A NOTE ON COMPATIBLE BINARY RELATIONS ON VECTOR VALUED HYPERSEMIGROUPS

VALENTINA MIJOVSKA AND VESNA CELAKOSKA-JORDANOVA

Abstract. In this note we present some properties concerning the connection between vector valued hypersemigroups and various kinds of compatible binary relations defined on them, i.e. i-compatible, compatible, strongly i-compatible, strongly compatible, regular and strongly i-regular binary relations.

Binary hyperstructures were introduced by Marty in [8] as a natural extension of classical algebraic structures. Vector valued hyperstructures were introduced in [9] as a generalization of n-ary hyperstructures ([5, 2]) and vector valued structures ([10, 6, 7]). Besides the concepts of vector valued hypergroupoids, hypersemigroups, weak hypersemigroups, etc., regular and strongly regular binary relations on vector valued hypersemigroups were introduced in [9] as well. Following some recent papers of Davvaz and Loreanu-Fotea ([1, 3, 4]), in this short note we introduce the notions of i-compatible, strongly i-compatible, i-regular relations for some $i \in \{0, 1, \ldots, n-1\}$, as well as compatible and strongly compatible relations on vector valued hypersemigroups and prove a few properties concerning these notions. For the sake of completeness, we will repeat the definitions of vector valued hypergroupoid and vector valued hypersemigroup from the paper [9].

Let H be a nonempty set and let n, m be positive integers such that $n \geq m$. Denote by $\mathcal{P}^*(H)$ the set of all nonempty subsets of H and by H^n the nth Cartesian product of H.

Definition 1. ([9], Def.1.1.) A mapping $[\] : H^n \to (\mathcal{P}^*(H))^m$ from the nth Cartesian product of H to the mth Cartesian product of $\mathcal{P}^*(H)$ is called an

2010 Mathematics Subject Classification. 20N20.

Key words and phrases. Vector valued hypergroupoid, vector valued hypersemigroup, strong homomorphism, binary relation, compatible relation.
A \((n,m)\)-hyperoperation on \(H\). If it is not necessary to emphasize the integers \(n\) and \(m\), then we will say that \([\]\) is a \textit{vector valued hyperoperation} instead of \((n,m)\)-hyperoperation.

Throughout the paper, the elements of \(H^n\), i.e. the sequences \((x_1, \ldots, x_n)\) will be denoted by \(x_1 x_2 \ldots x_n\) or, shortly, \(x^n\). The symbol \(x^i_1\) will denote the sequence \(x_i x_{i+1} \ldots x_j\) of elements of \(H\) when \(i \leq j\) and the empty symbol when \(i > j\).

Definition 2. ([9], Def.1.2.) A sequence of \(m\) \(n\)-ary hyperoperations \([\]_s:\ H^n \rightarrow \mathcal{P}^s(H), s \in \{1, 2, \ldots, m\}\), can be associated to \([\]\) by putting

\[a^n_s = B_s \iff [a^n] = (B_1, \ldots, B_m),\]

for all \(a_1, \ldots, a_n \in H\). Then, we call \([\]_s\) the \textit{\(s\)th component hyperoperation} of \([\]\) and write \([\] = ([\]_1, \ldots, [\]_m)\). Note that there is a unique \((n,m)\)-hyperoperation on \(H\) whose component hyperoperations are \([\]_s\).

An \((n,m)\)-hyperoperation \([\]\) on \(H\) is extended to subsets \(A_1, A_2, \ldots, A_n\) of \(H\) in a natural way, i.e.

\[A_1 A_2 \ldots A_n = ([A_1 A_2 \ldots A_n]_1, [A_1 A_2 \ldots A_n]_2, \ldots, [A_1 A_2 \ldots A_n]_m),\]

where \([A_1 A_2 \ldots A_n]_s = \bigcup\{[a^n]_s \mid a_i \in A_i, i = 1, 2, \ldots, n\}\) and \(s = 1, 2, \ldots, m\).

Clearly, \(C_i^p \subseteq B_i^p\) if and only if \(C_i \subseteq B_i\), for \(i = 1, \ldots, p\), and, \(x^p_i \in C_i^p\) if and only if \(x_i \in C_i\) for \(i = 1, \ldots, p\).

