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ON ALGEBRATIC STRUCTURES FOR MATRICES, RELATIONS AND GRAPHS
OVER A SEMIRING

K. Peeva

Abstract. Matrices, relations and graphs over a semiring
are considered. The algebraic operations and the corresponding
algebraic structures as well as their relationship are studied.

1. Motivation

Each graph defines a binary relation over a finite or infi-
nite set and vice versa [1], [2]}, [8], [11]. On the other side
we can assign to each graph a matrix with elements mij=1 if the-
re exists an edge from the vertex v; to the vertex v. and mij=0
otherwise. These connections between graphs, relations and mat-

rices over the Boolean semiring B are completely studied in [1],
(8], [21].

Naturally there arise the following problems for the gene-
ral case:

i) how to define graphs, relations and matrices over a
semiring;
ii) hov to define the algebraic operations (generalizing
the usual) with such matrices, relations and graphs;
iii) is there any connection. between graphs, relations and
matrices over a semiring;
iv) give a certain interpretation of these results in
graph theory and its applications.

The above marked problems are object of this paper. An ex-
tended summary of the paper is given in [13].

2. Preliminaries

We recall the definitions of semiring [4] and semimodule
[11]. The terminology and the notations not especially indicated
in the paper are according to [9], [10] for the category theory
and algebra respectively.
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A semiring is en ualgebra K=(K,+,.,0,1), where:

i) (K,+,0) is a commutative monoid with 0 as neutral ele-
ment;
ii) (K,.,1) is a monoid with neutral element 1;

iii) the operation . is distributive over the operation +,

a.(b+c)=a.b+a.c and (a+b)-.c=a.c+b.c for each a,b,c €K;
iv) a+0=0-a=0 for each a€K.

Onviously each ring is a semiring and each bounded chain too.
We list a number of semirings that are not rings and that will be

of interest to the next exposition.

Examples. 1°. B=({0,1},V,A,0,1) is the Boolean semiring [4]
with operations V¥ (disjunction) and A (conjunction) and with ne-

utral elements respectively 0 and 1;

2°. F=([0,1],max,min,0,1) - the bounded chain over the inter-
val [0,1]eRwith operations max=sup and minzinf and according to
the natural order in R [12]. This semiring is fundamental for the
‘fuzzy set theory [3], [8], [14], [16]:

3°. L=(L,V,A,0,1) - the bounded chain over the ordered set
L with lower and upper bounds 0 and 1 respectively. This semiring

is a natural generalization of the semiring F [5];
Jg

4o, P(Y)=(2Y »U,.,08,{A}) [1] is the strings semiring with U
(union) with unit @ and . (concatenation) with unit {A}.

59, N - the semiring of all integers n20 with the usual
addition and multiplication [1], [4].

6°. R, [4], [11] - the semiring of all nonnegative real num-

bers with the usual addition and multiplication.

A semimodule over the semiring K is the algebra H=(H,K,+,
.,0,1) where H is a set, +: HxH » H and .: KxH - H are operati-
ons and:

i) (H,+,0) is a commutative monoid with 0 as neutral ele-
ment;
ii) The two structures are connected with the following

axioms:
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a-(B-a)=(a-g)-a; (atB).aza-a+B.a; a-(a+b)=g.a+g.b;
1-a=a-1=a; 0-aza-0=0

for arbitrary a,8€K, a,b€H (here 0 and 1 are the neutral ele-
ments in K).

Clearly any module is a semimodule. Other examples are given
in the next text.

3. Matrices, relations and graphs over a semiring

In what follows we write K for the semiring K=(K,+,.,0,1).

Let I,J be sets. The matrix MIxJ=(mij) with elements mijel(
for each (i,j) € IxJ is a matrix over the semiring K. Formally
the index sets I,J may be finite or infinite, but the infinite
sets do not have sense for the practice. We define the following
algebraic operations with matrices over K, using the semiring
operations [1]: The matrix MI —(m.-) is the sum for MIXJ-(m <)
and Mi;J'(mig) if

mgy = mg + miy (1)
The matrix OIxJ=(0) for each (i,j) € IxJ is the neutral element
for each M; , with respect to the addition. The matrix MIxJ'(mij
is the product for M7, K-(m-k) and MKxJ (ka) if

m

1 7 gy kK] @
The square 1?ent1ty matrice? E;x7 and EJxJ ?ith ek?=1 if k=p and
ekp=0 otherwise are respectively left and right unit for each

M;, g With respect to multiplication. For MIxJ=(mij) and a €K we

define the scalar multiplication by the equation

“'MIxJ = (u-mij) (3)

