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COMPACTNESS OF S(n)-CLOSED SPACES

IVAN LONČAR

Abstract. The aim of this paper is to study compactness of the S(n)-
closed spaces. It is proved that S(n)-closed space (X, τ) is compact
if every closed subset of (X, τ) is S(n)-set and that sequentially S(n)-
closed space X is countably compact if every closed subset of X is θn-
closed.

1. Introduction

Let P be a class of topological spaces. A space X ∈ P is said to be
P-closed iff X is closed in every P space in which it is embedded.

In this paper we shall study compactness of S(n)-closed spaces. The
symbol N+ denotes the set of positive integers and N = (0) ∪ N+.

Introduction contains the well-known characterizations of compact spaces
which we need in the remaining sections.

Let R be a family of sets that together with A and B contains the
intersection A∩B. By a filter in R [3, pp. 124-133] we mean a non-empty
subfamily F ⊂ R satisfying the following conditions:

(Fl) ∅ 6∈ F .
(F2) If A1, A2 ∈ F , then A1 ∩ A2 ∈ F .
(F3) If A ∈ F and A ⊂ A1 ∈ R, then A1 ∈ F .
A filter F in R is a maximal filter or an ultrafilter in R, if for every filter

F
′

in R that contains F we have F ′ = F .
A filter-base in R is a non-empty family g ⊂ R such that ∅ 6∈ g and
(FB) If A1, A2 ∈ g, then there exists an A3 ∈ g such that A3 ⊂ A1∩A2.
One readily sees that for any filter-base F in R, the family

Fg ={ A ∈ R: there exists a B ∈ g such that B ⊂ A}

is a filter in R.
By a filter (a filter-base) in a topological space X we mean a filter (a

filter-base) in the family of all subsets of X .
A point x is called a limit of a filter F if every neighbourhood of x

belongs to F ; we then say that the filter F converges to x and we write
x ∈ limF . A point x is called a limit of a filter-base if x ∈ limFg; we then
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say that the filter-base g converges to x and we write x ∈ lim g. Clearly,
x ∈ limg if and only if every neighbourhood of x contains a member of g.

A point x is called a cluster point of a filter F (of a filter-basc g) if x
belongs to the closure of every member of F (of g). Clearly, x is a cluster
point of a filter F (of a filter-base g ) if and only if every neighbourhood of
x intersects all members of F (of g). This implies in particular that every
cluster point of an ultrafilter is a limit of this ultrafilter.

A cover of a set X is a family {As : s ∈ S} of subsets of X such that
X = ∪{As : s ∈ S}. Cov(X) is the set of all coverings of topological space
X . We say that a cover B of space X is refinement of a cover A of the
same space if for every B ∈ B there exists A ∈ A such that B ⊂ A. If U , V
∈ Cov(X) and V refines U , we write V ≺ U .

Definition. [12, 17.3 Definition, p. 118]A family F of subsets of X has
the finite intersection property iff the intersection of any finite subcollection
from F is nonempty.

Remark 1. Families with finite intersection property are somewhat like
filters; in fact, if G is such a family and F is the collection of all possible
finite intersections from G then F is a filter base, so every family G with
finite intersection property generates a filter. Conversely, every filter is a
family with finite intersection property.

Definition 1. A topological space X is called a quasi-compact space if
every open cover of X has a finite subcover, i.e., if for every open cover
{Us : s ∈ S} of the space X there exists a finite set {s1, s2, ..., sk} ⊂ S
such that X = Us1

∪ Us2
∪ ... ∪ Usk

. A space X is a compact space if it is
quasi-compact and Hausdorff.

Lemma 1. A Hausdorff space X is compact if and only if every open cover
of X has a finite refinement.

Theorem 1. [3, 1.1. THEOREM, p. 124] A Hausdorff space X is com-
pact if and only if every family of closed subsets of X which has the finite
intersection property has non-empty intersection.

