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OTHER AS THE SQUARE ROOTS OF THE INTEGERS
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1). INTRODUCTION

In an earlier article!lwe have discussed the moiré fringes obtained
by overlapping the two systems of concentric and homothetic ellipses, whose
semiaxes refer to each other as square roots of the integers. This article was
a generalisation of our previous research about the moiré fringes of two
systems of concentric circles with the radiai related to each other as square
roots of the integers, i.e. the fringes obtained from two Sorret’s zone pla-
tes?l, Inlll we restricted our generalisation' to ellipses only. Here we’ll extend
the discussion to two systems of hyperbolas or to one system of ellipses and
one system of hyperbolas.

2). THE EQUATIONS OF THE SYSTEMS OF CURVES AND THE
SYSTEM OF MOIRE FRINGES

Let « and b be the semiaxes of the smallest curve in one of the sys-

tems. Than the semiaxes of the n-th curve in that system are a |/n and b /7.
The axial equation of such a system of homothetic ellipses is given by

2 2
%Jr%:,, n=1,23,... )

while for the system of the hyperbolas we have the equation

g _n _
i_;a-:l:ﬁ—n (2)

Here we put double symbols in order to have hyperbolas in each of the four
angles bounded by their assipthotes, since we need a system of curves covering
the whole plane.
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In order to deal simultaneously with both types of curves we intro-
duce the following marks

‘ 1 for ellipses
g = P )
+ 1 for hyperbolas
and
o — 1 for ellipses @
—1 for hyperbolas
Than both systems (1) and (2) are given by the equation
‘22 712 B
g( St e--[;;) —n 3)

Let’s shift the origin of the coordinate system to the right for s and
rotate the coordinate axes for an angle «. Such translation and rotation leed
to the followong transformation formulas

£ = (x—s5)cos a—ysina«

(6)
7 = (x —5§)sin o + y cos o
The equation of the rotated system of curves is given by
Kx® + 2 Lxy -+ My?— 2 Ksx — 2Lsy + Ks? = n )
where K, L. and M are the substitutes as follows
K=g(a@?cos?a + eb2sin®w)
L=g(—a?+ eb?)sinascon (8)

M =g (a?®sina + eb2 cos®a)

If the second system of curves is rotated and translated to the left, it’ 1l have
the opposite sign in front of s in it’s equation.

Indexing by 1 and 2 the characteristic values, we get the systems’
equations

K, x2+2L;xy + M y?—2K,sx—2L,;sy + K, s> =n,
)
Kox?2+2Lyxy + Myy?+2Ky5x +2Lysy +Ky82=n,

The overlapping of the systems gives their moiré fringes connected
by the indicial equation

ny+ceny=p p=12,3 ... (10)



41

where
B {1, 2,3... e { 1 for additive fringes

41, 4+2,43...

Using (9) we find the equation of the moiré fringes to be

—1 for subtractive fringes

Ax? 4 2Bxy + Cy* + 2Dx -+ 2Ey + As®=p an
with
A=K, + <K, D=—s(K,—¢eK,)
B=L,+ <L, E=—s(Li—¢eLy) (12)

C=M,+:=M,

The equation (11) shows that the moiré fringes are a system of se-
cond order curves.

3) THE FORM OF THE MOIRE FRINGES SYSTEM

In order to find out what kind of curves are the moiré fringes (11)
we need to know the sign of the determinante

A — AC — B? (13

since, as it is well known, the curves are

ellipses >0
parabolas if Al —0 (14)
hyperbolas <0

Replacing the values (12) in (13) we have
A=K M,—L32}+ 2Ky, My— L)+ (K, M, + K;M,—2L,L,) (15

and using relations (8) we have

1
A:____— 02—1—8 a2 €b2+€ €b2+
a2a2b2by? ¢ ‘2 8182 a:°) (ey by 182 €2 0,7
(16)

+eg18: (b2 —eya,®) (b — e, a,%) sin® (x; — a,)]

