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COMPACTNESS OF S§(n)-CLOSED SPACES

IVAN LONCAR

Abstract. The aim of this paper is to study compactness of the S(n)-
closed spaces. It is proved that S(n)-closed space (X, 7) is compact
if every closed subset of (X, 7) is S(n)-set and that sequentially S(n)-
closed space X is countably compact if every closed subset of X is 6"-
closed.

1. INTRODUCTION

Let P be a class of topological spaces. A space X € P is said to be
P-closed iff X is closed in every P space in which it is embedded.

In this paper we shall study compactness of S(n)-closed spaces. The
symbol N denotes the set of positive integers and N = (0) UNT.

Introduction contains the well-known characterizations of compact spaces
which we need in the remaining sections.

Let R be a family of sets that together with A and B contains the
intersection AN B. By a filter in R [3, pp. 124-133] we mean a non-empty
subfamily F C R satisfying the following conditions:

(F1) 0 ¢ F.

(F2) If Ay, Ay € F, then AyN Ay € F.

(F3)If Ac¢ F and A C Ay € R, then Ay € F.

A filter F in R is a mazimal filter or an ultrafilter in R, if for every filter
F'in R that contains F we have F' = F.

A filter-base in R is a non-empty family ¢ C R such that () € g and

(FB) If Ay, As € g, then there exists an Az € g such that Az C A1 NAs.

One readily sees that for any filter-base F in R, the family

Fqy ={ A € R: there exists a B € g such that B C A}

is a filter in R.

By a filter (a filter-base) in a topological space X we mean a filter (a
filter-base) in the family of all subsets of X.

A point z is called a limit of a filter F if every neighbourhood of x
belongs to F; we then say that the filter F' converges to x and we write
x € limF. A point x is called a limit of a filter-base if x € lim F,; we then
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say that the filter-base g converges to x and we write x € limg. Clearly,
z € lim g if and only if every neighbourhood of x contains a member of g.

A point z is called a cluster point of a filter F (of a filter-basc g) if x
belongs to the closure of every member of F (of g). Clearly, x is a cluster
point of a filter F (of a filter-base ¢ ) if and only if every neighbourhood of
x intersects all members of F (of g). This implies in particular that every
cluster point of an ultrafilter is a limit of this ultrafilter.

A cover of a set X is a family {As : s € S} of subsets of X such that
X = U{A;s : s € S}. Cov(X) is the set of all coverings of topological space
X. We say that a cover B of space X is refinement of a cover A of the
same space if for every B € B there exists A € A such that BC A. If U,V
€ Cov(X) and V refines U, we write V < U.

Definition. [12, 17.3 Definition, p. 118]A family F of subsets of X has
the finite intersection property iff the intersection of any finite subcollection
from F is nonempty.

Remark 1. Families with finite intersection property are somewhat like
filters; in fact, if G is such a family and F is the collection of all possible
finite intersections from G then F is a filter base, so every family G with
finite intersection property generates a filter. Conwversely, every filter is a
family with finite intersection property.

Definition 1. A topological space X is called a quasi-compact space if
every open cover of X has a finite subcover, i.e., if for every open cover
{Us : s € S} of the space X there exists a finite set {si1,S2,...,8kF C S
such that X = Uy, UU,, U...U U, . A space X is a compact space if it is
quasi-compact and Hausdorff.

Lemma 1. A Hausdorff space X is compact if and only if every open cover
of X has a finite refinement.

Theorem 1. [3, 1.1. THEOREM, p. 124] A Hausdorff space X is com-
pact if and only if every family of closed subsets of X which has the finite
intersection property has non-empty intersection.

Theorem 2. [12, 17.4 Theorem, p. 118] For a Hausdorff topological space
X, the following are equivalent:

(1) X is compact,
(2) each family of closed subsets of X with the finite intersection prop-
erty has nonempty intersection,
(3) each filter in X has a cluster point,
(4) each net in X has a cluster point,
(5) each ultranet in X converges,
(6) each ultrafilter in X converges.
A topological space X is called a countably compact space if X is a
Hausdorff space and every countable open cover of X has a finite subcover.
Thus, every compact space is countably compact; more precisely:
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Theorem 3. [3, Theorem 3.10.2, p. 202] For every Hausdorff space X the
following conditions are equivalent:

(1): The space X is countably compact.
(ii): Every countable family of closed subsets of X which has the finite
intersection property has non-empty intersection.

