Математички Билтен 41(LXVII) No. 2 2017(39-45) Скопје, Македонија ISSN 0351-336X (print) ISSN 1857-9914 (online) UDC: 515.142.2

A NOTE ON COMPATIBLE BINARY RELATIONS ON VECTOR VALUED HYPERSEMIGROUPS

VALENTINA MIOVSKA AND VESNA CELAKOSKA-JORDANOVA

Abstract. In this note we present some properties concerning the connection between vector valued hypersemigroups and various kinds of compatible binary relations defined on them, i.e. *i*-compatible, compatible, strongly *i*-compatible, strongly compatible, regular and strongly *i*-regular binary relations.

Binary hyperstructures were introduced by Marty in [8] as a natural extension of classical algebraic structures. Vector valued hyperstructures were introduced in [9] as a generalization of *n*-ary hyperstructures ([5, 2]) and vector valued structures ([10, 6, 7]). Besides the concepts of vector valued hypergroupoids, hypersemigrops, weak hypersemigroups, etc., regular and strongly regular binary relations on vector valued hypersemigroups were introduced in [9] as well. Following some recent papers of Davvaz and Loreanu-Fotea ([1, 3, 4]), in this short note we introduce the notions of *i*-compatible, strongly *i*-compatible, *i*-regular relations for some $i \in \{0, 1, \ldots, n-1\}$, as well as compatible and strongly compatible relations on vector valued hypersemigroups and prove a few properties concerning these notions. For the sake of completeness, we will repeat the definitions of vector valued hypergroupoid and vector valued hypersemigroup from the paper [9].

Let H be a nonempty set and let n, m be positive integers such that $n \geq m$. Denote by $\mathcal{P}^*(H)$ the set of all nonempty subsets of H and by H^n the *n*th Cartesian product of H.

Definition 1. ([9], Def.1.1.) A mapping $[]: H^n \to (\mathcal{P}^*(H))^m$ from the *n*th Cartesian product of H to the *m*th Cartesian product of $\mathcal{P}^*(H)$ is called an

39

²⁰¹⁰ Mathematics Subject Classification. 20N20.

Key words and phrases. Vector valued hypergroupoid, vector valued hypersemigroup, strong homomorphism, binary relation, compatible relation.

(n, m)-hyperoperation on H. If it is not necessary to emphasize the integers n and m, then we will say that [] is a vector valued hyperoperation instead of (n, m)-hyperoperation.

Throughout the paper, the elements of H^n , i.e. the sequences (x_1, \ldots, x_n) will be denoted by $x_1x_2 \ldots x_n$ or, shortly, x_1^n . The symbol x_i^j will denote the sequence $x_ix_{i+1} \ldots x_j$ of elements of H when $i \leq j$ and the empty symbol when i > j.

Definition 2. ([9], Def.1.2.) A sequence of m n-ary hyperoperations $[]_s : H^n \to \mathcal{P}^*(H), s \in \{1, 2, \ldots, m\}$, can be associated to [] by putting

$$[a_1^n]_s = B_s \quad \Leftrightarrow \quad [a_1^n] = (B_1, \dots, B_m),$$

for all $a_1, \ldots, a_n \in H$. Then, we call $[]_s$ the *sth component hyperoperation* of [] and write $[] = ([]_1, \ldots, []_m)$. Note that there is a unique (n, m)-hyperoperation on H whose component hyperoperations are $[]_s$.

An (n, m)-hyperoperation [] on H is extended to subsets A_1, A_2, \ldots, A_n of H in a natural way, i.e.

$$[A_1A_2...A_n] = ([A_1A_2...A_n]_1, [A_1A_2...A_n]_2, ..., [A_1A_2...A_n]_m),$$

where $[A_1A_2...A_n]_s = \bigcup \{ [a_1^n]_s \mid a_i \in A_i, i = 1, 2, ..., n \}$ and s = 1, 2, ..., m.

Clearly, $C_1^p \subseteq B_1^p$ if and only if $C_i \subseteq B_i$, for i = 1, ..., p, and, $x_1^p \in C_1^p$ if and only if $x_i \in C_i$ for i = 1, ..., p.

Definition 3. ([9], Def.1.3.) An algebraic structure $\boldsymbol{H} = (H, [])$, where [] is an (n, m)-ary hyperoperation defined on a nonempty set H, is called an (n, m)-hypergroupoid or vector valued hypergroupoid. Identifying the set $\{x\}$ with the element x, any (n, m)-groupoid is an (n, m)-hypergroupoid. If $[] = ([]_1, \ldots, []_m)$, we denote by $(H; []_1, \ldots, []_m)$ the component hypergroupoid of \boldsymbol{H} and $(H, []_j)$ is the *j*th component *n*-ary hypergroupoid of \boldsymbol{H} .

