Математички Билтен 41(LXVII) No. 2 2017(30-38) Скопје, Македонија ISSN 0351-336X (print) ISSN 1857-9914 (online) UDC: 515.122.2

COMPACTNESS OF S(n)-CLOSED SPACES

IVAN LONČAR

Abstract. The aim of this paper is to study compactness of the S(n)closed spaces. It is proved that S(n)-closed space (X, τ) is compact if every closed subset of (X, τ) is S(n)-set and that sequentially S(n)closed space X is countably compact if every closed subset of X is θ^n closed.

1. INTRODUCTION

Let \mathcal{P} be a class of topological spaces. A space $X \in \mathcal{P}$ is said to be \mathcal{P} -closed iff X is closed in every \mathcal{P} space in which it is embedded.

In this paper we shall study compactness of S(n)-closed spaces. The symbol \mathbb{N}^+ denotes the set of positive integers and $\mathbb{N} = (0) \cup \mathbb{N}^+$.

Introduction contains the well-known characterizations of compact spaces which we need in the remaining sections.

Let R be a family of sets that together with A and B contains the intersection $A \cap B$. By a *filter in* R [3, pp. 124-133] we mean a non-empty subfamily $\mathcal{F} \subset R$ satisfying the following conditions:

(Fl) $\emptyset \notin \mathcal{F}$.

(F2) If A_1 , $A_2 \in F$, then $A_1 \cap A_2 \in \mathcal{F}$.

(F3) If $A \in \mathcal{F}$ and $A \subset A_1 \in R$, then $A_1 \in \mathcal{F}$.

A filter \mathcal{F} in R is a maximal filter or an ultrafilter in R, if for every filter \mathcal{F}' in R that contains \mathcal{F} we have $\mathcal{F}' = \mathcal{F}$.

A filter-base in R is a non-empty family $g \subset R$ such that $\emptyset \not \in g$ and

(FB) If A_1 , $A_2 \in g$, then there exists an $A_3 \in g$ such that $A_3 \subset A_1 \cap A_2$. One readily sees that for any filter-base \mathcal{F} in R, the family

 $\mathcal{F}_g = \{ A \in R: \text{ there exists a } B \in g \text{ such that } B \subset A \}$ is a filter in R.

By a filter (a filter-base) in a topological space X we mean a filter (a filter-base) in the family of all subsets of X.

A point x is called a *limit of a filter* \mathcal{F} if every neighbourhood of x belongs to \mathcal{F} ; we then say that the filter F converges to x and we write $x \in \lim \mathcal{F}$. A point x is called a limit of a filter-base if $x \in \lim \mathcal{F}_q$; we then

²⁰⁰⁰ Mathematics Subject Classification. Primary 54A05, Secondary: 54B35.

Key words and phrases. Compact, \mathcal{P} -closed.

say that the filter-base g converges to x and we write $x \in \lim g$. Clearly, $x \in \lim g$ if and only if every neighbourhood of x contains a member of g.

A point x is called a *cluster point of a filter* \mathcal{F} (*of a filter-basc* g) if x belongs to the closure of every member of \mathcal{F} (of g). Clearly, x is a cluster point of a filter \mathcal{F} (of a filter-base g) if and only if every neighbourhood of x intersects all members of \mathcal{F} (of g). This implies in particular that every cluster point of an ultrafilter is a limit of this ultrafilter.

A cover of a set X is a family $\{A_s : s \in S\}$ of subsets of X such that $X = \bigcup \{A_s : s \in S\}$. Cov(X) is the set of all coverings of topological space X. We say that a cover \mathcal{B} of space X is *refinement* of a cover \mathcal{A} of the same space if for every $B \in \mathcal{B}$ there exists $A \in \mathcal{A}$ such that $B \subset A$. If $\mathcal{U}, \mathcal{V} \in \text{Cov}(X)$ and \mathcal{V} refines \mathcal{U} , we write $\mathcal{V} \prec \mathcal{U}$.