2. S(N)-CLOSED SPACES

The concept of 8-closure was introduced by Velicko [10]. For a subset M
of a topological space X the 6-closure is defined by Cly M = {z € X: every
closed neighborhood of x meets M}, M is 6-closed if Clg M = M. This
concept was used by many authors for the study of Hausdorff non-regular
spaces. The 6-closure is related especially to Urysohn spaces (every pair
of distinct points can be separated by disjoint closed neighborhoods). A
space X is Urysohn iff the diagonal in X x X is #-closed.

We say that a pair (G, H) is an ordered pair of open sets about x € X if
G and H are open subsets of X and x € G C C1G C H. A point z € X is
in u-closure of a subset K C X (x € Cl, K) if each ordered pair (G, H) of
open sets about x € X satisfies K N Cl1 H # (). A subset K of a space X is
u-closed if K = Cl, K.

A generalization of the concepts of 6-closure and of wu-closure is 6™-
closure.

For a positive integer n and a subset M of a topological space X, the
0" -closure Clgn M of M is defined to be the set [2]

{x € X : for every chain of open neighborhoods of z,
if Uy CUs C ... C Uy with CI(U;) C Uy,
where i = 1,2,...,n — 1, then one has CI(U,) N M # 0}.
For n = 1 this gives the f-closure. Moreover, for n = 2 the above

definition gives u-closure (See Introduction).

Definition 2. A subset M of X is said to be 0™-closed if M = Clgn M.
Similarly 0™ -interior of M is defined and denoted by Intgn M, so Intgn M =
X\ Clgn (X\M).

Proposition 1. FEvery 0"- closed subset M C X is closed.
Proof. See [9, p. 222]. O

Definition 3. An open set U is called a n-hull of a set A (see [6, p. 624])
if there exists a family of open sets Uy, Us, ...,U, = U such that A C Uy
and ClU; C U;yq fori=1,....,n—1.

Definition.For n € N and a filter F on X we denote by adgn F the set of
0" — adherent points of F, i.e. adgn F = N{Clgn F, : F, € F}. In particular
adgoF =adF is the set of adherent points of F.
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Definition.Let X be a space and n € N; a point x of X is S(n)-separated
from a subset M of X if x ¢ Cl gn M. In particular x is S(0)-separated
from M ifx ¢ C1 M.

Definition 4. Letn € N and X be a space:

(a) X is an S(n)-space if every pair of distinct points of X are S(n)-
separated;

(b) a filter F on X is an S(n )-filter if every nonadherent point of F is
S(n)— separated from some member of F;

(c) an open cover {U,} of X is an S(n)-cover if every point of X is in
the 8"-interior of some U,.

The S(n)-spaces coincide with the T,-spaces defined in [11] and studied
further in [7], where also S(«)-spaces are defined for each ordinal c.

Proposition 2. The S(0)-spaces are the Ty spaces, the S(1)-spaces are the
Hausdorff spaces and the S(2)-spaces are the Urysohn spaces.

Clearly every filter is an S(0)— filter, every open cover is an S(0)-cover
and every open filter is an S(1)-filter. The open S(2)-filters coincide with
the Urysohn filters defined in [5] and [8]. For n > 1 the open S(n)-filters
were defined in [7]. The special covers used in (3.9) [7] are S(n —1) covers,
S(2)-covers are the Urysohn covers defined in [1]. In a regular space every
filter (resp. open cover) is an S(n)-filter (resp. S(n)-cover) for every n € N.

The following Proposition plays fundamental role.

Proposition 3. In any topological space:

a): the empty set and the whole space are ©™-closed,

b): arbitrary finite unions of O"-closed sets are O"-closed,
c): arbitrary intersection of ©"-closed sets are O"-closed,
d): a ©"-closed subset is closed,

e): C1K C ClgnK for each subset K.

Proof. a) By definition.

b) Let FF = U{F; : i = 1,...,n} where each F; is ©"-closed. For each
x ¢ F there exist n-hull U; of z such that ClU; N F; = 0, i = 1...,n. Now
U=n{U;:i=1,...,n}is n-hull of z such that C1U N F = (). This means
that x ¢ Clgn F, i.e. F is O"-closed.

c) Assume that x € Clgn F', where F' = N{F, : @ € A} and each F,
is 8™ closed. This means that for each n-hull U of the point z we have
CIUNF # 0. Clearly CILUNF, # 0 for every a € A. We infer that z € F,,
a € A, since each F,, is 0"- closed. Finally, x € N"{F, : « € A} = F and F
is 6™~ closed (F' = Clgn F).

d) See Proposition 1.

e) The set ClK is minimal closed set containing K. Hence, C1K C
Clen K. O
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Definition 5. For a space (X, 7) and n € N denote by (X, 7on), where
Tgn s the topology on X generated by the 0" -closure, i.e. having as closed
sets all 0" -closed sets in (X, T).

