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ON CERTAIN DOUBLE SERIES INVOLVING GENERALIZED
HYPERGEOMETRIC SERIES

BY
R. Y. DENIS

"~ §1. The object of this paper- is to evaluate certain double series
involving G-function of two variables (cf. Agarwal [1]) in terms of ano-
ther G-function of two variables. Certain similar results for Meijer’s
G-function and MacRobert’s E-function have also been deduced as special
cases of the results discussed herein.

The following result due Jain [4] shall be used:
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§2. Now, we'shall establish the following result:
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where G-function appearing in (2.1) is G-function of two variables.
(It is not necessary to take the same number of parameters y and ¥’ and
so also B and B’ as taken by Agarwal [I].).

(2.1) Holds under the following set of conditions:

0<r<p, 0Ky, 0Sm<q O v, 0Kmy < ¢,
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2+ g+ s+ < 2r +vy+ my,

larg x| < =lr + v, +m —(p+ g+ 5+ 0)/2],

larg y| < wlr + vy + my—(p + ¢'+ s + #)/2].

To prove (2.1), we replace the G-function of two variables on the
left of it by its equivalent double ' integral (zf. Agarwal [I]), interchange
the order of summation and integration and sum the inner double series
with the help of known result (1.1). The double integral is now replaceable
by its equivalent G-function of two variables. This completes the proof
of (2.1).

Ifwetakem, =1, t=t" g=¢q, g >t p=0=s5=y=0, in(21),
we get, after some simplification,
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0<sm <Cq 0y, g

t+ g < 2(my+vy),
larg x| < =lm, + v, — (z + g)/2}.
The conditions ¢t =1t', g =¢’, g >t can now be waived off by ana-
litic continuation.

(2.2) gives the corresponding result for Meijer’s G-function.

Next, if we take m; =1, B, =0, v, = ¢, replace ¢ by ¢ 4 1 and put
Br4i=PAr=1, 2,..., q) and then replace the G(x)-function by its equi-
valent G(1 /x)—function, we get, after some simplification?
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(2.3) Gives the corresponding result for MacRobert’s E-function.

It may be remarked here that a number of such results, using the
known summations (Carlitz [2]),, can also be established under appro-
priate convergence conditions.
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