Further on we assume that the positive integers n and m are such that n > m, i.e. n = m + k, for $k \ge 1$.

Definition 4. ([9], Def.1.4.) An (n, m)-hyperoperation is said to be *associative* if

$$[x_1^i[x_{i+1}^{i+n}]x_{i+n+1}^{n+k}] = [x_1^j[x_{j+1}^{j+n}]x_{j+n+1}^{n+k}]$$

holds for all $x_1, \ldots, x_{n+k} \in H$ and for all $i, j \in \{1, 2, \ldots, n\}$.

An (n, m)-hyperoperation is said to be weakly associative if

$$[x_1^i[x_{i+1}^{i+n}]x_{i+n+1}^{n+k}]_s \cap [x_1^j[x_{j+1}^{j+n}]x_{j+n+1}^{n+k}]_s \neq \emptyset,$$

holds for all $i, j \in \{1, 2, ..., n\}, x_1, ..., x_{n+k} \in H$ and every $s \in \{1, 2, ..., m\}$.

An (n, m)-hypergroupoid with an associative operation (weakly associative operation) is called an (n, m)-hypersemigroup (weak (n, m)-hypersemigroup).

Examples of (n, m)-hypersemigroups and weak (n, m)-hypersemigroups are presented in [9].

Definition 5. ([9], Def.1.10.) Let (H, []) and (H', []') be (n, m)-hypergroupoids. A mapping $\varphi : H \to H'$ is:

- a) a strong homomorphism if and only if $\varphi([a_1^n]_s) = [\varphi(a_1) \dots \varphi(a_n)]'_s$;
- b) an *inclusion homomorphism* if and only if $\varphi([a_1^n]_s) \subseteq [\varphi(a_1) \dots \varphi(a_n)]'_s$;
- c) a weak homomorphism if and only if $\varphi([a_1^n]_s) \cap [\varphi(a_1) \dots \varphi(a_n)]'_s \neq \emptyset$,

for every s = 1, 2, ..., n. The mapping φ that is a bijection and strong homomorphism is called an *isomorphism*, and it is called an *automorphism* if φ is defined on the same (n, m)-hypergroupoid.

Theorem 1. Let H, H_1 , H_2 be (n, m)-hypersemigroups (weak (n, m)-hypersemigroups), $\varphi_1 : H \to H_1$ be a surjective strong homomorphism and $\varphi_2 : H \to H_2$ be a strong homomorphism, such that $\ker \varphi_1 \subseteq \ker \varphi_2$. Then there exist a unique strong homomorphism $\theta : H_1 \to H_2$ such that $\theta \circ \varphi_1 = \varphi_2$.

Proof. Let $a \in H$. Then $\varphi_1(a) = a_1 \in H_1$. Let $\theta : H_1 \to H_2$ be a mapping defined by $\theta(a_1) = \varphi_2(a)$. Let $a_1 = b_1$. Since φ is a surjective mapping it follows that there is $b \in H$ such that $\varphi_1(b) = b_1$. Clearly, $\varphi_1(a) = \varphi_1(b)$, i.e. $(a,b) \in ker\varphi_1 \subseteq ker\varphi_2$. Thus, $\varphi_2(a) = \varphi_2(b)$, i.e. $\theta(a_1) = \theta(b_1)$. Hence, θ is a well defined mapping and

$$(\theta \circ \varphi_1)(a) = \theta(\varphi_1(a)) = \theta(a_1) = \varphi_2(a).$$

The mapping θ is a strong homomorphism. Namely, for every $s \in \{1, 2, ..., m\}$

$$\theta([a_1^n]_s) = \theta([\varphi_1(a_1')\dots\varphi_1(a_n')]_s) = \theta(\varphi_1([a_1'\dots a_n']_s)) = \varphi_2([a_1'\dots a_n']_s) = [\varphi_2(a_1')\dots\varphi_2(a_n')]_s = [(\theta \circ \varphi_1)(a_1')\dots(\theta \circ \varphi_1)(a_n')]_s = [\theta(a_1)\dots\theta(a_n)]_s.$$

Suppose that there is a strong homomorphism $\theta_1 : H_1 \to H_2$ such that $\theta_1 \circ \varphi_1 = \varphi_2$. Let $a_1 \in H_1$. Then $\theta_1(a_1) = \theta_1(\varphi_1(a)) = (\theta_1 \circ \varphi_1)(a) = \varphi_2(a) = (\theta \circ \varphi_1)(a) = \theta((\varphi_1)(a)) = \theta(a_1)$, i.e. θ is a unique strong homomorphism. \Box

Let H be a nonempty set. Denote by B(H) the set of all binary relations on H, by E(H) the set of all equivalence relations on H.

