ON A CLASS OF THE SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

Прилози МАНУ, Оддел. за мат.-тех. науки, XIV/2, 1993, 61-64

Abstract: The objective is to show the analogy between a theorem of M. Petrovitch and a result of Moutard concerning the differential equation of the second order.

1. M. Petrovitch [1] has proven the following theorem: for the integrable equation

$$y' + y^2 = f(x)$$

it may be attached a series of functions $\mu_i(x)$, i = 1, 2, ... so that every equation

$$y'_{i} + y'_{i} = f(x) + \mu_{i}(x)$$
 (1)

without any additional quadrature is integrable too.

The proof is based on formation of a series of the recurrent formulas of the form

$$X_{n} = X_{n-1} + \frac{3}{4} \left(\frac{X'_{n-1}}{X_{n-1}} \right)^{2} - \frac{1}{2} \frac{X''_{n-1}}{X_{n-1}}, \quad n = 1, 2, \dots$$
 (2)

and taking

$$\mu_{i}(x) = X_{i} - X_{i-1} \tag{3}$$

with $X_0 = f(x)$.

The purpose of this note is to show the analogy between the theorem of M. Petrovitch above mentioned and a result of Moutard [2] concerning a differential equation of the second order.

2. The Moutard equation

$$y'' + \left(2h + \frac{d}{dx} \lg \omega\right) y' - \lambda y = 0 \tag{4}$$

where $\omega = \omega(x)$, $\lambda = \lambda(x)$ and h = const., by the successive transformations

$$y'_{i-1} = \lambda_{i-1} y_i, \quad i = 1, 2, \dots$$

with $y_0 = y$ and $\lambda_0 = \lambda$, produces the equations

$$y_i^{\prime\prime} + \left(2h + \frac{d}{dx} \lg \omega \lambda \lambda_i \dots \lambda_{i-1}\right) y_i^{\prime\prime} - \lambda_i y_i = 0$$
 (5)

where

$$\lambda_i = \lambda_{i-1} - \frac{d^2}{dx^2} \lg \omega \lambda \lambda_i \dots \lambda_{i-1} \quad i = 1, 2, \dots$$

By the substitutions

$$y_i = e^{-hx} \left(\omega \lambda \lambda_i \dots \lambda_{i-1} \right)^{-\nu_2} \exp \int u_i(x) dx$$

in (5) we get the Riccati form of these equations

$$u_{i}' + u_{i}^{2} = \lambda_{i-1} + h \left(h + \frac{d}{dx} \lg \omega \lambda \lambda_{i} \dots \lambda_{i-1} \right)$$

$$+ \frac{1}{4} \left(\frac{d}{dx} \lg \omega \lambda \lambda_{i} \dots \lambda_{i-1} \right)^{2} - \frac{1}{2} \frac{d^{2}}{dx^{2}} \lg \omega \lambda \lambda_{i} \dots \lambda_{i-1}$$
 (6)

or

$$u_{i}' + u_{i}^{2} = \lambda_{i-1} + h \left(h + \frac{(\omega \lambda \lambda_{1} \dots \lambda_{i-1})'}{\omega \lambda \lambda_{1} \dots \lambda_{i-1}} \right) + \frac{3}{4} \left[\frac{\omega'}{\omega} + \frac{\lambda'}{\lambda} + \frac{\lambda_{1}'}{\lambda_{1}} + \dots + \frac{\lambda'_{i-1}}{\lambda_{i-1}} \right]^{2} - \frac{1}{2} \frac{(\omega \lambda \lambda_{1} \dots \lambda_{i-1})''}{\omega \lambda \lambda_{i} \dots \lambda_{i-1}}$$

Let us give following M. Petrovitch, to the series of equations (1) with (2) and (3) the form

$$y_{i}' + y_{i}^{2} = f(x) + \frac{1}{4} \left[\left(\frac{d}{dx} \lg x_{0} \right)^{2} + \left(\frac{d}{dx} \lg x_{1} \right)^{2} + \dots + \left(\frac{d}{dx} \lg x_{i-1} \right)^{2} \right] - \frac{1}{2} \frac{d^{2}}{dx^{2}} \lg x_{0} x_{1} \dots x_{i-1}$$

$$(7)$$

or

$$y_{i}' + y_{i}^{2} = f(x) + \frac{3}{4} \left[\left(\frac{x_{0}'}{x_{0}} \right)^{2} + \left(\frac{x_{1}'}{x_{1}} \right)^{2} + \dots + \left(\frac{x_{i-1}'}{x_{i-1}} \right)^{2} \right] - \frac{1}{2} \left[\frac{x_{0}''}{x_{0}} + \frac{x_{1}''}{x_{1}} + \dots + \frac{x_{i-1}''}{x_{i-1}} \right]$$

It is clear that for h=0 and $\omega=$ const., we have an analogy between (6) and (7).

Moutard notified that for $\lambda_i = 0$ we obtain from (5) y_i by the quadrature. Consequently, we get μ_i by the differentiation.

3. We note that the classes of equations of M. Petrovitch and Moutard (special case) arise from the equation

$$y^{\prime\prime}=f\left(x\right) y$$

which enables unification of their results.

Indeed, by the elementary transformation [4] $y = f^k u$, f = f(x), u = u(x), $k \in \mathbb{R}$, we have

$$u^{\prime\prime} + u^{\prime} \frac{d}{dx} \lg f^{2k-1} + \left[k(k-2) \frac{f^{\prime 2}}{f^2} + k \frac{f^{\prime\prime}}{f} - f \right] u = 0$$
 (8)

which is a special case of Moutard equation.

For $k = \frac{1}{2}$ it is

$$u^{\prime\prime} = X_1 u$$

and after differentiation, by the transformation $u' = \sqrt{X_1}$, u_1 gets the form

$$u_1^{\ \prime\prime} = X_2 u_1$$

where X_1 , X_2 are given by (2), and $u_1 = u_1(x)$.

The successive repeating of the procedure by $u_{i-1} = \sqrt{X_i} u_i$, i = 2, .3, ... yields

$$u_i^{(i)} = X_{i+1}u_i, \quad i = 2, 3, \dots$$

whose Riccati form is given by (7).

If k = 1, from (8) we get the Moutard form (4) with h = 0, $\omega = f$ and $\lambda = f - \frac{d^2}{dx^2} \lg f$.

REFERENCES

- [1] M. Petrovitch, *Théoreme sur l'equation de Riccati*, Publication mathématique de l'Universite de Beigrade, Belgrad, t. IV, (1935), p.169.
- [2] H. Laurent, Traite d'Analyse, Paris, t. V, 1890.
- [3] M. Moutrard, Comptes Rendus, Paris, 1875.
- [4] B. S. Popov, Analogy of one theorem of M. Petrovitch, Contributions, Sec. for Nat. Sc. and Math., Skopje, 1969, Vol. 1, p. 5.

Резиме

ЗА ЕДНА КЛАСА ЛИНЕАРНИ ДИФЕРЕНЦИЈАЛНИ РАВЕНКИ ОД ВТОР РЕД

Се покажува аналогијата меѓу една теорема на М. Perovitch и еден резултат на Moutard, која се однесува за диференцијални равенки од втор ред.