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Abstract One classical technique for expanding the Jacobi
polynomial in a series of Bernoulli polynomials is presented.

1. Introduction

There are numerous relations interconnecting classicial polvnomials
mutually. One kind of these relations uses the property that a simplc set of poly-
nomials may be expanded in a series of polynomials. This becomes particularly
pleasent, when one has to deal with an orthogonal set [1], [2].

Following the method which uses the classical technique to expand a
polynomial in a series of other class of polynomiais we obtain thc¢ cxpansions of
Jacobi, Gegenbauer and Legendre polynomials through Bernoulli polynomials.

2. Preliminaires

The Bernoulli polynomial B, (x) is defined by the generating relation [3]
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after multiplying and comparing the coefficients, we have
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From (2) and (3) we obtain
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This formula simplifies the procedure of expanding the polynomials in a series of
Bernoulli polynomials.
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The Jacobi polynomial P,f“’ B (x) with & > -1, £ >—1 is defined by [2]
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are the hypergeometric function and the Pochhammer symbol respectively. The
generalised hypergeometric function P Fq (., 023,..,a P> P Pa. ﬂq; x) which
1s used later is similarly defined.
The equation (5) after replacing x by (~x) yiclds expanded form for

P,S“’ B (x), namely
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3. The relation between Jacobi and Bernoulli polynomials

Consider the series
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has been used to collect the powers of ¢ in the last summation above.
Hence by (4) we may write
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in which we have used again the identity (8).
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the reverse of (8), we write
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Using again the identity (9) we have
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Finaly we may conclude that
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4. Special cases

1°. If @ = f3, the Jacobi polynomial is called an ultraspherical polyno-

mial (termed also Gegenbauer — C), (x) ). They are essentially equivalent i.e.
1
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From (10) we obtain
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2°. If a = =0, the polynomial (6) becomes the Legendre polynomilal

P,SO’ 0)(x) = P,(x) and consequently we have the relation
n-k )
(n+ k) By (x) L (12)

u D
P,2x-D= F(-n+k l+n+k, Lk+12;1
W(2x-D= T 3F5(n n ) SO

REFERENCES

Rainville E. D.: Special Functions, The Macmillan Companv, New York, 1960.

n :
Szego G.: Orthogonal Polviaomials, American Mathematical Society, New York, 1950.

(2]
[3] Erdelyi A.. et al.: Higher Transedental Functions, Vol. 1. Mc-Graw-I1ill, New York —
Toronto — London, 1952.
Peszume
INNPETCTABYBAIBE HA JAKOBUEBMU [10/AIIOMU
CO BEPHY/IMEBM I10/IMHOMU

Bo TPYAOT ¢ DPUKaXaHa ¢IHa METOAA 3a pa3BUBamh€ Ha JakobueBY NOJUHOMH

BO peR o BepHynHeBru NoJUHOMA.
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