SOME ACCELERATIONS OF THE CONVERGENCE

OF CERTAIN CLASS OF SEQUENCES

Математички Билтен, 16 (XLII), 1992, 37-42

Abstract. The sequence $\{U_{n+1} / U_n\}$ of the ratios of consecutive numbers U_n , n=0,1,2,... defined by $aU_{n+1} + bU_n + cU_{n-1} = 0$ with $U_0 = 0$, $U_1 = 1$ converges to the root λ_1 of $f(x) = ax^2 + bx + c = 0$, supposing $|\lambda_1| > |\lambda_2|$. Newton's method for the equation f(x) = 0 with initial approximation 1 produces the subsequence $\{U_{n-1} / U_n\}$. The Halley's iteration method for this equation produces the subsequence $\{U_{n-1} / U_n\}$. Applying the Newton's modified method and the Schrö- $\{U_{n-1} / U_n\}$. Applying the Newton's modified method and the Schrö- $\{U_{n-1} / U_n\}$.

 $\underline{\text{1.1.}}$ Let $\{\textbf{W}_n\}$ be a sequence defined by the second-order linear difference equation

der's iteration method we obtain similar subsequences.

$$aW_{n+1} + bW_n + cW_{n-1} = 0 (1)$$

with the initial values W_0 and W_1 . To get a simpler relationship for this sequence, we write the last equation (1) in the form [1]

$$aW_{n+1} - \lambda aW_n + (b - \lambda a)(W_n - \lambda W_{n-1}) + (c + b\lambda + a\lambda^2)W_{n-1} = 0.$$

If λ_1, λ_2 are the roots of $a\lambda^2+b\lambda+c=0$, then $\lambda_1+\lambda_2=-b/a$, $\lambda_1\lambda_2=c/a$ and we have

$$\begin{aligned} & W_{n+1} - \lambda_1 W_n = \lambda_2 (W_n - \lambda_1 W_{n-1}) \\ & W_{n+1} - \lambda_2 W_n = \lambda_1 (W_n - \lambda_2 W_{n-1}) , \end{aligned}$$

and hence

$$\begin{split} & W_{n+1} - \lambda_{2} W_{n} = \lambda_{2}^{n} (W_{1} - \lambda_{1} W_{0}) \\ & W_{n+1} - \lambda_{1} W_{n} = \lambda_{1}^{n} (W_{1} - \lambda_{2} W_{0}) . \end{split}$$

Substracting we find

$$(\lambda_2 - \lambda_1) W_n = (W_1 - \lambda_1 W_0) \lambda_2^n - (W_1 - \lambda_2 W_0) \lambda_1^n.$$

Therefore, if $\lambda_1 \neq \lambda_2$ we have

$$W_{n} = \frac{(W_{1} - \lambda_{1}W_{0})\lambda_{2}^{n} - (W_{1} - \lambda_{2}W_{0})\lambda_{1}^{n}}{\lambda_{2} - \lambda_{1}}, \quad \lambda_{2} \neq \lambda_{1}.$$

 $\underline{\text{1.2.}}$ In the special case when $\text{W}_{\text{o}}\text{=0}\,,\,\,\text{W}_{\text{1}}\text{=1}$ we obtain the sequence $\{\text{U}_{\text{n}}\}$ defined by

$$U_n = \frac{\lambda_2^n - \lambda_1^n}{\lambda_2 - \lambda_1}, \quad n=0,1,2,...$$
 (2)

and if $W_0=2$, $W_4=1$ we have

$$V_n = \lambda_1^n + \lambda_2^n, n=0,1,2,...$$
 (3)

From (2) and (3) it is easy to verify the identities

$$aU_{m+1}U_{n+1} - cU_{m}U_{n} = aU_{m+n+1}, m,n \ge 0$$
 (4)

$$aU_{n+1} - cU_{n-1} = aV_n, \quad n \ge 0$$
 (5)