The sign of this determinante, besides on semiaxes (a;, @y, by, by)
and the types of curves (e;, e,, g1, £2), depends on the angle between the
principal axes of the defined systems of curves.
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Moiré fringes appear as

ellipses

<
P . _ (a9® + €83 a1°) (€204 + 818462 5,7
parabolas if sin (¢; —ay) = ez B —e,aD) By — egad) an

hyperbolas >

When we owerlap the systems of the same kind, g, go = 1 and e; = ez=e.
If they are of different kind, by choosing the system of the ellipse to have
its centre with positive apscise, we put g, g,— + 1 =g, and e, = —e,.
In this case the subtractive fringes, where g, = 1, and the additive, where
g,=— 1, give the same value of the square root in (17),as well as the addi-
tive fringes where g,= 1 and the subtractive fringes where g,— — 1. Having
in mind the relations (8) and (12), it could be easily verified that the coefi-
cients 4, B, C, D, E for the subtractive moire finges in the region where,
ga,=1 are equal with the coefficie nts of the additive moiré fringes in the re-
gion where g,=— — 1. Therefore this two different kind of moiré fringes
are given with one analitical expression, representing one system of curves
which are visible in two different regions. Also the subtractive moiré frin-
ges where g,= 1 and the additive fringes where g,= — 1 belong to the same
system of curves. As it will be seen later, the subtractive and additive frin-
ges appearing in one region are devided, by the so called commutation
moire boundary.

A very important case in dealing.with the moiré fringes, is the case
when they appear as a system of paralell lines, since it is the most easiest
way of their observation and registration. So, our problem is to answer the
question when the equation (11) will represent a system of parallel lines.
It generaly happens when the coefficints 4, B, and C are equal to zero,
provided D #0 and E #0. Therefore

g1 (a):-2 COSzocl —I‘ 3% b1—2 Sin2ﬁl) = g2 (aa_'2 COSzaz + €y b2—2 sinamz)
g1{(—a; 2+ e b, Fsinwy s0cw; = —egy (—ag 2+ ey by %) sin, cos o,
g1 (asin%a; + eq by 2cos?ory) = — eg, (g 2sin® ey + e, by 72 cos®ay)

By adding this three relations we get the condition

1 . e 1 .

o (Gt n) 7 (G o))

1 e 1

- —8 —sin2gee [ —2 — —
sg’[(bl - =)+ g i (bf a)]

In the case of overlapping two parallel systems o,= «,, this condition is
valid only for the subtractive fringes, requiring the systems to be of the same
kind and to have the same axes in addition.

(18)
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Supposing the condition (18) is valid, the equation of the moiré
fringes is

‘ Dx 4+ Ey-—1Yp=0 19)
representing a system of equidistant lines with a separation

1

2y D+ E? (
Another case of obtaining the moiré fringes as a system of parallel
lines in when

D=E=0 and B*= AC 21

It happens when the overlapping systems have the origin as their centers,
i. e. when s = 0. The equation of the moiré fringes than is

y=—V4]C x+Vp/C (22)

a system of parallel lines whose distances from the origin reffer to each other
as square roots of the integers.

4) POSITION OF THE MOIRE FRINGES’ SYSTEM

The position of the moirée fringes’ system is determined by the direc-
tion of their principal axes and by the position of their center, if the fringes
consist of curves having a common center.

The angle O closed between the principal axis of the moiré system
of curves, and the apscise axis of the coordinate system, is defined by

2B
g2y = — =
¢ C—A4
23)
_ a*bg?(e1a," — by?) sin 2uy + €818, a2 by% (63 a5° — byP) sin 2«

al2by(eya?—b?) cos 2o, -+ gy gaa,2 b2 (65 a2 — b,?) cos 2,

The coordinates of the centre of curves (11) are defined by the well known
formulas

Xo = — (BE — CD)

Bl

(14)
1

Yo = — (BD — AE)

B |
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which do not include the order number p of the moiré fringes. Therefore,
all of the fringes have one common center. According to (12) and (8)

S
xozx{elafzbl_z—ezaz by 2t eg1 80 [(—ay2a 2 +

+ ey ey b2 by ?) sin (y + ap) sin (x; — tp) + (g a2 by—2 —

— ey a7 2by%) cos (&; + &) cos (x; — ap)]}
(25)

Yo = i‘ €8182 [(as72 cos® ay + €5 by 2 sin"wg) (—ay® +

"‘I_ el b1_2) Sin 2“1 — (01—2 00520!1 'Ir‘
+ ey by tsin?ay) (—as? + ey by~?) sin 2 ay).

It is seen that the ratio y,/x, does not depend on s. It means that when the
centers of our two systems are drawned near or mooved away, the moire
fringes’ center gets displaced allong a straight line passing througt the origin.

