractional-order Rössler chaotic system

Dq1x = −y − z
Dq2y = x + ay
Dq3z = b + z (x − c)

wit initial conditions x0 = x(0), y0 = y(0) and z0 = z(0), where x, y, z are
unknown funcions of t, q1 = q2 = q3 = q, 0 < q ≤ 1 and a, b, c > 0.

Wrking interval [0, T ], it is divided into subintervals [0, t1], [t1, t2], . . . , [tN−1, tN ],
where 0 < t1 < t2 < . . . tN , tN = T and ti − ti−1 = h > 0, for i = 1, . . . , N .

When DTM is applied to this system at the interval [0, t1] are obtained
approximations x1, y1 and z1 of the functions x(t), y(t) and z(t), respec-
tively.

We apply DTM at the interval [ti−1, ti], with initial conditions xi−1(ti−1), yi−1(ti−1)
and zi−1(ti−1), and obtain the approximations xi, yi and zi:

xi (t) =
Mi
∑

k=0

Xi (k) (t − ti)
k
α

yi (t) =
Mi
∑

k=0

Yi (k) (t − ti)
k
α

zi (t) =
Mi
∑

k=0

Zi (k) (t − ti)
k
α

for every i = 1, . . . , N.
Finaly, in this way we obtain approxtimations xN , yN and zN at the

interval [tn−1, tN ].
So, the approximations of functions x, y and z at [0, T ] are

X(t) =































x1 (t) , t ∈ [0, t1]
x2 (t) , t ∈ [t1, t2]
.
.
.
xN (t) , t ∈ [tN−1, tN ]

,

Y (t) =































y1 (t) , t ∈ [0, t1]
y2 (t) , t ∈ [t1, t2]
.
.
.
yN (t) , t ∈ [tN−1, tN ]
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and

Z(t) =































z1 (t) , t ∈ [0, t1]
z2 (t) , t ∈ [t1, t2]
.
.
.
zN (t) , t ∈ [tN−1, tN ]

Through this paper the initial conditions are choosen x0 = 2, y0 = 3 and
z0 = 4, and M1 = M2 = · · · = MN .

In this section we choose α = 10, so tranformation of the initial condi-
tions are Xi(k) = 0, Yi(k) = 0 and Zi(k) = 0, for each interval [ti−1, ti],
i = 1, . . . , N , and for k = 1, . . . , 10q − 1.

For k = 0 initial conditions are X1(0) = 2, Y1(0) = 3, Z1(0) = 4, and
Xi(0) = Xi−1(ti), Yi(0) = Yi−1(ti), Zi(0) = Zi−1(ti) for i = 1, . . . , N .

Using Theorems 1-6 from [1] we obtain that fractional-order Rössler
chaotic system, at the interval [ti, ti−1] transforms to

Xi (k + 10q) =
Γ(1+ k

10 )
Γ(q+1+ k

10)
(−Yi (k) − Zi (k))

Yi (k + 10q) =
Γ(1+ k

10 )
Γ(q+1+ k

10 )
(Xi (k) + aYi (k))

Zi (k + 10q) =
Γ(1+ k

10)
Γ(q+1+ k

10)

(

bδ (k) − cZi (k) +
k
∑

p=0
Zi (p)Xi (k − p)

)

where Γ is the Gamma function.
Trough the paper we choose h = 1

100 , T = 400 (so N = 40000, 0 ≤ t ≤
400), a = 0.2 and c = 5.7. The parameter b is changing with stepsize of
0.005 and 0 < b ≤ 4.

All computations are made for 0 ≤ t ≤ 400, and the diagrams are ploted
for 200 ≤ t ≤ 400, using software Mathematica. With maxx (maxy, maxz)
are denoted graphs of maximal peaks of {X (k)| 20001 ≤ k ≤ 39999}
({Y (k)| 20001 ≤ k ≤ 39999} , {Z (k)| 20001 ≤ k ≤ 39999}), where

X (k) = xk (tk) , Y (k) = yk (tk) , Z (k) = zk (tk)

for k = 1, . . . , N .
Respectively are denoted minimal peaks with minx (miny, minz).
Graphs for maximal Lyapunov exponents are denoted by maxlyapunov.

For q = 0.1, q = 0.2 and q = 0.3 occurs owerflow in the computations.

- q = 0.4
Overflow in computation is occured for b < 0.93. It is choosen M = 10qα.

Rezulting diagrams are showed in Figure 1.
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Figure 1: Diagram for q = 0.4, a = 0.2, c = 5.7 and 0 < b < 4 with stepsize
0.005. Overflow in computation is occured for b < 0.93

- q = 0.5
M = 5qα (Figure 2)
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Figure 2: Diagram for q = 0.5, a = 0.2, c = 5.7 and 0 < b < 4 with stepsize
0.005.

- q = 0.7
Here M = 5qα. Rezulting diagrams are showed in Figure 3.
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Figure 3: Diagram for q = 0.7, a = 0.2, c = 5.7 and 0 < b < 4 with stepsize
0.005.

- q = 0.9
M = 5qα (Figure 4)
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Figure 4: Diagram for q = 0.9,a = 0.2, c = 5.7 and 0 < b < 4 with stepsize
0.005.

Now we change q from q = 0.01 to q = 0.99 with stepsize h = 0.01, and
for a = 0.2, b = 0.2 and c = 5.7. Notations maxx, maxy, minx and miny
remains same as before.

In the Figure 5 it is shown dependence maxx and minx from q, and in
the figure 6 dependence maxy and miny from q.
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Figure 5: Diagram for maxx and minx, a = 0.2, b = 0.2, c = 5.7 and
0.01 ≤ q ≤ 0.99 with stepsize 0.01.

Figure 6: Diagram for maxy and miny, a = 0.2, b = 0.2, c = 5.7 and
0.01 ≤ q ≤ 0.99 with stepsize 0.01.
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