Definition 6. Let (H, []) be an (n, m)-hypersemigroup. A relation $\rho \in B(H)$ is said to be:

a) *i-compatible*, where $i \in \{0, 1, ..., n-1\}$, if for any $a, b \in H$ and s = 1, ..., m

$$(a\rho b \land x \in [x_1^i a x_{i+2}^n]_s) \Rightarrow (\exists y \in [x_1^i b x_{i+2}^n]_s) \ x\rho y.$$

Specially, for i = 0 (i = n - 1) we say that ρ is right (left) compatible.

b) compatible if for every j = 1, 2, ..., n and s = 1, ..., m

$$(a_j \rho b_j \land x \in [a_1^n]_s) \Rightarrow (\exists y \in [b_1^n]_s) x \rho y.$$

c) strongly *i*-compatible if for any $a, b \in H$

$$a\rho b \Rightarrow x\rho y,$$

for every $x \in [x_1^i a x_{i+1}^n]_s$, $y \in [x_i b x_{i+1}^n]_s$. Specially, for i = 0 (i = n - 1) we say that ρ is strongly right compatible (strongly left compatible).

d) strongly compatible if the following implication holds:

$$(\forall j = 1, \dots, n) \ a_j \rho b_j \Rightarrow x \rho y,$$

for every $x \in [a_1^n]_s, y \in [b_1^n]_s, s = 1, ..., m$.

If $\rho \in E(H)$ and it is *i*-compatible, compatible, strongly *i*-compatible and strongly compatible $(i \in \{0, 1, \ldots, n-1\})$, then ρ is said to be *i*-regular, regular, strongly *i*-regular, respectively.

Example 1. Let $H = \mathbb{Z}_4$ and $[]: H^3 \to (\mathcal{P}^*(H))^2$ be a (3, 2)-hyperoperation defined by:

$$[x_1^3] = \begin{cases} (\{2,3\}, x_3), \text{ if } x_1 = x_2 = x_3 = 0\\ (\{1,3\}, x_3), \text{ otherwise.} \end{cases}$$

By a direct verification of each case, one can show: $[[x_1^3]x_4] = (\{1,3\}, x_4) = [x_1[x_2^4]]$, i.e. (H, []) is a (3, 2)-hypersemigroup.

Let $\rho = \{(1,1), (1,2), (1,3), (3,1)\} \in B(H)$. It can be easily verified that ρ is strongly left compatible (i.e. strongly 2-compatible), since $a\rho b$ implies that $x\rho y$, for every $x \in [x_1^2a]_s$ and $y \in [x_1^2b]_s$, s = 1, 2. For instance, $(1,1) \in \rho$ implies that $x\rho y$, for every $x, y \in [x_1^21]_1 = \{1,3\}$ and $x, y \in [x_1^21]_2 = 1$. This relation is not strongly 0-compatible or 1-compatible since, for instance, $[2\ 1\ 0]_2 = 0$, $[2\ 2\ 0]_2 = 0$, but $(0,0) \notin \rho$. **Example 2.** Let $H = \{1, 2, 3, 4\}$ and let $[]: H^4 \to (\mathcal{P}^*(H))^2$ be a (4, 2)-hyperoperation defined by $[x_1^4] = (\{1, 2\}, \{3, 4\})$. Then (H, []) is a (4, 2)-hypersemigroup. Namely:

$$\begin{split} & [[x_1^4]x_5^6] = [\{1,2\} \ \{3,4\} \ x_5^6] = \\ & = ([13x_5^6]_1 \cup [14x_5^6]_1 \cup [23x_5^6]_1 \cup [24x_5^6]_1, [13x_5^6]_2 \cup [14x_5^6]_2 \cup [23x_5^6]_2 \cup [24x_5^6]_2) = \\ & = (\{1,2\}, \{3,4\}), \\ & [x_1[x_2^5]x_6] = [x_1 \ \{1,2\} \ \{3,4\} \ x_6] = \\ & = ([x_113x_6]_1 \cup [x_114x_6]_1 \cup [x_123x_6]_1 \cup [x_124x_6]_1, \\ & [x_113x_6]_2 \cup [x_114x_6]_2 \cup [x_123x_6]_2 \cup [x_124x_6]_2) = (\{1,2\}, \{3,4\}), \\ & [x_1^2[x_3^6]] = [x_1^2 \ \{1,2\} \ \{3,4\}] = \\ & = ([x_1^213]_1 \cup [x_1^214]_1 \cup [x_1^223]_1 \cup [x_1^224]_1, [x_1^213]_2 \cup [x_1^214]_2 \cup [x_1^223]_2 \cup [x_1^224]_2) = \\ & = (\{1,2\}, \{3,4\}). \end{split}$$