5). THE COMMUTATION MOIRE BOUNDARY AND EFFICIENCY
OF THE FRINGES )

According to [3] the commutation moir¢ bondary deviding the re-
gions of effectivness of the additive and subtractive moiré fringes, is defi-
ned by the condition

grad ¢,. grad ¢, =0 (26)
turing into
?ipi MJ + y’_’ ?ﬁpl =0 Q27
dIx ™ dy oy

for the two dimensional case of Decart’s coordinates. §; and {, are the ana-
litic expressions of the systems of curves (9) defined as

U, =K;x*+2L xy + M, y?—2K,sx —2L sy + K, 5*—n,; =0

Yo=Ky x2+2Loxy -+ Moy +2Kysx + 2L, 5y + Ky52—ny =0
Therefore the equation of the moiré boundary is

K Ky + L L)y x®+ [Ly(Ky+ My +Ly(Ky +M)xy+ (L, L, +

+M M)y*+ s[L,(Ky—My)—L,(Ki—M )] y—s*(K, Ky+L,L,)=0

The commutation moiré boundery is a second order curve with it’s center
laying on the y-axis. It passes the points (&£ s, 0) i. e. throught the centers
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of the two systems of curves. What kind of second order curve is the moiré
boundary, we find by discussing the sign of it’s determinante

Abz (K1 K5+ L1L2) (LiLly+ M, My)— % (L, (Kz + M)+ L2(K1 + M)P
~which according to the expressions (8) yelds

A ={[(a;®a;?cos o, cosay -+ €5 e b2 by sin oy sin «y) (cos (o1 otp) +
+ (e by ay?sina, cos oy — €5 b2 a2 cos «y sin ) sin (g — ) +
4+ [(ay2ag2cosu, cosey + ey e, b2 by sina, sinay) cos (g —ory) |-
4 (eyay by 2sina; cos oy — €3 b2 a7 cos &y sin ) sin (ox; — o,)]

+ a2+ e b (a2 + ey by —(as? + ey by ) (ar?costoy +

4 oe, by 2sin?ey) —(ay 2+ e by ?) (a2 cos?ay + €, by sin?a,)] —

— ‘116“ [(e1b1 2 —ay™®)(as™ + esby2sin 20 + (e by~ —

—ay (a2 -+ e by sin 2 y)? 29

Since g, and g, do not enter in the expression (29), it means that if there
exists a moiré boundary, it is defined in the whole plane of observation,
which is important when one of the two systems or both of them consists
of hyperbolas.

As it can be seen, A, in (29) can be bigger, equal or smaller than zero.
Therefore the commutation moiré boundary appears as an ellipse, parabola
or hyperbola. Inside this boundary visible are the additive fringes, while
outside it the subtractive fringes.

6. MOIRE FRINGES OF THE SYSTEMS WITH PARALLEL AXES

It is the case when o; = «, = a. The moiré fringes’ equation rema-
ines (11), and it’s form is determined by the sign of (16), which for this spe-
cial case is

1
A, = 70156;272[712[72; (@s®+g182a,>) (e by? -+ g182€,b%) € ==
(30)

1 .
A - T e (a22—g a 2 ((3 bgz—' e b 2 y 3:——-1
s daibih 182017 (ey g18s€50:9)

for the additive and subtractive case respectivly.

Let us first discuss the case of overlapping the systems of the same
kind of curves, i.e. g,- g, =l and e; = e, = e..
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From (30) it follows that the additive moiré fringes are

. ellipses i e = 1 G1)
hyperbolas =—1
The form of the subtractive fringes is
ellipse a, <a, by <b,y
hyperbola  if a1 < @53 by > by e=1
a,> ap; by < b,
(32)
ellipse {al < ay; by > b,
hyperbolas  if @1> as; by < by e=—1

a; < ay, by <b,

No matter whether we overlap two systems of ellipse sor two systems of hy-
perbolas, the subtractive moiré firnges will be parabolas if a,= a, or b= b,.
The second possibility of overlapping the systems of different kind
requires g; . go =+ 1 =g, and e, = —eq(e; = 1)
From (30) it follows that the additive moir¢ finges are

ellipses by, > b, "
hyperbolas if by < by where g, = 1
parabolas o = by
and (33)
ellipses a, > a
hyperbolas if a; < a, where g, = —1
parabolas a, =a,

The subtractive fringes appear as

ellipses a, > a,
hyperbolas if a < a, where g, = 1
parabolas a,=a
and (34)
ellipses by > b, .
hyperbolas if b, < b, where g, = — 1
parabolas by, =b,

The orientation of the principal axis of the moiré fringes defined
by the relation (23) remains unchanged, no matter what Kind of systems
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we overlap, since for «; = «,, 0= «. It means the axes of the moiré fringes
will also be parallel with the axes of the overlapping systems.