- $\underline{2.1}.$ It is known that the sequence $\{U_{n+1}\ /U_n\}$ of ratios of consecutive numbers $U_n,\ n=0,1,2,\ldots$ converges linearly to $\lambda_1,$ supposing $|\lambda_1|>|\lambda_2|.$ That is, the number of digits of $U_{n+1}\ /U_n$ which agree with λ_1 is approximatly a linear function of n. In fact there are constants $\alpha,\beta>0$ and $\epsilon<1$ such that $\alpha\epsilon^n<|U_{n+1}\ /U_n-\lambda_1|<\epsilon\beta^n.$
- J. Gill and G. Miller [2] consider sequences of numbers converging rapidly to $\lambda_{\text{1}}.$ By Newton's method

$$N(x_n) = x_n - f(x_n) / f'(x_n)$$

for approximating solution of the equation $f(x)=ax^2+bx+c=0$, they obtain

$$N(U_{n+1}/U_n) = U_{2n+1}/U_{2n}$$

The sequence $\{x_n\}$ generated by Newton's method with $x_0=1$ is defined by $x_n=U$ n+1 2n. The convergence of $\{x_n\}$ is quadratic since there are constants $\alpha,\beta>0$ and $\epsilon<1$ such that $\alpha\epsilon^{2n}<|x_n-\lambda_1|<\alpha\epsilon^{2n}$.

 $\underline{2.2}$. In the present paper by using procedure of numerical analysis for approximating solutions of the equation f(x)=0 we obtain sequences converging more rapidly to λ_1 .

Indeed, by Halley's iteration method [3], [5]

$$H(x_n) = x_n - f(x_n) f'(x_n) / (f'^2(x_n) - 0.5f(x_n) f''(x_n))$$

for solving the equation f(x)=0 with ratios U_{n+1}/U_n as the initial approximation, we find $H(U_{n+1}/U_n)=U_{3n+1}/U_{3n}$. The sequence $\{x_n^{\star}\}$ generated by this method is given by $x_n^{\star}=U_{3n+1}/U_{3n}$, $n=0,1,2,\ldots$ which is cubically convergent to λ_1 ; that is, the number of digits of U_{n+1}/U_n which agree with λ_1 is approximately a cubic function of n. In this case there are constants $\alpha,\beta>0$ and $\epsilon<1$ such that $\alpha\epsilon^{3n}<|x_n^{\star}-\lambda_1|<\beta\epsilon^{3n}$.

Next we use the Newton's modified formula, obtained from Newton's method by replacing f(x) by $\tilde{f}(x)$ / f'(x),

$$\overline{N}(x_n) = x_n - f(x_n) f'(x_n) / (f'^2(x_n) - f(x_n) f''(x_n)),$$

from where we have the identity

$$\overline{N}(U_{n+1}/U_n) = V_{2n+1}/V_{2n}$$

The sequence $\{\overline{x}_n\}$ generated by this method is defined by $\overline{x}_n = V_{2n}$, v_{2n} , $v_$

We can similarly apply the Schröder's iteration method $\left[4\right]$

$$S(x_n) = x_n - f(x_n(f'^2(x_n) - f(x_n) f''(x_n)) /$$

$$/(f'^3(x_n) - 1, 5f(x_n) f'(x_n) f''(x_n) + 0, 5f^2(x_n) f'''(x_n))$$

for solving the equation f(x)=0, with ratios U_{n+1} / U_n as initial approximation. We find $S(U_{n+1} / U_n) = V_{3n+1} / V_{3n}$ and $S(V_{n+1} / V_n) = U_{3n+1} / U_{3n}$ from which we obtain the analogous sequence $\{\overline{x}_n^*\}$ with $\overline{x}^* = V_{3n+1} / V_{3n}$ which is cubically convergent to λ_1 .

3.1. Newton's method for the equation f(x)=0 gives $N(x_n) = \frac{ax_n^2 - c}{2ax_n + b},$

or if we take the ratios $\mathbf{U}_{\mathbf{n+1}} \ / \mathbf{U}_{\mathbf{n}}$ as an approximation to $\lambda_{\mathbf{1}},$ we have

$$N(U_{n+1}/U_n) = \frac{aU_{n+1}^2 - cU_n^2}{U_n(2aU_{n+1} + bU_n)}$$

By the identity (4) we obtain

$$N(U_{n+1}/U_n) = \frac{U_{2n+1}}{U_{2n}}$$

The sequence $\{x_n\}$ generated by Newton's method with $x_0=1$ is defined by $x_n=U_{2^{n+1}}/U_{2^n}$.

