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ON AN EXAMPLE OF FINITEDIMENSIONAL ALGEBRAS
N. Redkoski and A. Bu&kovska

Abstract. An algebra A4 over a field X can be finitedimensional
or infinitedimensional. If the multiplication in 4 is commutative
than the algebra 4 itself is said to be commutative.

In this paper we formulate two theorems: the first theorem
concerns the commutative finitedimensional algebras and the second
one, in fact, generalizes one example of Banach algebras whose
factor algebra is finitedimensional and is of the type described
in the first theorem.

Let us recall some of the basic notions and properties,
mainly concerning Banach algebras, in order to make our proofs

and formulations more concise.

If A is a Banach vector space with respect to a norm that
satisfies the multiplicative inequality

[lxyll = [Ixif-llyl]  (x€4, yea)

then 4 is called a Banach algebra. Here we are mainly concerned
with Banach algebras over the complex field (. We presume, as
well, that the algebra A contains a multiplicative unit element;
which does not mean any special limitation ([1], page 8). A vector
subspace J of a commutative Banach algebra 4 is said to be an
ideal if xy€J whenever x€4 and y€J. If J # 4, J is a proper ideal.
Maximal ideals are proper ideals which are not contained in any
larger proper ideal. If 4 is . commutative Banach algebra, then’ N
every maximal ideal of 4 is closed. Further, each maximal ideal

is the kernel of some non-zero complex homomorphism of 4 and :
conversely, the kernel of each complex homomorphism is a maximal
ideal of A. The set A of all maximal ideals of an algebra 4,
equipped with its Gelfand topology is a compact Hausdorff space
which is usually called the mazimal ideal space of A. The radical
of 4, denoted by rad A, is the intersection of all maximal ideals
of A. If rad 4 = {0}, A is called gemisimple.
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Suppose J is a proper closed ideal in a commutative Banach
algebra 4 and #: 4 - A/J is the quotient map. Then 4A/J is a
commutative Banach algebra and r is a homomorphism.

In the theorem which follows we give sufficient conditions
for a finitedimensional algebra to be commutative:

Theorem 1. Let A4 be a finitedimensional algebra over a field
K. If A has base B = {eo,e1,...,en} Where e, is the multiplicative
unit element and e = (e1)k, k=1,2,...,n and e?+1 = 0, then 4 is
commutative.

Proof. Let a,be€d, then:

n n n n
a= I )A€ b= tu.,e. and ab= I A, I u,e.e..
k=°Ak kf j=o 3%5 k=o kj=o I7k73

Since, from the hypothesis of the theorem, ekej = ejek' it follows
that ab = ba.

As a realization of algebras of the above described type we
can quote the Jordan matrixes

1 2 3 °** (ln

0 o, a0, eov ap

eessssscsss s

0 0 0 ...a,

with the base N

100...0 010... 0 000 ... 1
10... 1 ...
Eo=° 0 o'E1=oo o'.__’En=ooo of.
000 ...1 000 ...0 000 ....0

In the following theorem we give a concrete construction of
algebras of the type described in Theorem 1. Theorem 2, in fact,
.generalizes an elementary example (see example 9, [2], page 288)
of a Banach algebra 4 = C'[0,1] which is an algebra of all
continuously differentiable complex functions on the unit interval
[0,1]) with pointwise multiplication, normed by

[I£l] = [1£ll, + [I£]],, where |[£]], = sup |f(x)].

x€{0,1]
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Theorem 2. Let 4 = C*[0,1] be the algebra of all n-fold
continously differentiable complex functions on the unit interval
[0,1], with pointwise multiplication, normed by,

LLEl] = TIgl], + LIgs ]l +eeus JIEM .

Then 4 is a semisimple commutative Banach algebra with ?g¥1mal
ideal space [0,1]. If J = {f€4 | £(0) = £(0) = ... = £(0) = 0}
then J is a closed ideal in 4 and A/J is a finitedimensional
algebra that is not semisimple. In fact, 4/J is an algebra as
that one of Theorem 1.

Proof. It is obvious that 4 is commutative Banach algebra.
Each maximal ideal of 4 is of the form J = {f€A | f(p) = 0} for
0 < p £1. Hence, f€radd if f annihilate in every point of [0,1],
that means f£(x) = 0 for all x€[0,1]. So 4 is semisimple. The proof
that the maximal ideal space is the unit interval [0,1] is the
same as in the example mentioned before the Theorem 2.