The position of the center of the moiré fringes depends on the kind
of curves, and it’s position is determined by

Xg = 2 lera; b2 —esas 2 by 4 eg1 85 (€a a2 by *—e a2 by ) cos 2 ¢

A
35)

Yo = %’ €g18a(esa2by 2 —eya;7by?) sin 2.

xince A,7#A, the center of the additive moiré fringes doesn’t coincide with
that of the subtractive fringes.

The equation of the moiré boundary defined by the relaton (28) now
has it’s determinant given by
Ap=ere,a72a, 2 b2 by? (36)

If bouth systems are of the same kind, e, . e, =1, and from (36) it follows
that A, > 0. Therefore their moiré boundary is an ellipse. If the two over-
lapping systems are of different kind, e, . e, = — 1, Ay<<0 and their moiré
boundary is a hyperbola.

Inside the region bounded by the commutation moiré boundary are
visible the additive fringes (31) or (33), while otside it we have the subtrac-
tive fringes (32) or (34).

7. MOIRE FRINGES OF THE SYSTEMS HAVING EQUAL AXES

The overlapping systems are such that a, = a; and b, = b,. The
obtained moiré fringes are given with an equation of the from (11) with de-
terminants

1
A, = aTH[azb'z(l + 81820 (e;+ 818220 +
+ 2182 (b*— e, a?) (b — e, 0?) sin? (a; — acy) (37
1
Ay =aT“[azba(l—g1g2)(e1“‘g1gzez)—‘

—818:(0*—e; 0% (b®— e, a?) sin®( o — )

In the case of overlapping the systems of the same kind, (g, = g,; g, g.= 1;
e, = e,) the additive fringes are

ellipses < o
parabolas if sin (o, — ;) = ab \/ %7 (38)
hyperbolas > e
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The subtractive fringes are hyperbolas, no matter what kind of curves the
two overlapping systems cosist of, since

Ay = — l_ (b? — ea?)? sin® (¢ —otp) << 0.
atht

If in addition the axes of the two systems are parallel, the aditive
moiré fringes are ellipses (¢ = 1) and hyperbolas (e = — 1) since
A =2ea?b2

For the substractive finges we get A,= 0, but they are not parabolas
since the condition (18) is valid. The equation of the subtractive fringes is

(b2cos?« + e n? sin%a) x + (ea® — b sinw cos o - y + pa2b?/dsg=0 (39)

representing a system of equidistant parallel lines. The distance between
two of the lines is
2 K2
d= L (40)
45 |/ b cos? -} atsin® ot

The commutative moiré boundary has (23) as it’s analitical expres-
sion. It is a second order curve with a determinante

= {[(a* cosa cOSay + b~*sina, sinoy) cos (o — ¢8y) + ea2 b2 sin? (o0, —

— o) + [(atcosa, cosa, + L ¢sin oy siney) cos (o, —ay) +

+ ea b2 sin? (o, — 0)] (b~% — a—4) (sin® o, — cos? ) — (4D
_ 1_16_ (b4 — a4 (sin 2 o, — sin 2.y)?

The value of this determinante could be positive, negative or equal to zero,
and therefore the moiré boundary of the overlapping systems of the same
kind having equal axes could be an ellipse, hyperbola or parabola. In the
special case when o= a,, the expression (41) is simplified to

Ap=atbt>0 (42)

(which is also expected from (36)), indicating that moiré boundary is an ellipse.

For the other possibility of overlapping the systems of diferent kind,

we take g,.g, =+ 1; g,; e, =1; e, = — 1. Therefore instead of (37)
we have

A= —zg¥a 1 b1 (at — bY sin? (o — oty) 43)

Considering b < a, the additive fringes appear as

hyperbolas where ¢ — { 1 (@44)

ellipses — 1
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-~

while for the subtractive fringes we have the reversed situation. They are

hy}) e.r bolas where g = ! 45)
ellipses —1

The moiré fringes appear as parabolas only in the case of parallel overlap-
ping, when «, = «,, since for both subtractive and additive fringes 4, B
and C#0, but the determinante (43) is zero. Of course the subtractive frmges
where g, = 1 and the additive fringes where g, = — 1 belong to one system
of parabolas, while the additive fringes where g,==1 and the subtractlve
fringes where g, = — 1 belong to another sistem of parabolas.

So far we’ll live the disscusion obout the zero value of (43) when,
a = b, since the moiré fringes obtained by overlapping the systems of cir-
cles and equilateral hyperbolas with systems of other homothetic second
order curves will be treated in an other article.