Theorem 2. [12, 17.4 Theorem, p. 118] For a Hausdorff topological space
X , the following are equivalent:

(1) X is compact,
(2) each family of closed subsets of X with the finite intersection prop-

erty has nonempty intersection,
(3) each filter in X has a cluster point,
(4) each net in X has a cluster point,
(5) each ultranet in X converges,
(6) each ultrafilter in X converges.

A topological space X is called a countably compact space if X is a
Hausdorff space and every countable open cover of X has a finite subcover.
Thus, every compact space is countably compact; more precisely:
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Theorem 3. [3, Theorem 3.10.2, p. 202] For every Hausdorff space X the
following conditions are equivalent:

(i): The space X is countably compact.
(ii): Every countable family of closed subsets of X which has the finite

intersection property has non-empty intersection.

2. S(n)-closed spaces

The concept of θ-closure was introduced by Veličko [10]. For a subset M
of a topological space X the θ-closure is defined by Clθ M = {x ∈ X : every
closed neighborhood of x meets M}, M is θ-closed if Clθ M = M . This
concept was used by many authors for the study of Hausdorff non-regular
spaces. The θ-closure is related especially to Urysohn spaces (every pair
of distinct points can be separated by disjoint closed neighborhoods). A
space X is Urysohn iff the diagonal in X × X is θ-closed.

We say that a pair (G, H) is an ordered pair of open sets about x ∈ X if
G and H are open subsets of X and x ∈ G ⊂ ClG ⊂ H . A point x ∈ X is
in u-closure of a subset K ⊂ X (x ∈ Clu K) if each ordered pair (G, H) of
open sets about x ∈ X satisfies K ∩ ClH 6= ∅. A subset K of a space X is
u-closed if K = Clu K.

A generalization of the concepts of θ-closure and of u-closure is θn-
closure.

For a positive integer n and a subset M of a topological space X , the
θn-closure Clθn M of M is defined to be the set [2]

{x ∈ X : for every chain of open neighborhoods of x,

if U1 ⊂ U2 ⊂ ... ⊂ Un with Cl(Ui) ⊂ Ui+1,

where i = 1, 2, ..., n− 1, then one has Cl(Un) ∩ M 6= ∅}.

For n = 1 this gives the θ-closure. Moreover, for n = 2 the above
definition gives u-closure (See Introduction).

Definition 2. A subset M of X is said to be θn-closed if M = Clθn M .
Similarly θn-interior of M is defined and denoted by Intθn M , so Intθn M =
X� Clθn(X\M).

Proposition 1. Every θn- closed subset M ⊂ X is closed.

Proof. See [9, p. 222]. �

Definition 3. An open set U is called a n-hull of a set A (see [6, p. 624])
if there exists a family of open sets U1, U2, ..., Un = U such that A ⊂ U1

and ClUi ⊂ Ui+1 for i = 1, ..., n− 1.

Definition.For n ∈ N and a filter F on X we denote by adθnF the set of
θn− adherent points of F , i.e. adθnF = ∩{Clθn Fα : Fα ∈ F}. In particular
adθ0F =adF is the set of adherent points of F .



COMPACTNESS .... 33

Definition.Let X be a space and n ∈ N; a point x of X is S (n)-separated
from a subset M of X if x 6∈ Cl θnM . In particular x is S(0)-separated
from M if x 6∈ ClM .

Definition 4. Let n ∈ N and X be a space:

(a) X is an S(n)-space if every pair of distinct points of X are S(n)-
separated;

(b) a filter F on X is an S(n )-filter if every nonadherent point of F is
S(n)− separated from some member of F ;

(c) an open cover {Uα} of X is an S(n)-cover if every point of X is in
the θn-interior of some Uα.

The S(n)-spaces coincide with the T n-spaces defined in [11] and studied
further in [7], where also S(α)-spaces are defined for each ordinal α.

Proposition 2. The S(0)-spaces are the T0 spaces, the S(1)-spaces are the
Hausdorff spaces and the S(2)-spaces are the Urysohn spaces.