Definition. [12, 17.3 Definition, p. 118] A family \mathcal{F} of subsets of X has the *finite intersection property* iff the intersection of any finite subcollection from \mathcal{F} is nonempty.

Remark 1. Families with finite intersection property are somewhat like filters; in fact, if \mathcal{G} is such a family and \mathcal{F} is the collection of all possible finite intersections from \mathcal{G} then \mathcal{F} is a filter base, so every family \mathcal{G} with finite intersection property generates a filter. Conversely, every filter is a family with finite intersection property.

Definition 1. A topological space X is called a quasi-compact space if every open cover of X has a finite subcover, i.e., if for every open cover $\{U_s : s \in S\}$ of the space X there exists a finite set $\{s_1, s_2, ..., s_k\} \subset S$ such that $X = U_{s_1} \cup U_{s_2} \cup ... \cup U_{s_k}$. A space X is a compact space if it is quasi-compact and Hausdorff.

Lemma 1. A Hausdorff space X is compact if and only if every open cover of X has a finite refinement.

Theorem 1. [3, 1.1. THEOREM, p. 124] A Hausdorff space X is compact if and only if every family of closed subsets of X which has the finite intersection property has non-empty intersection.

Theorem 2. [12, 17.4 Theorem, p. 118] For a Hausdorff topological space X, the following are equivalent:

- (1) X is compact,
- (2) each family of closed subsets of X with the finite intersection property has nonempty intersection,
- (3) each filter in X has a cluster point,
- (4) each net in X has a cluster point,
- (5) each ultranet in X converges,
- (6) each ultrafilter in X converges.

A topological space X is called a *countably compact* space if X is a Hausdorff space and every countable open cover of X has a finite subcover. Thus, every compact space is countably compact; more precisely:

Theorem 3. [3, Theorem 3.10.2, p. 202] For every Hausdorff space X the following conditions are equivalent:

(i): The space X is countably compact.

(ii): Every countable family of closed subsets of X which has the finite intersection property has non-empty intersection.

2. S(N)-closed spaces

The concept of θ -closure was introduced by Veličko [10]. For a subset M of a topological space X the θ -closure is defined by $\operatorname{Cl}_{\theta} M = \{x \in X : \text{ every closed neighborhood of } x \text{ meets } M\}$, M is θ -closed if $\operatorname{Cl}_{\theta} M = M$. This concept was used by many authors for the study of Hausdorff non-regular spaces. The θ -closure is related especially to Urysohn spaces (every pair of distinct points can be separated by disjoint closed neighborhoods). A space X is Urysohn iff the diagonal in $X \times X$ is θ -closed.

We say that a pair (G, H) is an ordered pair of open sets about $x \in X$ if G and H are open subsets of X and $x \in G \subset \operatorname{Cl} G \subset H$. A point $x \in X$ is in *u*-closure of a subset $K \subset X$ ($x \in \operatorname{Cl}_u K$) if each ordered pair (G, H) of open sets about $x \in X$ satisfies $K \cap \operatorname{Cl} H \neq \emptyset$. A subset K of a space X is *u*-closed if $K = \operatorname{Cl}_u K$.

A generalization of the concepts of θ -closure and of *u*-closure is θ^n -closure.

For a positive integer n and a subset M of a topological space X, the θ^n -closure $\operatorname{Cl}_{\theta^n} M$ of M is defined to be the set [2]

 $\{x \in X : \text{ for every chain of open neighborhoods of } x, \\ \text{if } U_1 \subset U_2 \subset \ldots \subset U_n \text{ with } \operatorname{Cl}(U_i) \subset U_{i+1}, \\ \text{where } i = 1, 2, \ldots, n-1, \text{ then one has } \operatorname{Cl}(U_n) \cap M \neq \emptyset \}.$

For n = 1 this gives the θ -closure. Moreover, for n = 2 the above definition gives *u*-closure (See Introduction).