Clearly 1o = 7, 7)1 = 79 and a subset U of X is 1yn-open iff every
element of U is contained in the #"-interior of U.
The next proposition follows directly from the definitions.

Proposition 4. For a topological space (X, T) and n € N the following
conditions are equivalent:

(a) (X, 7) is an S(n)-space,

(b) (X, 19n) is a Ty space

(c) (X, 7gn) is Ty and (X, 7) is T1.

If n > 1, then these conditions are equivalent to:

(d) (X, 7g0) is Ty,

If n = 2k with k € N*, then the above conditions are equivalent to:

(e) the diagonal in X x X is O%-closed

This Proposition show the pivotal role of the topologies Tyr in the study
of S(n)-spaces for n > 1. In some sense they replace the semiregularization
which was the main tool in the study of H-closed spaces.Let us observe that
we have the following result.

Definition 6. The identity mapping i : (X, 7) — (X, T9n) is continuous.

Definition 7. An S(n)-space M,n > 0, is S(n)-closed [2] if it is 0"~ closed
in every S(n)-space in which it can be embedded.

Proposition 5. [2, Proposition 2.1., p. 63] Let n € N* and X be a space.
Then the following conditions are equivalent:

(a) for every open filter F on X adgnF # 0;

(b) for every filter F on X adgnF # 0;

(¢) for every open S(n)-filter F on X adF # (;

(d) for every S(n—1)-cover {U,} of X there exist oy, g, ..., oy, such
that X =¥, C1U,,.

If X is an S(n)-space then the above conditions are equivalent to:

(e) X is S(n)-closed.

Lemma 2. If X is S(n)-closed, then every family {A,, n € Q } of 6"-
closed subsets of X with the finite intersection property has a non-empty
intersection N{A,, p € Q }.

Proof. Let X be S(n)-closed and let {A4,, u € © } be a family of #"-closed
subsets of X with the finite intersection property. Let us recall that {A,,
uw € Q } generates a filter (See Claim 1). By (b) of Proposition 5 we
infer that adgn{A,, p € Q} # 0, i.e. N{Clgn Ay, p € Q} # 0 2. But
Clgn A, = A, since {A,, p € Q } is a family of §"-closed subsets of X.
Finally we infer that N{A4,, u € Q} # 0. O



COMPACTNESS .... 35

Lemma 3. If (X, 7) is S(n)-closed space then the space (X, Ton) is quasi-
compact.

Proof. Let (X, 7) be an S(n)-closed space and let us prove that (X, 7gn) is
quasi-compact. For every filter F = {F : F' € F} of closed sets on (X, 7yn)
we have the family {Clg, i !(F) : F € F} with non-empty intersection
N{Clg, i 1 (F) : F € F} since (X, 7) is S(n)-closed space. It is clear that
N{F: F e F} # 0 since i(Clg, i }(F)) = CIF = F. Hence, (X, m¢n) is
quasi-compact. U

Theorem 4. S(n)-closed space (X, T) is quasi-compact if every closed
subset of (X, T) is 0™- closed. Moreover, if n > 1, then (X, ) is compact.

Proof. If X is S(n)-closed, then every family {A,,, i € Q } of §™-closed sub-
sets of X with the finite intersection property has a non-empty intersection
N{A,, p € Q } (Lemma 2). Now, let {B,, 1 € 1} be a family closed
subsets of X with the finite intersection property. Then {clg» B,,,;n € 21}
is a family of 0"- closed sets with the finite intersection property. Hence,
{clgn By,;u € 1} has a non-empty intersection N{clgn B, p € Q }. It
follows that N{B,,, € Q } # 0 since B, = clgn B,,. O

Theorem 5. S(n)-closed space (X, T) is quasi-compact if every closed
subset of (X, 7) is S(n)-closed. Moreover, ifn > 1, then (X, T) is compact.

Proof. If a closed subset F' of (X, 7) is S(n)-closed in S(n)-space (X, 1),
then F' is 0™~ closed (Definition 7). Apply Theorem 4. O

Corollary 1. H-closed space (X, T) is compact if every closed subset of
(X, 7) is H- closed.

Proof. A Hausdorff spaces are S(1)-spaces 2. Apply Theoremb5. O

Corollary 2. U-closed space (X, T) is compact if every closed subset of
(X, 7) is U- closed.
Proof. The Urysohn spaces are S(2)-spaces. Apply Theoremb. O
Definition 8. Let X be any topological space, M a subset of X, and let
n > 0.
a): A cover (U; : i € I) is S(n)-cover with respect to M if M C
U{inten U; : 1 € T}.
b): M is an S(n)-set of X iff every S(n)-cover with respect to M has
a finite subcover [9, Proposition 2.2.].