Clearly every filter is an S(0)− filter, every open cover is an S(0)-cover
and every open filter is an S(1)-filter. The open S(2)-filters coincide with
the Urysohn filters defined in [5] and [8]. For n ≥ 1 the open S(n)-filters
were defined in [7]. The special covers used in (3.9) [7] are S(n −1) covers,
S(2)-covers are the Urysohn covers defined in [1]. In a regular space every
filter (resp. open cover) is an S(n)-filter (resp. S(n)-cover) for every n ∈ N.

The following Proposition plays fundamental role.

Proposition 3. In any topological space:

a): the empty set and the whole space are Θn-closed,
b): arbitrary finite unions of Θn-closed sets are Θn-closed,
c): arbitrary intersection of Θn-closed sets are Θn-closed,
d): a Θn-closed subset is closed,
e): ClK ⊂ Cl ΘnK for each subset K.

Proof. a) By definition.
b) Let F = ∪{Fi : i = 1, ..., n} where each Fi is Θn-closed. For each

x /∈ F there exist n-hull Ui of x such that ClUi ∩ Fi = ∅, i = 1..., n. Now
U = ∩{Ui : i = 1, ..., n} is n-hull of x such that ClU ∩ F = ∅. This means
that x /∈ Clθn F , i.e. F is Θn-closed.

c) Assume that x ∈ Clθn F , where F = ∩{Fα : α ∈ A} and each Fα

is θn- closed. This means that for each n-hull U of the point x we have
ClU ∩F 6= ∅. Clearly ClU ∩Fα 6= ∅ for every α ∈ A. We infer that x ∈ Fα,
α ∈ A, since each Fα is θn- closed. Finally, x ∈ ∩{Fα : α ∈ A} = F and F
is θn- closed (F = Clθn F ).

d) See Proposition 1.
e) The set ClK is minimal closed set containing K. Hence, ClK ⊂

Cl ΘnK. �
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Definition 5. For a space (X, τ) and n ∈ N denote by (X, τθn), where
τθn is the topology on X generated by the θn-closure, i.e. having as closed
sets all θn-closed sets in (X, τ).

Clearly τθ0 = τ, τθ1 = τθ and a subset U of X is τθn-open iff every
element of U is contained in the θn-interior of U .

The next proposition follows directly from the definitions.

Proposition 4. For a topological space (X, τ) and n ∈ N+ the following
conditions are equivalent:

(a) (X, τ) is an S(n)-space,
(b) (X, τθn) is a T1 space
(c) (X, τθn) is T0 and (X, τ) is T1.
If n ≥ 1, then these conditions are equivalent to:
(d) (X, τθn) is T0.
If n = 2k with k ∈ N+, then the above conditions are equivalent to:
(e) the diagonal in X × X is θk-closed
This Proposition show the pivotal role of the topologies τθk in the study

of S(n)-spaces for n ≥ 1. In some sense they replace the semiregularization
which was the main tool in the study of H-closed spaces.Let us observe that
we have the following result.

Definition 6. The identity mapping i : (X, τ) → (X, τθn) is continuous.

Definition 7. An S(n)-space M, n > 0, is S(n)-closed [2] if it is θn- closed
in every S(n)-space in which it can be embedded.

Proposition 5. [2, Proposition 2.1., p. 63] Let n ∈ N+ and X be a space.
Then the following conditions are equivalent:

(a) for every open filter F on X adθnF 6= ∅;
(b) for every filter F on X adθnF 6= ∅;
(c) for every open S(n)-filter F on X adF 6= ∅;
(d) for every S(n−1)-cover {Uα} of X there exist αl, α2, . . . , αlι such

that X =
⋃k

i=1 ClUα1
.

If X is an S(n)-space then the above conditions are equivalent to:
(e) X is S(n)-closed.

Lemma 2. If X is S(n)-closed, then every family {Aµ, µ ∈ Ω } of θn-
closed subsets of X with the finite intersection property has a non-empty
intersection ∩{Aµ, µ ∈ Ω }.