Definition 2. A subset M of X is said to be θ^n -closed if $M = \operatorname{Cl}_{\theta^n} M$. Similarly θ^n -interior of M is defined and denoted by $\operatorname{Int}_{\theta^n} M$, so $\operatorname{Int}_{\theta^n} M = X \setminus \operatorname{Cl}_{\theta^n}(X \setminus M)$.

Proposition 1. Every θ^n - closed subset $M \subset X$ is closed.

Proof. See [9, p. 222].

Definition 3. An open set U is called a n-hull of a set A (see [6, p. 624]) if there exists a family of open sets $U_1, U_2, ..., U_n = U$ such that $A \subset U_1$ and $\operatorname{Cl} U_i \subset U_{i+1}$ for i = 1, ..., n-1.

Definition. For $n \in \mathbb{N}$ and a filter \mathcal{F} on X we denote by $\mathrm{ad}_{\theta^n}\mathcal{F}$ the set of θ^n – adherent points of \mathcal{F} , i.e. $\mathrm{ad}_{\theta^n}\mathcal{F} = \cap \{\mathrm{Cl}_{\theta^n} F_\alpha : F_\alpha \in \mathcal{F}\}$. In particular $\mathrm{ad}_{\theta^0}\mathcal{F} = \mathrm{ad}\mathcal{F}$ is the set of adherent points of \mathcal{F} .

32

Definition.Let X be a space and $n \in \mathbb{N}$; a point x of X is S(n)-separated from a subset M of X if $x \notin \operatorname{Cl}_{\theta^n} M$. In particular x is S(0)-separated from M if $x \notin \operatorname{Cl} M$.

Definition 4. Let $n \in \mathbb{N}$ and X be a space:

(a) X is an S(n)-space if every pair of distinct points of X are S(n)-separated;

(b) a filter \mathcal{F} on X is an S(n)-filter if every nonadherent point of \mathcal{F} is S(n)- separated from some member of \mathcal{F} ;

(c) an open cover $\{U_{\alpha}\}$ of X is an S(n)-cover if every point of X is in the θ^n -interior of some U_{α} .

The S(n)-spaces coincide with the \overline{T}_n -spaces defined in [11] and studied further in [7], where also $S(\alpha)$ -spaces are defined for each ordinal α .

Proposition 2. The S(0)-spaces are the T_0 spaces, the S(1)-spaces are the Hausdorff spaces and the S(2)-spaces are the Urysohn spaces.

Clearly every filter is an S(0)-filter, every open cover is an S(0)-cover and every open filter is an S(1)-filter. The open S(2)-filters coincide with the Urysohn filters defined in [5] and [8]. For $n \ge 1$ the open S(n)-filters were defined in [7]. The special covers used in (3.9) [7] are S(n-1) covers, S(2)-covers are the Urysohn covers defined in [1]. In a regular space every filter (resp. open cover) is an S(n)-filter (resp. S(n)-cover) for every $n \in \mathbb{N}$. The following Proposition plays fundamental role.

Proposition 3. In any topological space:

- **a):** the empty set and the whole space are Θ^n -closed,
- **b**): arbitrary finite unions of Θ^n -closed sets are Θ^n -closed,
- c): arbitrary intersection of Θ^n -closed sets are Θ^n -closed,
- **d**): a Θ^n -closed subset is closed,
- e): $\operatorname{Cl} K \subset \operatorname{Cl}_{\Theta^n} K$ for each subset K.