Obviously, the set J is a closed ideal, since if f€J, then
there exists a sequence {fn(x)} in 7 such that IIfn-fII -0

(k) (k)
when n - «, which implies that lim fn(O) = £(0) = 0, k=0,1,...,n.
n’w

It is obvious that J is not a maximal ideal, since JeJd,. -

Now, let us turn our attention to the quotient algebra 4/J.

If f€4, then the function
(n)
g(x) = £(x) - £(0)egx) - £lle (x) -...- El0e (x) (1)

where e (x) =1, e, (x) = x ,..., en(x) = x", belongs to the ideal

J. It follows, from (1) that
(n)

f(x) = £(0)e, (x) + fiéglei(x)‘+..;+ gr—(‘-?--)-en(x) + g(x)

If we apply the quotient map 7 on £, we have:
(n)

e = s(onte,) +E e, +..+ Elnee ). (2)

Hence, we have that every vector n(f) from the quotient
algebra A4/J can be expressed as a linear combination of the
vectors

rley),n(e,),...,mley) (3)
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which are independent, since on the contrary, there will existe

complex numbers AgrdgreensOp such that

uon(eo) + a1ﬂ(e1) + ... + anw(en) = 0
or,

w(aoeo +ae, + ..+ anen) =0,

which implies that a,l + a . x + ... + anxneJ, but this is impossible
if at least one of the numbers @gs8,7ee-ra, is not equal to zero.
This proves that the vectors (3) present a base for the quotient
algebra 4/J, and, taking into account that = is a homomorphism,

we have that

mley) = ﬂ(ef) Ln(e1)]k, k=1,2,...,n

. n+1 +1
and, since x €J, w(e? )

finitedimensional algebra A/J is of type described in Theorem 1.

n+1
)

= n(x = 0. This proves that

Now, let us turn at the vector space M generated by the
vectors, n(e1),...,n(en). It is easy to verify that'M is an ideal
with codimension 1, i.e. is a maximal ideal. Let us presume that
M, is a maximal ideal in A. Since the codimension of M, is one,
it posseses a base of n vectors, for example b1,bz,...,bn. Each
of the vectors b. has a unique presentation in the base (3):

]
R E)) .
bj:kiosk n(ek), j=1,2,...,n (4)
Let us presume that in the vector b, = 351)n(e°) +o0at B£1)w(en)

621) # 0. If we multiply b, by n(e)) we have
= (1)
w(en)b1 = B, ﬂ(en)

which implies that n(en)€M1, since M, is an ideal. Hence, if we

multiply
(v

4]

(1) (e )

- o1 =
b Bp mlep) =8 n-1" ‘€n-4

\ m(ey,) +...+ B

by "(en-1)' we get
(1)

b,n(e _.) = 3§1)w(e ) By mle,)

n-=1
which implies that =(e,_,)€M¥,. Continuing in this way, at the end
we come to the conclusion. that n(ek)€M1, k=n,n-1,...,1, which

n

means that M1 is not a proper ideal. If, on ;he other hand,
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Béj) = 0 for j=1,2,...,n then M €M, Hence, we have that the only
maximal ideal in the algebra 4/J is the ideal M, i.e. rad(4/J)=M,

which means that 4/J is not a semisimple algebra even though the
algebra 4 is semisimple.

Remark. From the proof given above immediately follows that
every proper ideal of quotient algebra A/J is nilpotent. Hence,
we also get that A4/J is not semisimple ([1], page 35).
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3A EJIEH NPUMEP Ol KOHEYHOOUMEH3HWOHAJIHUTE AJI'EEPH

H. PeukockHM M A. ByukOBCKa
Pe3unumMme

Bo 0BOJ} TeKCT maneHH ce nOBe TeopemH. TeopemaTta 1 € o& KOHEUHO-
OHMEeH3HOHAJIHKTEe anrebpH X BO Hea ce JaneHH yCJIOBM 3a fAa BaxH KoMy~
TaTHBHHOT 3aKOH IPH MHOXemeTO. Bo TeopeMaTa 2 € ONHmaH eneH HauuH
Ha KOHCTPyKLUMja Ha anrebSpH on THINOT Ha anreé6pu kako Bo Teopema 1.
Unaky, Hako TeopeMaTa 2 € 3aBMCHa on BaHaxoBHTe anre®bpH cemnak

cMeTaMme Zeka M BO Hea He NnoMaJlIky € ol HHTepecC alrebapCKHOT acnekT
BO OJIHOC Ha TOIIOJIOWKHOT.
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