Examples. 1°. For K=N, R+ we have the usual addition, scalar
multiplication and multiplication for matrices.

o - -

2°. ror K=B, F, L we have mij + mij = mJ leJ and
m.. = I mj =V (m{, Am’%), for instance
ij kKEK ik”® k:] k € K ik kj’?
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(0 1) . (o 0) . (o 1), (0,3 0,1) (0,1 0,2\ _ (0,1 0,2)
; . =

1 0 1 0 1 0 0,2 0,4 0,5 0 0,4 0,2/

3°. For K=P(Y) for instance we obtain

({y,} {y,,y,}) ({y,} {y,-ysl) } ({y,,y,} {y,y5¥39Y,°Y,}
(A} {y,} {A} {A} T\l {y,}

({y,} {v,»v. . ({y,} {y,'ys}) :({y,-y,,y,,y,}{y,-x',-y:,:,y,,yz
Ay {y,} (A} {A} {y,»y,} {y,°Y55y,}
Let MIxJ(K) be the set of all IxJ-matrices over K.

PROPOSITION 1. i) (MIXJ(K),+,OIXJ) is a commutative monoid
with neutral element the null-matrix OIxJ3

ii) (MixJ(K)’+”’OIxJ’1) is a semimodule over K;
iii) (MIxI(K)"’EIXI) is a monoid with neutral element
iv) (MIxI(K)’+"’OIxI’EIxI) is a semiring [1].

We shall define relation over a semiring and the related
algebraic operations.

Let A,B be sets. R={(a,b,k)} <AxBxK is called a (binary)
relation over the semiring K. The relation R contains all pairs
(a,b) € AxB with their scalar estimation k € K.

Clearly tnis definition of a relation over a semiring inclu-
des as a partial case the classical definition. If we consider
K=B and a relation R={(a,b,k)}<AxBx{0,1}, we have the well-known
notation of relation [2], [10]. Usually such relations are des-
cribed only by pairs (a,b) € AxB with k=1. For K=F we obtain the
fuzzy relations [3], [8].

Using the semiring operations we define the operations with
relations. The relation

R=R,+R,={(a,b,k,+k;) | (a,b,k;) €R, & (a,b,k;) ER}cAXBXK  (4)

is the sum for the relations R, = {(a,b,k1)} < AxBxK and
‘R, = {(a,b,k,)}<AxBxK. The relation R, = {(a,b,0) with k=0 for
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each (a,b) € AxB} is the neutral element for each R<AxBxK with
respect to the addition. Scalar multiplication for a relation
R={(a,b,k) }<AxBxK and a € K is the relation

a'R = {(a,b,a-k) | (a,b,k) €R} (5)

Composition for the relations R, = {(a,b,kab)}czAxBxK and

R, = {(b,d,kbd)}<:BxDxK is the relation

R

R,0R, = {(a,d,k) | (k:bZBkab'kbd)((a,b,kab) eR, &

(8)
(b,d,ky ) €R,)}<AxDxK

The diagonal relations 4 = {(z’,z”,ki,z,,) Ikz,z,,=1 if z7=2""

and k,. ..=0 if z” # 277} ZxZxK are respectively left (Z=A) and

right (Z=B) unit for the relation R« AxBxK.

Clearly this definition for composition of relations inclu-
des the usual composition [2], [10] as a particular case. On the
other side it shows how to generalize the composition of n-ary
relations [15] over a semiring.

Examples. 1°. For K=B, F, L we have R,+R,=R,V R, =
= {(a,b,k,V k;)} for the addition; for the composition - the
classical case for K=B [2], [10]; the fuzzy relation composition
[3], [8] for K=F, etc.

2°. For K=P(Y) the addition is R,+R, = R,UR_; the composi-
tion is defined by the union and concatenation of the strings as

follows: R,oRz_= {Ca,d,w_y) I(wad= ngab-wbd)((a,b,wab)eIQ

b
& (b,d,wbd) €R;)}. Here W_ps¥Whq and w_y are strings from Y*®,

W p*Wpq Stands for the concatenation of the strings [1], [4].

Let RAxB(K) denote the class of all small relations (i.e.
A and B are sets).

PROPOSITION 2. i) (R, n(K),+,R;) is a commutative monoid;
ii) (RAXB(K),+,.,R°,1) is a semimodule over K;
iii) (RAxA(K),o,A) is a monoid;

iv) (RAxA(K)’+’°’Ro’A) is a semiring.
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The proof consists in direct verification of the axioms.