Proof. **a)** By definition.

b) Let $F = \bigcup \{F_i : i = 1, ..., n\}$ where each F_i is Θ^n -closed. For each $x \notin F$ there exist n-hull U_i of x such that $\operatorname{Cl} U_i \cap F_i = \emptyset$, i = 1, ..., n. Now $U = \bigcap \{U_i : i = 1, ..., n\}$ is n-hull of x such that $\operatorname{Cl} U \cap F = \emptyset$. This means that $x \notin \operatorname{Cl}_{\theta^n} F$, i.e. F is Θ^n -closed.

c) Assume that $x \in \operatorname{Cl}_{\theta^n} F$, where $F = \cap \{F_\alpha : \alpha \in A\}$ and each F_α is θ^n - closed. This means that for each n-hull U of the point x we have $\operatorname{Cl} U \cap F \neq \emptyset$. Clearly $\operatorname{Cl} U \cap F_\alpha \neq \emptyset$ for every $\alpha \in A$. We infer that $x \in F_\alpha$, $\alpha \in A$, since each F_α is θ^n - closed. Finally, $x \in \cap \{F_\alpha : \alpha \in A\} = F$ and Fis θ^n - closed $(F = \operatorname{Cl}_{\theta^n} F)$.

d) See Proposition 1.

e) The set $\operatorname{Cl} K$ is minimal closed set containing K. Hence, $\operatorname{Cl} K \subset \operatorname{Cl}_{\Theta^n} K$.

I. LONČAR

Definition 5. For a space (X, τ) and $n \in \mathbb{N}$ denote by (X, τ_{θ^n}) , where τ_{θ^n} is the topology on X generated by the θ^n -closure, i.e. having as closed sets all θ^n -closed sets in (X, τ) .

Clearly $\tau_{\theta^0} = \tau$, $\tau_{\theta^1} = \tau_{\theta}$ and a subset U of X is τ_{θ^n} -open iff every element of U is contained in the θ^n -interior of U.

The next proposition follows directly from the definitions.

Proposition 4. For a topological space (X, τ) and $n \in \mathbb{N}^+$ the following conditions are equivalent:

- (a) (X, τ) is an S(n)-space,
- (b) (X, τ_{θ^n}) is a T_1 space

(c) (X, τ_{θ^n}) is T_0 and (X, τ) is T_1 .

If $n \ge 1$, then these conditions are equivalent to:

(d) (X, τ_{θ^n}) is T_0 .

If n = 2k with $k \in \mathbb{N}^+$, then the above conditions are equivalent to:

(e) the diagonal in $X \times X$ is θ^k -closed

This Proposition show the pivotal role of the topologies τ_{θ^k} in the study of S(n)-spaces for $n \geq 1$. In some sense they replace the semiregularization which was the main tool in the study of *H*-closed spaces. Let us observe that we have the following result.

Definition 6. The identity mapping $i : (X, \tau) \to (X, \tau_{\theta^n})$ is continuous.

Definition 7. An S(n)-space M, n > 0, is S(n)-closed [2] if it is θ^n -closed in every S(n)-space in which it can be embedded.

Proposition 5. [2, Proposition 2.1., p. 63] Let $n \in \mathbb{N}^+$ and X be a space. Then the following conditions are equivalent:

(a) for every open filter \mathcal{F} on X ad_{θ^n} $\mathcal{F} \neq \emptyset$;

(b) for every filter \mathcal{F} on X $\operatorname{ad}_{\theta^n} \mathcal{F} \neq \emptyset$;

(c) for every open S(n)-filter \mathcal{F} on X ad $\mathcal{F} \neq \emptyset$;

(d) for every S(n-1)-cover $\{U_{\alpha}\}$ of X there exist $\alpha_1, \alpha_2, \ldots, \alpha_{l_{\ell}}$ such that $X = \bigcup_{i=1}^{k} \operatorname{Cl} U_{\alpha_1}$.

If X is an S(n)-space then the above conditions are equivalent to: (e) X is S(n)-closed.

Lemma 2. If X is S(n)-closed, then every family $\{A_{\mu}, \mu \in \Omega\}$ of θ^n closed subsets of X with the finite intersection property has a non-empty intersection $\cap \{A_{\mu}, \mu \in \Omega\}$.