Let $\rho = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (3,4), (4,3)\}$ be an equivalence relation on H and let $a_j\rho b_j$, for $j = 1, \ldots, 4$. Then $[a_1^4]_1 = [b_1^4]_1 = \{1,2\}$ and $[a_1^4]_2 = [b_1^4]_2 = \{3,4\}$. For every $x \in [a_1^4]_s$ and $y \in [b_1^4]_s$, s = 1, 2, one obtains that $x\rho y$ holds. Thus, ρ is a strongly regular relation.

Proposition 1. Let (H, []) be an (n, m)-hypersemigroup. If $\rho \in B(H)$ is reflexive and strongly compatible, then ρ is strongly i-compatible for every $i \in \{0, ..., n-1\}$.

Proof. Let $a\rho b$ for any elements $a, b \in H$ and $x \in [x_1^i a x_{i+2}^n]_s, y \in [x_1^i b x_{i+2}^n]_s$ for every $s = 1, \ldots, m$. Since ρ is reflexive, $x_j \rho x_j, j \in \{1, \ldots, i, i+2, \ldots, n\}$ and $a\rho b$. The strong compatibility of ρ implies that $a\rho y$.

Proposition 2. Let (H, []) be an (n, m)-hypersemigroup and $\rho \in B(H)$ be reflexive and transitive. The relation ρ is strongly compatible if and only if ρ is strongly i-compatible for every $i \in \{0, ..., n-1\}$.

Proof. The direct statement follows from Prop.1. Conversely, let ρ be a reflexive, transitive and strongly *i*-compatible relation for every $i \in \{0, 1, \ldots, n-1\}$. Let $a_j\rho b_j$, $j = 1, \ldots, n$, $x \in [a_1^n]_s$ and $y \in [b_1^n]_s$ for every $s = 1, \ldots, m$. Since:

$$(a_1\rho b_1 \wedge x \in [a_1^n]_s \wedge x_1 \in [b_1a_2^n]_s) \Rightarrow x\rho x_1,$$

$$(a_2\rho b_2 \wedge x_1 \in [b_1a_2^n]_s \wedge x_2 \in [b_1b_2a_3^n]_s) \Rightarrow x_1\rho x_2,$$

$$\dots$$

$$(a_n\rho b_n \wedge x_{n-1} \in [b_1^{n-1}a_n]_s \wedge y \in [b_1^n]_s) \Rightarrow x_{n-1}\rho y,$$

and the transitivity of ρ , it follows that $x\rho y$.

44

As a consequence of the previous proposition we obtain the following

Corollary 1. If $\rho \in E(H)$ is a strongly regular relation on (n, m)-hypersemigroup (H, []), then ρ is strongly i-regular relation for every $i \in \{0, \ldots, n-1\}$.

Proposition 3. Let (H, []) be an (n, m)-hypersemigroup. If $\rho, \theta \in B(H)$ are strongly *i*-compatible for some $i \in \{0, 1, ..., n-1\}$ (strongly compatible), then $\rho \circ \theta$ is strongly *i*-compatible (strongly compatible).

Proof. Let $\rho, \theta \in B(H)$ be strongly *i*-compatible for some $i \in \{0, \ldots, n-1\}$ and $a \ \rho \circ \theta \ b, \ x \in [x_1^i a x_{i+2}^n]_s, \ y \in [x_1^i b x_{i+2}^n]_s$, for every $s = 1, \ldots, m$. Since $a \ \rho \circ \theta \ b$, it follows that there exists $c \in H$ such that $a\rho c$ and $c\theta b$. If $z \in [x_1^i c x_{i+1}^n]_s$, then by the strong *i*-compatibility of ρ it follows that $x\rho z$. One can analogously conclude that $z\theta y$ and thus $x \ \rho \circ \theta \ y$. Strong compatibility can be shown in a similar way.

Proposition 4. Let (H, []) be an (n, m)-hypersemigroup. If the relations $\rho_j \in B(H), j \in \{1, \ldots, n\}$, are strongly i-compatible for every $i \in \{0, \ldots, n-1\}$, then $\bigcup \{\rho_j | j = 1, \ldots, n\}$ is strongly i-compatible.