Proof. Let X be S(n)-closed and let {Aµ, µ ∈ Ω } be a family of θn-closed
subsets of X with the finite intersection property. Let us recall that {Aµ,
µ ∈ Ω } generates a filter (See Claim 1). By (b) of Proposition 5 we
infer that adθn{Aµ, µ ∈ Ω} 6= ∅, i.e. ∩{Clθn Aµ, µ ∈ Ω} 6= ∅ 2. But
Clθn Aµ = Aµ since {Aµ, µ ∈ Ω } is a family of θn-closed subsets of X .
Finally we infer that ∩{Aµ, µ ∈ Ω} 6= ∅. �
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Lemma 3. If (X, τ) is S(n)-closed space then the space (X, τθn) is quasi-
compact.

Proof. Let (X, τ) be an S(n)-closed space and let us prove that (X, τθn) is
quasi-compact. For every filter F = {F : F ∈ F} of closed sets on (X, τθn)
we have the family {ClΘn

i−1(F ) : F ∈ F} with non-empty intersection
∩{ClΘn

i−1(F ) : F ∈ F} since (X, τ) is S(n)-closed space. It is clear that
∩{F : F ∈ F} 6= ∅ since i(ClΘn

i−1(F )) = ClF = F . Hence, (X, τθn) is
quasi-compact. �

Theorem 4. S(n)-closed space (X, τ) is quasi-compact if every closed
subset of (X, τ) is θn- closed. Moreover, if n ≥ 1, then (X, τ) is compact.

Proof. If X is S(n)-closed, then every family {Aµ, µ ∈ Ω } of θn-closed sub-
sets of X with the finite intersection property has a non-empty intersection
∩{Aµ, µ ∈ Ω } (Lemma 2). Now, let {Bµ, µ ∈ Ω1} be a family closed
subsets of X with the finite intersection property. Then {clθn Bµ,µ ∈ Ω1}
is a family of θn- closed sets with the finite intersection property. Hence,
{clθn Bµ,µ ∈ Ω1} has a non-empty intersection ∩{clθn Bµ, µ ∈ Ω }. It
follows that ∩{Bµ, µ ∈ Ω } 6= ∅ since Bµ = clθn Bµ. �

Theorem 5. S(n)-closed space (X, τ) is quasi-compact if every closed
subset of (X, τ) is S(n)-closed. Moreover, if n ≥ 1, then (X, τ) is compact.

Proof. If a closed subset F of (X, τ) is S(n)-closed in S(n)-space (X, τ),
then F is θn- closed (Definition 7). Apply Theorem 4. �

Corollary 1. H-closed space (X, τ) is compact if every closed subset of
(X, τ) is H- closed.

Proof. A Hausdorff spaces are S(1)-spaces 2. Apply Theorem5. �

Corollary 2. U -closed space (X, τ) is compact if every closed subset of
(X, τ) is U - closed.

Proof. The Urysohn spaces are S(2)-spaces. Apply Theorem5. �

Definition 8. Let X be any topological space, M a subset of X , and let
n ≥ 0.

a): A cover (Ui : i ∈ I) is S(n)-cover with respect to M if M ⊂
∪{intΘn Ui : i ∈ I}.

b): M is an S(n)-set of X iff every S(n)-cover with respect to M has
a finite subcover [9, Proposition 2.2.].

Proposition 6. Every H-set of a space X is an S(n)−set, for every n > 0.

Proposition 7. Let M be an S(n)−set, n > 0, of a space (X, τ). Then
i(M) ⊂ (X, τθn) is compact, where i : (X, τ) → (X, τθn) is the identity
mapping (See 6).
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Proposition 8. If X is S(n)-closed, then every family {Aµ, µ ∈ Ω } of
S(n)-sets of X {Aµ, µ ∈ Ω } with the finite intersection property has a
non-empty intersection ∩{Aµ, µ ∈ Ω }.