Proof. Let X be S(n)-closed and let $\{A_{\mu}, \mu \in \Omega\}$ be a family of θ^{n} -closed subsets of X with the finite intersection property. Let us recall that $\{A_{\mu}, \mu \in \Omega\}$ generates a filter (See Claim 1). By (b) of Proposition 5 we infer that $\operatorname{ad}_{\theta^{n}}\{A_{\mu}, \mu \in \Omega\} \neq \emptyset$, i.e. $\cap \{\operatorname{Cl}_{\theta^{n}} A_{\mu}, \mu \in \Omega\} \neq \emptyset$ 2. But $\operatorname{Cl}_{\theta^{n}} A_{\mu} = A_{\mu}$ since $\{A_{\mu}, \mu \in \Omega\}$ is a family of θ^{n} -closed subsets of X. Finally we infer that $\cap \{A_{\mu}, \mu \in \Omega\} \neq \emptyset$. **Lemma 3.** If (X, τ) is S(n)-closed space then the space (X, τ_{θ^n}) is quasicompact.

Proof. Let (X, τ) be an S(n)-closed space and let us prove that (X, τ_{θ^n}) is quasi-compact. For every filter $\mathcal{F} = \{F : F \in \mathcal{F}\}$ of closed sets on (X, τ_{θ^n}) we have the family $\{\operatorname{Cl}_{\Theta_n} i^{-1}(F) : F \in \mathcal{F}\}$ with non-empty intersection $\cap \{\operatorname{Cl}_{\Theta_n} i^{-1}(F) : F \in \mathcal{F}\}$ since (X, τ) is S(n)-closed space. It is clear that $\cap \{F : F \in \mathcal{F}\} \neq \emptyset$ since $i(\operatorname{Cl}_{\Theta_n} i^{-1}(F)) = \operatorname{Cl} F = F$. Hence, (X, τ_{θ^n}) is quasi-compact. \Box

Theorem 4. S(n)-closed space (X, τ) is quasi-compact if every closed subset of (X, τ) is θ^n - closed. Moreover, if $n \ge 1$, then (X, τ) is compact.

Proof. If X is S(n)-closed, then every family $\{A_{\mu}, \mu \in \Omega\}$ of θ^n -closed subsets of X with the finite intersection property has a non-empty intersection $\cap \{A_{\mu}, \mu \in \Omega\}$ (Lemma 2). Now, let $\{B_{\mu}, \mu \in \Omega_1\}$ be a family closed subsets of X with the finite intersection property. Then $\{cl_{\theta^n} B_{\mu}, \mu \in \Omega_1\}$ is a family of θ^n - closed sets with the finite intersection property. Hence, $\{cl_{\theta^n} B_{\mu}, \mu \in \Omega_1\}$ has a non-empty intersection $\cap \{cl_{\theta^n} B_{\mu}, \mu \in \Omega\}$. It follows that $\cap \{B_{\mu}, \mu \in \Omega\} \neq \emptyset$ since $B_{\mu} = cl_{\theta^n} B_{\mu}$.

Theorem 5. S(n)-closed space (X, τ) is quasi-compact if every closed subset of (X, τ) is S(n)-closed. Moreover, if $n \ge 1$, then (X, τ) is compact.

Proof. If a closed subset F of (X, τ) is S(n)-closed in S(n)-space (X, τ) , then F is θ^n -closed (Definition 7). Apply Theorem 4.

Corollary 1. *H*-closed space (X, τ) is compact if every closed subset of (X, τ) is *H*-closed.

Proof. A Hausdorff spaces are S(1)-spaces 2. Apply Theorem 5.

Corollary 2. U-closed space (X, τ) is compact if every closed subset of (X, τ) is U- closed.

Proof. The Urysohn spaces are S(2)-spaces. Apply Theorem 5.

Definition 8. Let X be any topological space, M a subset of X, and let $n \ge 0$.