Definition 3. ([9], Def.1.3.) An algebraic structure \(H = (H,[\]\))\), where \([\]\) is an \((n,m)\)-hyperoperation defined on a nonempty set \(H\), is called an \((n,m)\)-hypergroupoid or \textit{vector valued hypergroupoid}. Identifying the set \(\{x\}\) with the element \(x\), any \((n,m)\)-groupoid is an \((n,m)\)-hypergroupoid. If \([\] = ([\]_1, \ldots, [\]_m)\), we denote by \((H;[\]_1, \ldots, [\]_m)\) the \textit{component hypergroupoid} of \(H\) and \((H,[\]_j)\) is the \(j\)th component \(n\)-ary hypergroupoid of \(H\).

Further on we assume that the positive integers \(n\) and \(m\) are such that \(n > m\), i.e. \(n = m + k\), for \(k \geq 1\).

Definition 4. ([9], Def.1.4.) An \((n,m)\)-hyperoperation is said to be \textit{associative} if

\[x^n_i [x_{i+1}^{i+n}]^{i+n} = [x^n_j [x_{j+1}^{j+n}]^{j+n}],\]

holds for all \(x_1, \ldots, x_{n+k} \in H\) and for all \(i, j \in \{1, 2, \ldots, n\}\).

An \((n,m)\)-hyperoperation is said to be \textit{weakly associative} if

\[x^n_i [x_{i+1}^{i+n}]^{i+n} \cap [x^n_j [x_{j+1}^{j+n}]^{j+n}] \neq \emptyset,\]

holds for all \(x_1, \ldots, x_{n+k} \in H\) and for all \(i, j \in \{1, 2, \ldots, n\}\).
holds for all \(i, j \in \{1, 2, \ldots, n\} \), \(x_1, \ldots, x_{n+k} \in H \) and every \(s \in \{1, 2, \ldots, m\} \).

An \((n, m)\)-hypergroupoid with an associative operation (weakly associative operation) is called an \((n, m)\)-hypersemigroup (weak \((n, m)\)-hypersemigroup).

Examples of \((n, m)\)-hypersemigroups and weak \((n, m)\)-hypersemigroups are presented in \([9]\).

Definition 5. \([9], \text{Def.1.10}\) Let \((H, [\,])\) and \((H', [\,'])\) be \((n, m)\)-hypergroupoids. A mapping \(\varphi : H \to H' \) is:

a) a strong homomorphism if and only if \(\varphi([a^n]_s) = [\varphi(a_1) \ldots \varphi(a_n)]'_s \);

b) an inclusion homomorphism if and only if \(\varphi([a^n]_s) \subseteq [\varphi(a_1) \ldots \varphi(a_n)]'_s \);

c) a weak homomorphism if and only if \(\varphi([a^n]_s) \cap [\varphi(a_1) \ldots \varphi(a_n)]'_s \neq \emptyset \), for every \(s = 1, 2, \ldots, n \). The mapping \(\varphi \) that is a bijection and strong homomorphism is called an isomorphism, and it is called an automorphism if \(\varphi \) is defined on the same \((n, m)\)-hypergroupoid.

Theorem 1. Let \(H, H_1, H_2 \) be \((n, m)\)-hypersemigroups (weak \((n, m)\)-hypersemigroups), \(\varphi_1 : H \to H_1 \) be a surjective strong homomorphism and \(\varphi_2 : H \to H_2 \) be a strong homomorphism, such that \(\ker \varphi_1 \subseteq \ker \varphi_2 \). Then there exist a unique strong homomorphism \(\theta : H_1 \to H_2 \) such that \(\theta \circ \varphi_1 = \varphi_2 \).

Proof. Let \(a \in H \). Then \(\varphi_1(a) = a_1 \in H_1 \). Let \(\theta : H_1 \to H_2 \) be a mapping defined by \(\theta(a_1) = \varphi_2(a) \). Let \(a_1 = b_1 \). Since \(\varphi \) is a surjective mapping it follows that there is \(b \in H \) such that \(\varphi_1(b) = b_1 \). Clearly, \(\varphi_1(a) = \varphi_1(b) \), i.e. \((a, b) \in \ker \varphi_1 \subseteq \ker \varphi_2 \). Thus, \(\varphi_2(a) = \varphi_2(b) \), i.e. \(\theta(a_1) = \theta(b_1) \). Hence, \(\theta \) is a well defined mapping and

\[
(\theta \circ \varphi_1)(a) = \theta(\varphi_1(a)) = \theta(a_1) = \varphi_2(a).
\]