 $\underline{3.2}$. For the equation f(x)=0, the Halley's iteration method gives

$$H(x_n) = \frac{a^2 x_n^3 - 3ac x_n - bc}{3a^2 x_n^3 + 3ab x_n + (b^2 - ac)}.$$

Then

$$H\left(U_{n+1}^{-} / U_{n}^{-}\right) = \frac{a^{2}U_{n+1}^{3} - 3acU_{n+1}^{-}U_{n}^{-}bcU_{n}^{3}}{U_{n}^{-}(3a^{2}U_{n+1}^{2} + 3abU_{n+1}^{-} + U_{n}^{+} + (b^{2} - ac)U_{n}^{2})}.$$

But by (4) we have

$$a^{2}U_{n+1}^{3}-3acU_{n+1}U_{n}-bcU_{n}^{3} = aU_{n+1}(aU_{n+1}^{2}-cU_{n}^{2})-cU_{n}^{2}(2aU_{n+1}+bU_{n}) =$$

$$= a^{2}U_{n+1}U_{2n+1}-acU_{n}U_{2n} =$$

$$= a^{2}U_{3n+1}$$

and

$$U_{n}(3a^{2}U_{n+1}^{2}+3abU_{n+1}U_{n}+(b^{2}-ac)U_{n}^{2}) =$$

$$= aU_{n}(aU_{n+1}^{2}-cU_{n}^{2})+U_{n}(aU_{n+1}+bU_{n})(2aU_{n+1}+bU_{n}) =$$

$$= a^{2}U_{n}U_{2n+1}-acU_{n-1}U_{2n} =$$

$$= a^{2}U_{3n}$$

so that

$$H(U_{n+1}/U_n) = U_{3n+1}/U_{3n}.$$

3.3. The Newton's modified method for f(x)=0 gives

$$\overline{N}(x_n) = -\frac{abx_n^2 + 4acx_n + bc}{2a^2x_n^2 + 2abx_n + (b^2 - 2ac)},$$

from where it is

$$\overline{N}(U_{n+1}/U_n) = -\frac{abU_{n+1}^2 + 4acU_{n+1}U_n + bcU_n^2}{2a^2U_{n+1}^2 + 2abU_{n+1}U_n + (b^2 - 2ac)U_n^2}.$$

Using the identities (4) and (5) we obtain

$$abU_{n+1}^{2} + 4acU_{n+1}U_{n} + bcU_{n}^{2} =$$

$$= aU_{n+1} (bU_{n+1} + 2cU_{n}) + cU_{n} (2aU_{n+1} + bU_{n}) =$$

$$= -a (aU_{n+2}U_{n+1} - cU_{n+1}U_{n}) + c (aU_{n+1}U_{n} - cU_{n}U_{n+1}) =$$

$$= -a (aU_{n+2} - cU_{n+1}) = -a^{2}V_{n+1}$$

and

$$2\dot{a}^{2}U_{n+1}^{2} + 2abU_{n+1}U_{n} + (b^{2} - ac)U_{n}^{2} =$$

$$= a^{2}U_{n+1}^{2} + (aU_{n+1} + bU_{n})^{2} - 2acU_{n}^{2} =$$

$$= a(aU_{n+1}^{2} - cU_{n}^{2}) - c(aU_{n}^{2} - cU_{n+1}^{2}) =$$

$$= a(aU_{2n+1}^{2} - cU_{2n-1}^{2}) = a^{2}V_{2n}.$$

Thus we obtain $\overline{N}(U_{n+1}/U_n) = V_{2n+1}/V_{2n}$, from where $\overline{x}_n = V_{2n+1}/V_{2n}$. Similarly, $\overline{N}(V_{n+1}/V_n) = U_{2n+1}/U_{2n}$.