- **a):** A cover $(U_i : i \in I)$ is S(n)-cover with respect to M if $M \subset \bigcup \{ \operatorname{int}_{\Theta^n} U_i : i \in I \}.$
- **b):** M is an S(n)-set of X iff every S(n)-cover with respect to M has a finite subcover [9, Proposition 2.2.].

Proposition 6. Every *H*-set of a space *X* is an S(n)-set, for every n > 0.

Proposition 7. Let M be an S(n)-set, n > 0, of a space (X, τ) . Then $i(M) \subset (X, \tau_{\theta^n})$ is compact, where $i : (X, \tau) \to (X, \tau_{\theta^n})$ is the identity mapping (See 6).

I. LONČAR

Proposition 8. If X is S(n)-closed, then every family $\{A_{\mu}, \mu \in \Omega\}$ of S(n)-sets of X $\{A_{\mu}, \mu \in \Omega\}$ with the finite intersection property has a non-empty intersection $\cap \{A_{\mu}, \mu \in \Omega\}$.

Proof. By Proposition 3 the space (X, τ_{θ^n}) is quasi-compact. Moreover, each $i(A_{\mu}) \subset (X, \tau_{\theta^n})$ is compact. Now, $\{i(A_{\mu}), \mu \in \Omega\}$ is the family with the finite intersection property. It follows that $\cap\{i(A_{\mu}), \mu \in \Omega\} \neq \emptyset$. Hence $\cap\{A_{\mu}, \mu \in \Omega\} \neq \emptyset$.

Proposition 9. S(n)-closed space (X, τ) is compact if every closed subset of (X, τ) is S(n)-set.

Proof. Apply Proposition 8.

3. Sequentially S(N)-closed spaces

A space Y is called *sequentially determined extension* [4] of its subspace X iff for every point $y \in Y$ there exists a sequence $\{x_n\}_{n=1}^{\infty}$ in X such that $\lim_{n\to\infty} x_n = y$. Let \mathcal{P} be a class of topological spaces. A space $X \in \mathcal{P}$ is said to be *sequentially* \mathcal{P} -closed iff X is sequentially closed in every \mathcal{P} space in which it is embedded. In other words X is sequentially \mathcal{P} -closed iff X has no sequentially determined extension $Y \in \mathcal{P}$ and $Y \neq X$.

Obviously, every \mathcal{P} -closed space is sequentially \mathcal{P} -closed.

Let X be a topological space and $n \in N$. The point $x \in X$ will be called $S^n - limit$ ($\theta^n - limit$) of a sequence $\{x_n\}_{n=1}^{\infty}$ in X, iff for every chain $U_1 \subset U_2 \subset \ldots \subset U_n$ of open neighbourhoods of x such that $\operatorname{cl} U_i \subset U_i + 1$ for $i = 1, 2, \ldots, n$ -l, $U_n(\operatorname{cl} U_n)$ contains all but a finite number of the member of the sequence. Every sequence which has an S^n -limit (θ^n - limit) will be called S^n -convergent ($\theta^n - \operatorname{convergent}$). If for every chain $U_1 \subset U_2 \subset \ldots \subset U_n$ of open neighbourhoods of x such that $U_i \subset U_{i+1}$ for $i = 1, 2, \ldots, ; \iota - 1, U_n(\operatorname{cl} U_n)$ contains infinitely many members of the sequence then x will be called S^n -adherent point (θ^n -adherent point) of the sequence $\{x_n\}_{n=1}^{\infty}$.

The next theorem characterizes sequentially S(n) - closed spaces [4, Theorem 2.1, p. 5].

Theorem 6. Let X be a T_1 space and $n \in N$. The following conditions are equivalent:

(a) every sequence in X has a θ^n -adherent point,

(b) every sequence in X has an S^{n+1} -adherent point,

(c) every countable S(n)-cover of X has a finite subcover,

(d) every S(n)-filter with a countable base of closed sets has an adherent point,

(e) every open elementary S(n)-filter has an adherent point,

(f) every maximal open elementary S(n)-filter has an adherent point,

36

If X is an S(n)-space then the above conditions are equivalent to: (g) X is sequentially S(n)-closed.