Proposition 6. Every H-set of a space X is an S(n)—set, for everyn > 0.

Proposition 7. Let M be an S(n)—set, n > 0, of a space (X, 7). Then
(M) C (X, 7pn) is compact, where i : (X, 7) — (X, 7gn) is the identity
mapping (See 0).



36 1. LONCAR

Proposition 8. If X is S(n)-closed, then every family {A,, p € Q } of
S(n)-sets of X {A,, p € Q } with the finite intersection property has a
non-empty intersection N{A,, p € Q }.

Proof. By Proposition 3 the space (X, 7yn) is quasi-compact. Moreover,
each i(A,) C (X, 7pn) is compact. Now, {i(4,), p € Q } is the family
with the finite intersection property. It follows that N{i(A,), n € Q } # 0.
Hence N{A4,, p€Q } #0. O

Proposition 9. S(n)-closed space (X, T) is compact if every closed subset
of (X, 1) is S(n)-set.

Proof. Apply Proposition 8. U

3. SEQUENTIALLY S(N)-CLOSED SPACES

A space Y is called sequentially determined extension [4] of its subspace
X iff for every point y € Y there exists a sequence {z,}52; in X such that
lim,, .00 z, = y. Let P be a class of topological spaces. A space X € P
is said to be sequentially P -closed iff X is sequentially closed in every P
space in which it is embedded. In other words X is sequentially P-closed
iff X has no sequentially determined extension Y € P and Y # X.

Obviously, every P-closed space is sequentially P -closed.

Let X be a topological space and n € N. The point x € X will be called
S"— limit (0"— limit) of a sequence {x,}>2, in X, iff for every chain
Uy c Uy C...CU, of open neighbourhoods of x such that clU; C U; + 1
for i = 1,2, ..., n-l, U,(clU,) contains all but a finite number of the
member of the sequence. Every sequence which has an S™ -limit (6" -
limit) will be called S™-convergent (0" — convergent). If for every chain
Uy C Us C ... C U, of open neighbourhoods of = such that U; C U;;1 for
i=1,2, ..., ;v— 1, Uy(clU,) contains infinitely many members of the
sequence then x will be called S™ -adherent point (0" -adherent point) of
the sequence {x,}5° ;.

The next theorem characterizes sequentially S (n) - closed spaces [4,
Theorem 2.1, p. 5 |.

Theorem 6. Let X be a 17 space and n € N. The following conditions
are equivalent:

(a) every sequence in X has a 0"-adherent point,

(b) every sequence in X has an S™"'-adherent point,

(c) every countable S(n)-cover of X has a finite subcover,

(d) every S(n)—filter with a countable base of closed sets has an adherent
point,

(e) every open elementary S(n)—filter has an adherent point,

(f) every mazimal open elementary S(n)—filter has an adherent

point,
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If X is an S(n) -space then the above conditions are equivalent to:
(g) X is sequentially S(n) -closed.

Lemma 4. If X is sequentially S(n)-closed, then every countable family
{A,, n € N } of 0™-closed subsets of X with the finite intersection property
has a non-empty intersection N{ A, n € N}.

Proof. Suppose that N{A,, n € N} is empty. Then {U, = X\ A,, n €
N} is countable S(n) -cover of X. By (c) of Theorem 6 we infer that this
cover has a finite subcover {U,,, ..., Uy, }. From U,,, U...UU,,, = X it folows
that X\ Uy, N...N X\U,, = 0. We infer that 4,, N..N A4,, = 0. This
contradicts the finite intersection property of {A,, n € N }. O

Theorem 7. Sequentially S(n)-closed space X is countably compact if
every closed subset of X is 0™~ closed.

Proof. If X is sequentially S(n)-closed, then every countable family {A,,
n € N} of §™-closed subsets of X with the finite intersection property has
a non-empty intersection N{A,, n € N} (Lemma 4). Now, let {B,,, n ¢ N}
be a countable family of closed subsets of X with the finite intersection
property. Then {clpn B,, n € N} is a family of 6" closed sets with the
finite intersection property. Hence, {clp» B,, n € N} has a non-empty
intersection N{clgn B, n € N }. Tt follows that N{B,, n € N } # 0
since B,, = clgn B,,. By (ii) of Theorem 3 we infer that X is countably
compact. U
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