The mapping \(\theta \) is a strong homomorphism. Namely, for every \(s \in \{1, 2, \ldots, m\} \)

\[
\theta([a^n]_s) = \theta([\varphi_1(a'_1) \ldots \varphi_1(a'_n)]_s) = \theta(\varphi_1([a'_1 \ldots a'_n]_s)) = \varphi_2([a'_1 \ldots a'_n]_s) = [\varphi_2(a'_1) \ldots \varphi_2(a'_n)]_s = [((\theta \circ \varphi_1)(a'_1) \ldots (\theta \circ \varphi_1)(a'_n))]_s = [\theta(a_1) \ldots \theta(a_n)]_s.
\]

Suppose that there is a strong homomorphism \(\theta_1 : H_1 \to H_2 \) such that \(\theta_1 \circ \varphi_1 = \varphi_2 \). Let \(a_1 \in H_1 \). Then \(\theta_1(a_1) = \theta_1(\varphi_1(a)) = (\theta_1 \circ \varphi_1)(a) = \varphi_2(a) = (\theta \circ \varphi_1)(a) = \theta((\varphi_1)(a)) = \theta(a_1) \), i.e. \(\theta \) is a unique strong homomorphism. \(\square \)
Let \(H \) be a nonempty set. Denote by \(B(H) \) the set of all binary relations on \(H \), by \(E(H) \) the set of all equivalence relations on \(H \).

Definition 6. Let \((H, [\]): (n,m)\)-hypersemigroup. A relation \(\rho \in B(H) \) is said to be:

a) \textit{i-compatible}, where \(i \in \{0,1,\ldots, n-1\} \), if for any \(a,b \in H \) and \(s = 1, \ldots, m \)

\[
(apb \land x \in [x^i_1ax^i_{i+2}]_s) \Rightarrow (\exists y \in [x^i_1bx^i_{i+2}]_s) xpy.
\]

Specially, for \(i = 0 \) (\(i = n-1 \)) we say that \(\rho \) is right (left) compatible.

b) \textit{compatible} if for every \(j = 1,2,\ldots, n \) and \(s = 1, \ldots, m \)

\[
(a_jpb_j \land x \in [a^j_3]_s) \Rightarrow (\exists y \in [b^j_3]_s) xpy.
\]

c) \textit{strongly i-compatible} if for any \(a,b \in H \)

\[
apb \Rightarrow xpy,
\]

for every \(x \in [x^i_1ax^i_{i+1}]_s, y \in [x^j_1bx^j_{j+1}]_s \). Specially, for \(i = 0 \) (\(i = n-1 \)) we say that \(\rho \) is \textit{strongly right compatible} (\textit{strongly left compatible}).

d) \textit{strongly compatible} if the following implication holds:

\[
(\forall j = 1, \ldots, n) \ a_jpb_j \Rightarrow xpy,
\]

for every \(x \in [a^j_3]_s, y \in [b^j_3]_s, s = 1, \ldots, m \).

If \(\rho \in E(H) \) and it is \textit{i-compatible}, compatible, strongly \textit{i-compatible} and strongly compatible (\(i \in \{0,1,\ldots, n-1\} \)), then \(\rho \) is said to be \textit{i-regular}, \textit{regular}, \textit{strongly i-regular}, \textit{strongly regular}, respectively.

Example 1. Let \(H = \mathbb{Z}_4 \) and \([\]): H^3 \rightarrow (P^*(H))^2 \) be a \((3,2)\)-hyperoperation defined by:

\[
[x^3_1] = \begin{cases}
(\{2,3\},x_3), & \text{if } x_1 = x_2 = x_3 = 0 \\
(\{1,3\},x_3), & \text{otherwise.}
\end{cases}
\]

By a direct verification of each case, one can show: \([[x^3_1]x_4] = (\{1,3\},x_4) = [x^3_1[x^3_2]], \) i.e. \((H,[\])) \) is a \((3,2)\)-hypersemigroup.

Let \(\rho = \{(1,1),(1,2),(1,3),(3,1)\} \in B(H) \). It can be easily verified that \(\rho \) is strongly left compatible (i.e. strongly 2-compatible), since \(apb \) implies that \(xpy \), for every \(x \in [x^1_1a]_s \) and \(y \in [x^2_1b]_s, \) \(s = 1,2 \). For instance, \((1,1) \in \rho \) implies that \(xpy \), for every \(x,y \in [x^1_11_1] = \{1,3\} \) and \(x,y \in [x^2_11]_2 = 1 \). This relation is not strongly 0-compatible or 1-compatible since, for instance, \([2 1 0]_2 = 0, [2 2 0]_2 = 0, \) but \((0,0) \notin \rho \).
Example 2. Let $H = \{1, 2, 3, 4\}$ and let $[\] : H^4 \to (\mathcal{P}^*(H))^2$ be a $(4,2)$-hyperoperation defined by $[x^n_i] = (\{1, 2\}, \{3, 4\})$. Then $(H, [\])$ is a $(4,2)$-hypersemigroup. Namely:

$$[[x_i^n]x_o^n] = ([1, 2] \{3, 4\} x_o^n) =$$

$$= ([13x_o^n]_1 \cup [14x_o^n]_1 \cup [23x_o^n]_1 \cup [24x_o^n]_1, [13x_o^n]_2 \cup [14x_o^n]_2 \cup [23x_o^n]_2 \cup [24x_o^n]_2) =$$

$$= ([1, 2], \{3, 4\}),$$

$$[x_1^n x_2^n] = [x_1 \{1, 2\} \{3, 4\} x_2^n] =$$

$$= ([x_1^{13} x_6^n]_1 \cup [x_1^{14} x_6^n]_1 \cup [x_1^{23} x_6^n]_1 \cup [x_1^{24} x_6^n]_1,$$

$$[x_1^{13} x_6^n]_2 \cup [x_1^{14} x_6^n]_2 \cup [x_1^{23} x_6^n]_2 \cup [x_1^{24} x_6^n]_2) = ([1, 2], \{3, 4\}),$$

$$[x_1^n x_2^n] = [x_1^n \{1, 2\} \{3, 4\} x_2^n] =$$

$$= ([x_1^{13} x_1^n]_1 \cup [x_1^{14} x_1^n]_1 \cup [x_1^{23} x_1^n]_1 \cup [x_1^{24} x_1^n]_1, [x_1^{13} x_1^n]_2 \cup [x_1^{14} x_1^n]_2 \cup [x_1^{23} x_1^n]_2 \cup [x_1^{24} x_1^n]_2) =$$

$$= ([1, 2], \{3, 4\}).$$

Let $\rho = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 4), (4, 3)\}$ be an equivalence relation on H and let $a_j \rho b_j$, for $j = 1, \ldots, 4$. Then $[a_1^n]_1 = [b_1^n]_1 = \{1, 2\}$ and $[a_1^n]_2 = [b_1^n]_2 = \{3, 4\}$. For every $x \in [a_1^n]_s$ and $y \in [b_1^n]_s$, $s = 1, 2$, one obtains that $x \rho y$ holds. Thus, ρ is a strongly regular relation.

Proposition 1. Let $(H, [\])$ be an (n, m)-hypersemigroup. If $\rho \in B(H)$ is reflexive and strongly compatible, then ρ is strongly i-compatible for every $i \in \{0, \ldots, n - 1\}$.

Proof. Let $a \rho b$ for any elements $a, b \in H$ and $x \in [x_1^1 a x_i^n, y \in [x_1^1 b x_i^n]_s$, for every $s = 1, \ldots, m$. Since ρ is reflexive, $x_j \rho x_j, j \in \{1, \ldots, i, i + 2, \ldots, n\}$ and $a \rho b$. The strong compatibility of ρ implies that $a \rho y$. ☐

Proposition 2. Let $(H, [\])$ be an (n, m)-hypersemigroup and $\rho \in B(H)$ be reflexive and transitive. The relation ρ is strongly compatible if and only if ρ is strongly i-compatible for every $i \in \{0, \ldots, n - 1\}$.

Proof. The direct statement follows from Prop.1. Conversely, let ρ be a reflexive, transitive and strongly i-compatible relation for every $i \in \{0, 1, \ldots, n - 1\}$. Let $a_j \rho b_j, j = 1, \ldots, n, x \in [a_1^n]_s$ and $y \in [b_1^n]_s$ for every $s = 1, \ldots, m$. Since:

$$(a_1 \rho b_1 \land x \in [a_1^n]_s \land x_1 \in [b_1^n]_s) \Rightarrow x \rho x_1,$$

$$(a_2 \rho b_2 \land x_1 \in [b_1^n]_s \land x_2 \in [b_1^n]_s) \Rightarrow x_1 \rho x_2,$$

$$\ldots$$

$$(a_n \rho b_n \land x_{n-1} \in [b_1^n]_s \land y \in [b_1^n]_s) \Rightarrow x_{n-1} \rho y,$$
and the transitivity of ρ, it follows that xpy. \hfill \Box

As a consequence of the previous proposition we obtain the following

Corollary 1. If $\rho \in E(H)$ is a strongly regular relation on (n,m)-hypersemigroup $(H,\{\})$, then ρ is strongly i-regular relation for every $i \in \{0,\ldots, n-1\}$.