Lemma 4. If X is sequentially S(n)-closed, then every countable family $\{A_n, n \in \mathbb{N}\}$ of θ^n -closed subsets of X with the finite intersection property has a non-empty intersection $\cap \{A_n, n \in \mathbb{N}\}$.

Proof. Suppose that $\cap \{A_n, n \in \mathbb{N}\}$ is empty. Then $\{U_n = X \setminus A_n, n \in \mathbb{N}\}$ is countable S(n) -cover of X. By (c) of Theorem 6 we infer that this cover has a finite subcover $\{U_{n_1}, ..., U_{n_k}\}$. From $U_{n_1} \cup ... \cup U_{n_k} = X$ it follows that $X \setminus U_{n_1} \cap ... \cap X \setminus U_{n_k} = \emptyset$. We infer that $A_{n_1} \cap ... \cap A_{n_k} = \emptyset$. This contradicts the finite intersection property of $\{A_n, n \in \mathbb{N}\}$.

Theorem 7. Sequentially S(n)-closed space X is countably compact if every closed subset of X is θ^n - closed.

Proof. If X is sequentially S(n)-closed, then every countable family $\{A_n, n \in \mathbb{N}\}$ of θ^n -closed subsets of X with the finite intersection property has a non-empty intersection $\cap \{A_n, n \in \mathbb{N}\}$ (Lemma 4). Now, let $\{B_n, n \notin \mathbb{N}\}$ be a countable family of closed subsets of X with the finite intersection property. Then $\{cl_{\theta^n} B_n, n \in \mathbb{N}\}$ is a family of θ^n - closed sets with the finite intersection property. Hence, $\{cl_{\theta^n} B_\mu, n \in \mathbb{N}\}$ has a non-empty intersection $\cap \{cl_{\theta^n} B_n, n \in \mathbb{N}\}$. It follows that $\cap \{B_n, n \in \mathbb{N}\} \neq \emptyset$ since $B_n = cl_{\theta^n} B_n$. By (ii) of Theorem 3 we infer that X is countably compact. \Box

I. LONČAR

References

- M.P. Berri, J.R. Porter and R.M. Stephenson, A survey of minimal topological spaces, in: General Topology and its Relations to Modern Analysis and Algebra, Proc. Kanpur Top. Conf. (Academic Press, New York, 1970) 93-1 14.
- [2] D. Dikranjan, E. Giuli, S(n)-θ-closed spaces, Topology and its Applications 28 (1988), 59-74.
- [3] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [4] I. Gotchev, Sequentially P-closed spaces, preprint
- [5] H. Herrlich, T_ν-Abgeschlossenheit und T_ν-Minimalititat, M ath. Z. 88 (1965) 285-294.
- [6] A. V. Osipov, Nearly H-closed spaces, Journal of Mathematical Sciences, 155 (2008), 624-631.
- [7] J.R. Porter and C. Votaw, S(α) spaces and regular Hausdortf extensions, Pacific J. Math. 45 (1973), 327-345.
- [8] C.T. Scarborough, Minimal Urysohn spaces, Pacific J. Math. 27 (1968) 611-617.
- [9] L. Stramaccia, S(n)-spaces and H-sets, Comment. Math. Univ. Carolinae, 29 (1988), 221–226.
- [10] H.V. Velichko, H-closed topological spaces, Mat. Sb. (N.S.) 70 (112) (1966), 98-112.
- [11] G.A. Viglino, \overline{T}_n spaces, Notices Amer. Math. Sot. 16 (1969) 846.
- [12] S. Willard, General Topology, Addison-Wesley 1970.

FACULTY OF ORGANIZATIONS AND INFORMATICS VARAŽDIN, CROATIA *E-mail address*: ivanloncar180gmail.com