The algebra G=(V,E,a,8,u), where V=AxB and E are sets of
nodes (or vertices) and edges respectively, a:E » A, g8:E + B,
p:E + K are functions such that each f €E satisfies domf=q(f),
codf=g8(f) and u(f) is the label (resp. the weight, membership
degree, traffic capacity, etc.) is called a directed graph over
the semiring K. -

Each directed graph over K can be visualized (fig. 1).

If the edges are not oriented the graph is undirected. In
what follows we write graph instead of directed K-graph over the
semiring K.

For each graph G=(V,E,a,B8,u) the set of the edges E is iso-
morphic to the set of the triples {(a,b,k) | a=za(f), b=g(f),
k=u(f) for each f € E}e<AxBxK. If a(f)=vi and B(f)=Vj then the
edge f joins \ tO’vj with weight k=u(f). If k=0 we often consi-
der there is no edhe.

Examples. 1°. For K=B we have the usual definition [11] for
the directed graph (fig. 2). There is an edge f joining two ver-
tices iff u(f)#0.

2°. For K=F the graph is fuzzy [8], cf. fig. 3; for K=L we
obtain the next hierarchical generalization, etc.

% é
e a V3 83
Z s e —
’A 25
g2
<
“/ /

Fig. 1 Fig. 2 Fig. 3

3°. For K=P(Y) the edges of the graph are labeled by the
words of the free monoid Y*, as it is very useful for the theo-
ry of abstract automata [2] cf. fig. 4.
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4°, For K=R, if the labels of the graph satisfy the condi-
tion I u(f ) = 1, where q° = s(fq), for each q € A, then the

q“es ¢
graph is stochastic (fig. 5).
5
7
%
i)y
§7
‘6 £ 4
Fig. 4 Fig. §

Let G(K) be the class of all small graphs [9]. According to
che operations in K we define operations in G(K).

For G,=(V,E,,0,,B,su,) and Ga=(V,E25aa,Bz,uz) the graph
G = G1 + Ga = (V3E’G’Bau)! (7

where E:{f/f=f1+f=,a1(f1)=a3(f3)=a(f), 81(f1)=83(f2)=8(f),
w(f)=u, (£ )+u,(£f,)} is the sum of 6, and G,. The graph
Go=(V,E,a,B,0) is the neutral element for each G=(V,E,a,B,u)
with respect to the addition. Here 0:E + K stands for the con-
stant map, such that 0:f + 0 €K for each f€E, u(E)=A, B(E)=B.

Let G1=(V1,E1,a1,81,u1) and 6,=(V_,E, ,0,,8,,u,) with B,=A,
be two graphs. The graph G6=G,06, is a composition for G, and
G, if

VG10G2 = AxD, where V, =axB, and V,=A_xD,

E = {f=(a(f),8(H),u(f)/f = ¢ £, ,of,,
6,06, ’ bes, ' ° (8)
a(f) = o (£,), B(f) = B,(f ), a,(f)) = 81(f1),
f,€E,, f,€E,, u(f) = béB1u1(f1)°u2(f2)}

For G=(V,E,a,B,u) its left and right unit with respect to the

composition is the graph Gy = 46 = (V,a ) where A, is

vaarBaomy v
and 8, assign to each edge
:f > 1€ex

the set of the identity edges, @,

its corresponding vertices, U, is the constant map,
for each f €E.

Y
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For a graph G=(V,E,a,B,u) and a scalar 6 € K we define the
scalar multiplication by the rule

§:G = (V,E,a,8,6-u) o (9)

Examples. 1°. The sum let us know whether there exists a
connection between two vertices in G, or G, for K=B; for K=F we
have the maximal capacity of this edge; for K=P(Y) - the strings
in Y* joining these edges, etc.

2°. For 6,6, and K=B the composition G,6oG, gives all lergth

2 paths; for K=F - their maximal capacity; for K=P(Y) - the words
of length 2, joining the corresponding vertices; for stochastic
graphs - the probability for joining two nodes by a path of le-
ngth 2.

3°. For a given graph G the graph Gn=Gn_1oG, n>1, is the

n
(n)_ T GP is the
n=1

graph of the n-length paths and the graph G
graph of the paths not longer than n.

Let G (K) be the class of all small graphs with V=AxB.

AxB

PROPOSITION 3. i) (GAxB(K),+,G°) is a commutative monoid;
ii) (GAxB(K),+,.,G°,1) is a semimodule over K;

iii) (GAXA(K),O,AG) is a monoid;

iv) (GAXA(K),+,0,G°,AG) is a semiring.