Proposition 3. Let $(H,\{\})$ be an (n,m)-hypersemigroup. If $\rho, \theta \in B(H)$ are strongly i-compatible for some $i \in \{0,1,\ldots, n-1\}$ (strongly compatible), then $\rho \circ \theta$ is strongly i-compatible (strongly compatible).

Proof. Let $\rho, \theta \in B(H)$ be strongly i-compatible for some $i \in \{0,\ldots, n-1\}$ and $a \rho \circ \theta \ b$, $x \in [x_i ax_{i+2}]_s$, $y \in [x_i bx_{i+2}]_s$, for every $s \in \{1,\ldots, m\}$. Since $a \rho \circ \theta \ b$, it follows that there exists $c \in H$ such that apc and $c\theta b$. If $z \in [x_i ca_{i+1}]_s$, then by the strong i-compatibility of ρ it follows that xpz. One can analogously conclude that θy and thus $x \rho \circ \theta \ y$. Strong compatibility can be shown in a similar way. \hfill \Box

Proposition 4. Let $(H,\{\})$ be an (n,m)-hypersemigroup. If the relations $\rho_j \in B(H)$, $j \in \{1,\ldots, n\}$, are strongly i-compatible for every $i \in \{0,\ldots, n-1\}$, then $\bigcup \{\rho_j \mid j = 1,\ldots, n\}$ is strongly i-compatible.

Proof. Let $a \bigcup_{j=1}^n \rho_j \ b$ and $x \in [x_i ax_{i+2}]_s$, $y \in [x_i bx_{i+2}]_s$, for every $s \in \{1,\ldots, m\}$. Then, there exists $j \in \{1,\ldots, n\}$ such that $ap \rho b$. Since ρ is a strongly i-compatible relation it follows that $x \rho_j y$ and therefore $x \bigcup_{j=1}^n \rho_j y$. \hfill \Box

Proposition 5. Let $(H,\{\})$ be an (n,m)-hypersemigroup. If the relations $\rho_j \in E(H)$, $j \in \{1,\ldots, n\}$, are strongly i-regular for every $i \in \{0,\ldots, n-1\}$, then $\bigcap \{\rho_j \mid j = 1,\ldots, n\}$ is strongly i-regular.

Proof. Let $a \bigcap_{j=1}^n \rho_j \ b$ and $x \in [x_i ax_{i+2}]_s$, $y \in [x_i bx_{i+2}]_s$, for every $s \in \{1,\ldots, m\}$. Then, for every $j \in \{1,\ldots, n\}$, $a \rho_j b$. Since ρ_j are i-regular relations it follows that $x \rho_j y$, for every j. Therefore, $x \bigcap_{j=1}^n \rho_j y$. \hfill \Box

Theorem 2. Let H and K be two (n,m)-hypersemigroups and $\varphi : H \rightarrow K$ be a strong homomorphism. Then $\rho = \{(a,b) \in H^2 \mid \varphi(a) = \varphi(b)\}$ is a regular relation.

Proof. It is obvious that ρ is an equivalence relation on H. Let $a_j \rho b_j$ for every $j \in \{1,2,\ldots, n\}$ and let $x \in [a^n_j]_s$ for $s \in \{1,2,\ldots, m\}$. Then $\varphi(a_j) = \varphi(b_j)$. Since $x \in [a^n_j]_s$ it follows that $\varphi(x) \in \varphi([a^n_j]_s)$ and, since φ is a strong homomorphism, we obtain that $\varphi(x) = [\varphi(a_1) \ldots \varphi(a_n)]_s$ =
[ϕ(b_1) \ldots \varphi(b_n)]_s = \varphi([b^n_1]_s). \text{ Hence, there exists } y \in [b^n_1]_s \text{ such that } \varphi(x) = \varphi(y), \text{ i.e. } x \rho y. \text{ Therefore, } \rho \text{ is a regular relation.} \square

REFERENCES

Ss. Ciril and Methodius University,
Faculty of Natural Sciences and Mathematics,
Ahridemova 3, 1000 Skopje, R. Macedonia
E-mail address: miovaska@pmf.ukim.mk, celakoska@gmail.com
E-mail address: vesnacj@pmf.ukim.mk, celakoska@gmail.com