Proof. By Proposition 3 the space (X, τθn) is quasi-compact. Moreover,
each i(Aµ) ⊂ (X, τθn) is compact. Now, {i(Aµ), µ ∈ Ω } is the family
with the finite intersection property. It follows that ∩{i(Aµ), µ ∈ Ω } 6= ∅.
Hence ∩{Aµ, µ ∈ Ω } 6= ∅. �

Proposition 9. S(n)-closed space (X, τ) is compact if every closed subset
of (X, τ) is S(n)-set.

Proof. Apply Proposition 8. �

3. Sequentially S(n)-closed spaces

A space Y is called sequentially determined extension [4] of its subspace
X iff for every point y ∈ Y there exists a sequence {xn}∞n=1 in X such that
limn→∞ xn = y. Let P be a class of topological spaces. A space X ∈ P
is said to be sequentially P -closed iff X is sequentially closed in every P
space in which it is embedded. In other words X is sequentially P-closed
iff X has no sequentially determined extension Y ∈ P and Y 6= X .

Obviously, every P-closed space is sequentially P -closed.
Let X be a topological space and n ∈ N . The point x ∈ X will be called

Sn− limit (θn− limit) of a sequence {xn}
∞

n=1 in X , iff for every chain
U1 ⊂ U2 ⊂ . . . ⊂ Un of open neighbourhoods of x such that cl Ui ⊂ Ui + 1
for i = 1, 2, . . ., n-l, Un(clUn) contains all but a finite number of the
member of the sequence. Every sequence which has an Sn -limit (θn -
limit) will be called Sn-convergent (θn− convergent). If for every chain
U1 ⊂ U2 ⊂ . . . ⊂ Un of open neighbourhoods of x such that Ui ⊂ Ui+1 for
i = 1, 2, . . . , ; ι − 1, Un(clUn) contains infinitely many members of the
sequence then x will be called Sn -adherent point (θn -adherent point) of
the sequence {xn}

∞

n=1.
The next theorem characterizes sequentially S (n) - closed spaces [4,

Theorem 2.1, p. 5 ].

Theorem 6. Let X be a T1 space and n ∈ N . The following conditions
are equivalent:

(a) every sequence in X has a θn-adherent point,
(b) every sequence in X has an Sn+1-adherent point,
(c) every countable S(n)-cover of X has a finite subcover,
(d) every S(n)−filter with a countable base of closed sets has an adherent

point,
(e) every open elementary S(n)−filter has an adherent point,
(f) every maximal open elementary S(n)−filter has an adherent
point,
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If X is an S(n) -space then the above conditions are equivalent to:
(g) X is sequentially S(n) -closed.

Lemma 4. If X is sequentially S(n)-closed, then every countable family
{An, n ∈ N } of θn-closed subsets of X with the finite intersection property
has a non-empty intersection ∩{An, n ∈ N}.

Proof. Suppose that ∩{An, n ∈ N} is empty. Then {Un = X�An, n ∈
N} is countable S(n) -cover of X. By (c) of Theorem 6 we infer that this
cover has a finite subcover {Un1

, ..., Unk
}. From Un1

∪...∪Unk
= X it folows

that X�Un1
∩ ... ∩ X�Unk

= ∅. We infer that An1
∩ ...∩ Ank

= ∅. This
contradicts the finite intersection property of {An, n ∈ N }. �

Theorem 7. Sequentially S(n)-closed space X is countably compact if
every closed subset of X is θn- closed.

Proof. If X is sequentially S(n)-closed, then every countable family {An,
n ∈ N} of θn-closed subsets of X with the finite intersection property has
a non-empty intersection ∩{An, n ∈ N} (Lemma 4). Now, let {Bn, n 6∈ N}
be a countable family of closed subsets of X with the finite intersection
property. Then {clθn Bn, n ∈ N} is a family of θn- closed sets with the
finite intersection property. Hence, {clθn Bµ, n ∈ N} has a non-empty
intersection ∩{clθn Bn, n ∈ N }. It follows that ∩{Bn, n ∈ N } 6= ∅
since Bn = clθn Bn. By (ii) of Theorem 3 we infer that X is countably
compact. �
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