Proof. Let $a \bigcup_{j=1}^{n} \rho_j$ b and $x \in [x_1^i a x_{i+2}^n]_s$, $y \in [x_1^i b x_{i+2}^n]_s$, for every $s \in \{1, \ldots, m\}$. Then, there exists $j \in \{1, \ldots, n\}$ such that $a \rho_j b$. Since ρ is a strongly *i*-compatible relation it follows that $x \rho_j y$ and therefore $x \bigcup_{j=1}^{n} \rho_j y$.

Proposition 5. Let (H, []) be an (n, m)-hypersemigroup. If the relations $\rho_j \in E(H), j \in \{1, \ldots, n\}$, are strongly i-regular for every $i \in \{0, \ldots, n-1\}$, then $\bigcap \{\rho_j | j = 1, \ldots, n\}$ is strongly i-regular.

Proof. Let $a \bigcap_{j=1}^{n} \rho_j b$ and $x \in [x_1^i a x_{i+2}^n]_s$, $y \in [x_1^i b x_{i+2}^n]_s$, for every $s \in \{1, \ldots, m\}$. Then, for every $j \in \{1, \ldots, n\}$, $a\rho_j b$. Since ρ_j are *i*-regular relations it follows that $x\rho_j y$, for every j. Therefore, $x \bigcap_{j=1}^{n} \rho_j y$.

Theorem 2. Let H and K be two (n,m)-hypersemigroups and $\varphi : H \to K$ be a strong homomorphism. Then $\rho = \{(a,b) \in H^2 | \varphi(a) = \varphi(b)\}$ is a regular relation.

Proof. It is obvious that ρ is an equivalence relation on H. Let $a_j\rho b_j$ for every $j \in \{1, 2, ..., n\}$ and let $x \in [a_1^n]_s$ for $s \in \{1, 2, ..., m\}$. Then $\varphi(a_j) = \varphi(b_j)$. Since $x \in [a_1^n]_s$ it follows that $\varphi(x) \in \varphi([a_1^n]_s)$ and, since φ is a strong homomorphism, we obtain that $\varphi(x) = [\varphi(a_1) \dots \varphi(a_n)]_s =$

 $[\varphi(b_1)\dots\varphi(b_n)]_s = \varphi([b_1^n]_s)$. Hence, there exists $y \in [b_1^n]$ such that $\varphi(x) = \varphi(y)$, i.e. $x\rho y$. Therefore, ρ is a regular relation.

References

- B. Davvaz, Some Results on Congruences on Semihypergroups, Bull. Malaysian Math. Sc. Soc. (Second Seies) 23 (2000) 53-58.
- [2] B. Davvaz, W. A. Dudek, T. Vougiouklis, A Generalization of n-ary Algebraic Systems, Communications in Algebra, 37 (2009) 1248-1263.
- [3] B. Davvaz, V. Loreanu-Fotea, Binary Relations on Ternary Semihypergroups, Communications in Algebra, 38:10 (2010) 3621-3636.
- [4] B. Davvaz, V. Loreanu-Fotea, Ternary Hypergroups (A Survey), Int. Journal of Algebraic Hyperstructures and its Applications, Vol. 1, No.1, (2014), 29-44.
- [5] B. Davvaz, T. Vougiouklis, N-ary Hypergroups, Iranian Journal of Science & Technology, Transaction A, 30 (2006) 165–174.
- [6] G. Čupona, Vector valued semigroups, Semigroup Forum, 26 (1983), 65-74.
- [7] G. Čupona, N. Celakoski, S. Markovski, D. Dimovski, Vector Valued Groupoids, Semigroups and Groups, Vector Valued Groupoids, Semigroups and Groups, Maced. Acad. of Sci. and Arts, 1988, 1–78.
- [8] F. Marty, Sur une Generalization de la Notion de Groupe, 8th Congress Math., Scandenaves, Stocholm (1934) 45-49.
- [9] V. Miovska, V. Celakoska-Jordanova, B. Davvaz, Vector Valued Hyperstructures, Kragujevac Journal of Mathematics (to appear).
- [10] B. Trpenovski, B., G. Cupona, [m, n]-groupoids, Bull. Soc. Math. Phys. Macédoine, 21 (1970), 19-29 (in Macedonian).

SS. CIRIL AND METHODIUS UNIVERSITY, FACULTY OF NATURAL SCIENCES AND MATHEMATICS, ARHIDEMOVA 3, 1000 SKOPJE, R. MACEDONIA *E-mail address*: miovska@pmf.ukim.mk *E-mail address*: vesnacj@pmf.ukim.mk, celakoska@gmail.com