There exists a commutation moiré boundary given with an equation
of the form (28), having the determinante given by

A = [a*cos o, cosa,—b4sin e, sina,)cos (u, —ag) + a2 b2 sin (o, + o)
sin (¢ — )2 4+ [(@% cos o, oS &y — b2 sin a4 sin a0 p) o8 (00 — atg) +
4+ a2 b~2sin (ot; + a,) sin (e — a5)] [(a* — bY)—(a*—b~2) (a2 cos® o+

+ b2sin;) — (a2 -+ b (a2cos?py,— b2sine,y)] —

o ]}6_ [(b~2—a*>)?sin 20y + (b2 + a?)?sin 2 a,?} (46)

1t indicates that the moiré boundary could be an ellipse, parabola or a hy-
perbola. If in addition oy = a,.

Ay = —atbt<0 (47

and the commutation boundary appears as an hyperbola.
Inside this moiré boundary are visible the additive fringes, while
ottside it, the subtractive fringes.
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MVYAPE OUMI'YPU HA NABA CUCTEMM KOHILIEHTPMYHU
XOMOTETNMYHU KPUBH OA BTOP PEJX YNH ITI0JYOCKHM CE
OJHECYBAAT KAKO KBAJIPATHM KOPEHN O IEJUTE BPOEBU

J. Mosep; Jb. Janukujesuk; M. Jonocka

Huckyrupanu ce Myape ¢purypure JoOHeHH co IIpeKJIONyBare Ha JBa
CHCTEMH Ol KOHUEGHTPHYHH XOMOTETHYHH XHIEPOOJIH, KaKo U CO IIpeKiio-
IyBame HA CHCTEM OJf XOMOTeTHYHH KOHIEHTPUYHU XHIEpPOOJH CO CHCTEM
Ol XOMOTETHYHY KOHICHTPUYHH EITHUICH.

Penaumjata (5) 3aegHo co o3makmTe (3) u (4) mpercraByBa omuTa
paBeHKa HA n-TaTa KpHBAa O] TOPECIIOMEHATHTE CUCTeMH. Taa IpeMHHyBa
B0 (7) XOra lIEHTapoT Ha KpHBaTa € IOMECTEH 3a § 0J KOOPAMHATHUOT MOYe-
TOK M OCKUTEC Ha CHCTEMOT Ce POTHPAaHU 3a aroj « BO OJHOC HA KOODJAHHAT-
HETe OCKM. AXO € KOODAWHATHHOT HOYETOK Ha CpeAnHaTa Mely LUECHTPHUTE
HA JIBaTa CHCTEMH OJ KpHMBH, TOTalll THE Ce 3amajeHu co paBeHkure (9). Pa-
BeHKaTa Ha HUBHHTe Myape ¢urypu e (11) ¥ mpercraByBa CHCTEM OJ KPHBH
O BTOD pex 4vja mpupoja, cmopend yciosoT (17), 3aBHCH O THIIOBHTE HA
KpUBUTE KOHU Ce IIpeKJIOmyBaaT, Ol TOJIeMUHATa HAa HUBHATE MOJIYOCKH, KaKo
H of arojoT 3adareH Mely HUBHMTE [JIaBHH IOJyocku. IToceDHO € IuCKy-
THPaH CJIy4ajoT Ha IpeMHH Ha Myape (urypuTe Bo CHCTeM of Ipasu. Toa
HACTaHyBa Kora ce ucinonHeru yciopute (18) mmu (21).

Bo jgenmoT mox Touka 4) J27ieHA € KpaTka AMCKycHja 3a IIoJioxkdata
Ha CHCTeMOT oJf Myape Gurypu. eburupanu ce KoopAWHATHTe Ha HHUB-
HEOT ueHTap (25) Kako ¥ arojoT LITO IJIaBHATA OCKa HA Myape CHCTEMOT
ro 3adaka co amcmucmara ocka (23).

Bo zenoT mak mox Touka (5) majeHa e paBeHKaTa Ha KOMYyTaTHBHATA
Myape rpanuna (28) koja cexojnaT IpeTCTaByBa KpmBa oJ BTOD pea. Bo BHa-
TPELIHOCTa Ha OBaa KpHBa BUIBWIIH c€ aJUTHBHUTE a HAJBOD ol Hea CYI-
TpaKTHBHHTE Myape Gurypu.

Ha KpajoT BO [€JNOBHTE IIOJ TOUYKATE 6) M 7) IOCEDHO ce JHMCKYTH-
paHM CllyyauTe HA JoOHMBame Ha Myape GUIYpH CO HPEKIIONYBake HA CHCTEMHU
CO mapapeiHu OCKH M Ha CHCTEMH CO EGJHAKBH OCKH.