4. The categories M(K), R(K) and Gg(K)

We define a semimodule category using the ideas [7], [9]
for additive and semiadditive categories.

A semimddule structure on a category C consists of functions

+ and . associating with each pair of parallel arrows f,g:a -+ b
an arrow f+g:a + b and for each arrow h:a + b and a € K an arrow
e-h:a + b such that the following conditions (SM1), (SM2) and
(SM3) are satisfied:

SMi. For each pair of objects (a,b) in C hom(a,b) is a se-

mimodule over the operations + and .;
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SM2. The composition law (o) in C is left and right distri-
butive over (+), i.e. whenever

c X a:;f.;::b h d

g

are C-morhpisms, it follows that

ho(f+g) = hof+hog and (f+glok = fok+gok;

SM3. The zero morphisms of C act as monoid identities with
respect to (+), i.e. for each C-morphism f,

0+f=f+0=f.

If (+) and (.) define a semimodule structure on a category
C twen we call C is a semimodule category (SM-category).

Let M(K), R(K) and G(K) denote the class of all matrices,
relations or graphs respectively over the semiring K.

THEOREM 1. (M(K),.), (R(K),0), (G(K),0) are semimodule ca-
tegories.

Proo f. M(K) is a category with morphisms -~ the matrices
MIxJ:EIxI -> EJxJ’ where EIxI and EJxJ are the square identity
matrices, identified with the objects of M(K). The matrix pro-
duct (2) is a partially defined law of composition in M(K). The
functions (+) and (.) are defined by the expressions (1) and (3)
respectively. (SM1), (SM2), (SM3) are satisfied according to
Prop. 1 and hence (M(K),.) is an SM-category. For (R(K),0) we
regard each relation Re AxBxK as an arrow; the objects in R(K)
are identified with the diagonal relations and the composition
of the relations (6) is the composition law in (R(K),o). Each
hom-set RAxB(K) is a semimodule over K (Prop. 2 (ii)).;For (sSM2)
let R,< AxBxK, R_cz AxBxK and R<BxDxK be given. The sum R, + R,
is defined according to (4) and

R,+R, = {(a,b,k]y + kI7)/(a,b,ki) €R, &

& (a,b,kZ}) R} < AxBxK.
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Then the composition (R,+R,)oR makes sense and (R +R_)JoR =
={(a,d,k)/(¥b €B)((a,b,k];) €R I ((a,b,k;}) R, ((b,d,ky4) €

€ R)(k= ¢ (kZ, +K.71)-k = I (kD ok +kIT ek, 2))) =
beB ab “ab bd bEB ab ' “bd" "ab "bd

={(a,d-,k)/(VbeB)((a,b,k;b)eR1)((b,d,kbd)GR)((a,b,k'a’b)€
eRz)(k- I kZ, .k, . +K %

'k, )} = {(a,d,k)/(Ybe€B)((a,d, I k’,-
bep ab’ bd**ab “bd »Cs T2 ep ab
-kbd)€R1oR)((a,d,bé k5 kpg) €R, oR)(k-bé Kip-Kpatkip kpgd) =

= {(a,d,k)/(a,d,k) € R,0R+R, O0R}. Hence (R +R, )oR::R OR+R O0R. But

) R, oR) (k"= I kb

R10R+R20R={(a,d,k’+k”)/(a,d,bé kZ ab° bd by

-kbd)((a,d,k =béBkab-kbd') €R,0R)} = {(a,d,k"+k"")/

/(VbeB)((a,b,k;b) eR1)((b’d’kbd) €R)((a,b, k’a’beR Y(k“+k” 7=

T (k2. +
bep 2P

€ R1+R3)((b,d,kbd) € R)(k“+k =béB(kab ) k

={(a,d,k"+k"")/(a,d,k“+k” ") € (R,+R,)oR} and thus (R,oR+R,oR)&
(Ry+Rz)oR. By analogy we prove Ro(R,+R,;)=RoR +RoR,. (SM3) fo-
llows from the existence of the zero morphisms and from Prop. 2

K1) kp ) ¥ = {(a,d,k™+k"*)/ (Wb € B) ((a,b k], +K]

ab)e

ba’t =

(1). For (6(K),o0) the morphisms are the graphs, the law of com-
position (o) is defined according to (8) and it is partially
defined. The rest of the proof follows from Prop. 3.

Having in mind Prop. 1 (i), Prop. 2 (i) and Prop. 3 (i) it
is clear that (M(K),.), (R(K),o) and (G(K),o) are not Ab-cate-
gories.