3.4. The next cubically convergent sequence is obtained by the Schröder's iteration formula for f(x)=0 which gives

$$S(x_n) = -\frac{a^2bx_n^3 + 6a^2cx_n^2 + 3abcx_n + c(b^2 + 2ac)}{2a^3x_n^3 + 3abx_n^2 + 3a(b^2 - 2ac)x_n + b(b^2 - 3ac)}$$

from where

$$S(U_{n+1}/U_n) = -\frac{a^2bU_{n+1}^3 + 6a^2cU_{n+1}^2U_n + 3abcU_{n+1}U_n^2 + c(b^2 - 2ac)U_n^3}{2a^3U_{n+1}^3 + 3a^2bU_{n+1}^2U_n + 3a(b^2 - 2ac)U_{n+1}U_n^2 + b(b^2 - 3ac)U_n^3}$$

By (4) and (5) we have

$$a^{2}bU_{n+1}^{3}+6a^{2}cU_{n+1}^{2}U_{n}^{+3}abcU_{n+1}U_{n}^{2}+c(b^{2}-2ac)U_{n}^{3} =$$

$$= a(aU_{n+1}^{2}-cU_{n}^{2})(bU_{n+1}^{+2}+2cU_{n}^{-1})+cU_{n}^{-1}(aU_{n+1}^{-1}+bU_{n}^{-1})(bU_{n}^{+4}aU_{n+1}^{-1})-abcU_{n+1}U_{n}^{-1})$$

$$= ab(aU_{n+1}^{2}U_{2n+1}^{-1}-cU_{n}^{-1}U_{2n}^{-1})+2c^{2}U_{n}^{-1}U_{n-1}^{-1}(2aU_{n+1}^{-1}+bW_{n}^{-1}) =$$

$$= a^{2}(bU_{3n+1}^{2}+2cU_{3n}^{-1}) = -a^{3}V_{3n-1}^{-1}$$

and

$$2a^{3}U_{n+1}^{3} + 3a^{2}bU_{n+1}^{2}U_{n} + 3a(b^{2} - 2ac)U_{n+1}U_{n}^{2} + b(b^{2} - 3ac)U_{n}^{3} =$$

$$= a(aU_{n+1}^{2} - cU_{n}^{2})(2aU_{n+1} + bU_{n}) + U_{n}(aU_{n+1} + bU_{n})(2abU_{n+1} + b^{2}U_{n} - 2acU_{n}) +$$

$$-2ac^{2}U_{n+1}U_{n}^{2} =$$

$$= a^{2}(2aU_{n+1} + bU_{n}) = a^{3}V_{n}$$

so that

$$S(U_{3n+1}/U_{3n}) = V_{3n+1}/V_{3n}$$

Taking $\overline{x}_0^* = 1$ from here we find the subsequence $\{\overline{x}_n^*\}$ with $\overline{x}_n^* = v_{a^{n+1}} / v_{a^n}$.

REFERENCES

- [1] Gill, J., Miller, G.: Newton's Method and Ratios of Fibonacci Numbers, The Fibonacci Quarterly 19 (1981), 1-4
- [2] Niven, I., Zuckermann, H.: An Introduction to Theory of Numbers, John Wiley and Sons inc. New York, 1972
- [3] Davies, M., Dawson, P.: On the Global Convergence of Halley's Iteration Formula, Numer. Math. 24 (1975)
- [4] Schröder, E.: Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen, Mathematische Annalen, 2 (1880), 317-365
- [5] Halley, E.: A new exact and easy method of finding the roots of equation generally and that without and previous reduction, Phil. Trans. Roy. Soc. London 18 (1964), 136-145

НЕКОИ ЗАБРЗУВАЊА НА КОНВЕРГЕНЦИЈАТА НА ОПРЕДЕЛЕНИ КЛАСИ ОД НИЗИ

Резиме

Низата $\{U_{n+1}/U_n\}$ од количниците на последователните броеви U_n , $n=0,1,2,\ldots$ определени со $aU_{n+1}+bU_n+cU_{n-1}=0$ и $U_0=0$, $U_1=1$ конвергираат кон коренот λ_1 на $f(x)=ax^2+bx+c=0$, при претпоставка $|\lambda_1|>|\lambda_2|$. Се покажува дека со методот на Newton за равенката f(x)=0 и почетно приближување 1 се добива поднизата $\{U_{2}^n, U_{2}^n\}$, додека со методот на итерација на Holley се добива поднизата $\{U_{3}^n, U_{2}^n\}$.