COROLLARY 1. If K is a ring, then (M(K),.), (R{(K),o) and
(G(K),0) are Ab-categories.

We denote by

o

R® = g Rk - the reflexive and transitive clousure of the
k=0 relation R< AxAxK;
G* = ¢ Gk ~ the free graph over the graph G=(AxA,E,a,B,u);

k=0
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M¥ = T M
k=0

Let R*¥(K) be the class of all reflexive and transitive clo-

k

- where MA is a square matrix.

XA

sures of the relations over K; G*(K) be the class of all free
graphs over K; M*(K) be the class of the matrices M* for all
square matrices MAxA'

COROLLARY 2. R*(K), G6*(K) and M*(K) are subcategories res-
pectively of the categories R(K), G(K) and M(K).

Considering the connection between the above categories and

subcategories, we are needing of some preliminary results.

PROPOSITION 4. The following algebraic structures are iso-
morphic:

i) The monoids (M, p(K),+,0,, 5, (Ry p(K),+,R;) and
(6,5 ¢K) 5,653

ii) The semiring (GAxA(K)’+"’UAxA’EAxA)’ (R
AA) and (G (K),"’,oaGoaGA);

AxA(K)’+‘°’R0’

AxA
iii) The semimodules (MAxB(K)’+"’0AxB’1)’ (RAXB(K),+,.,R°,
1) and (6,,5(K),+,..6,,1).

Pr oo f.1i) Let hy p=h:R, o(K) + Mpg¢(K) be the following
map: h(R)=MAxB=(mab), where mab=pr3(a,b,kab)=kab. The direct

verification shows that h is a bijection. Since h(R )=0 and

AxB

h(R,+R,) = h{(a,b,k;b+k;')} = (k;b+k” (k2. +(k23

b ab’axB = %ap)axe*Xaplaxs *
=h(R,)+h(R,) we obtain (MAxB(K),+,OAxB) = (Ry,g(K),+,R ). We may
prove the isomorphism (GAxB(K),+,G°) = (MAxB(K),+,OAxB) using
the map gAxB=g{G=(AxB,E,a,B,u) > MAsz(mab)’ where mab=pr3(a(f),
B(£),u(f)) for fE€E and u(f)=a, B(f)=b.

ii) Using the sa.e notations as in (i) for A=B we have:

h(AA):EAxA’ h(R1oR2)=MR1oR2=MR1-MR2=h(R1)-h(R2) and
h((R;+R,)0oR) = h(R,) h(R)+h(R,)*h(R), i.e. we obtain the first

isomorphism.

By analogy we can prove the rest of the statement.
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If C and D are SM-categories, a functor T:C » D is said to
be an SM=functor when every function T:C(a,a”) -+ D(T(a),T(a”))
is a homomorphism of semimodules. If T is an isomorphism then it
is called SM-isomorphism.

THEOREM 2. The categories (M(K),.), (R(K),0) and (&(K),o)
are SM-isomorphic.

Pr oo f. Let H:R(K) + M(K) be a functor defined by the
map h=hAxB:RAxB(K) *_MAxB(K) (see Prop. 4) for arbitrary sets

A,B as follows: for each relation Rc:AxBxK we have H(R)=h(R)=MAxB
and for each object R, is valid H(R,)=h(R,)=E. According to Prop.
4 (i) H is an isomorphism and H(R“oR““)=h(R“oR““)=H(R”)-H(R"").
Since R(K) and M(K) are SM-categories (Th. 1) and H is an iso-
morphism as a functor from R(K) to M(K) then these categories

are SM-isomorphism. Extending the map g from Prop. 4 (ii) we can
construct a functor G:G(K) » M(K). It follows from Prop. 4 (ii)
and Th. 1 that G is an SM-isomorphism.

COROLLARY 3. The categories M*(K), R*(K) and G*(K) are
isomorphic.

Obviously instead of computing with graphs or relations we

can use matrices and corresponding operations.

COROLLARY 4. For each bounded chain K=L and a finite set A
with cardinality |A|=n holds:

n-1

i) ¢* = 1 G~ for each graph G=(V,E,a,8,u) with VC<AxA;
k=
n-1 K

ii) R* = I R for each relation R AxAxK;
k=0
n-1 X

-iii) M®* = I M~ for each matric MA A
© k=0 X

Proo f. i) for K=F see [8]. The generalization for K=|
is not difficult; (ii) and (iii) follow from (i), Th. 2 and
Cor. 3. ’
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