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A NOTE ON COMPATIBLE BINARY RELATIONS ON
VECTOR VALUED HYPERSEMIGROUPS

VALENTINA MIOVSKA AND VESNA CELAKOSKA-JORDANOVA

Abstract. In this note we present some properties concerning the con-
nection between vector valued hypersemigroups and various kinds of
compatible binary relations defined on them, i.e. i-compatible, compat-
ible, strongly i-compatible, strongly compatible, regular and strongly
i-regular binary relations.

Binary hyperstructures were introduced by Marty in [8] as a natural
extension of classical algebraic structures. Vector valued hyperstructures
were introduced in [9] as a generalization of n-ary hyperstructures (|5, 2|)
and vector valued structures ([10, 6, 7]). Besides the concepts of vec-
tor valued hypergroupoids, hypersemigrops, weak hypersemigroups, etc.,
regular and strongly regular binary relations on vector valued hypersemi-
groups were introduced in [9] as well. Following some recent papers of
Davvaz and Loreanu-Fotea ([1, 3, 4]), in this short note we introduce the
notions of i-compatible, strongly i-compatible, i-regular relations for some
i€{0,1,...,n—1}, as well as compatible and strongly compatible relations
on vector valued hypersemigroups and prove a few properties concerning
these notions. For the sake of completeness, we will repeat the definitions
of vector valued hypergroupoid and vector valued hypersemigroup from the
paper [9].

Let H be a nonempty set and let n, m be positive integers such that
n > m. Denote by P*(H) the set of all nonempty subsets of H and by H"
the nth Cartesian product of H.

Definition 1. ([9], Def.1.1.) A mapping []|: H" — (P*(H))™ from the nth
Cartesian product of H to the mth Cartesian product of P*(H) is called an
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(n, m)-hyperoperation on H. If it is not necessary to emphasize the integers
n and m, then we will say that [ ] is a vector valued hyperoperation instead
of (n, m)-hyperoperation.

Throughout the paper, the elements of H", i.e. the sequences (z1,...,x,)
will be denoted by x12> ...z, or, shortly, 7. The symbol x‘Z will denote the
sequence x;x;y1 ..., of elements of H when ¢ < j and the empty symbol
when ¢ > 7.

Definition 2. ([9], Def.1.2.) A sequence of m n-ary hyperoperations [ s :
H"™ — P*(H), s € {1,2,...,m}, can be associated to [ ] by putting

[al]s = Bs < [a}] = (B1,...,Bn),

for all a1,...,a, € H. Then, we call [ | the sth component hyperoperation
of [ ] and write [ | = ([ ]1,...,[ ]m)- Note that there is a unique (n,m)-
hyperoperation on H whose component hyperoperations are [ 5.

An (n,m)-hyperoperation [ | on H is extended to subsets A, Aa, ..., A,
of H in a natural way, i.e.

[A1As ... Ap] = ([A1As ... Apl1, [A1As . Anle, - [A1 A A,

where [A1 Ay ... Apls = U{[a}]s | @i € Ai,i=1,2,...,n}and s =1,2,...,m.
Clearly, C7 C BY if and only if C; C B;, for i = 1,...,p, and, 2} € CV if
and only if z; € C; fori=1,...,p.

Definition 3. (|9], Def.1.3.) An algebraic structure H = (H,[]), where
[]is an (n,m)-ary hyperoperation defined on a nonempty set H, is called
an (n, m)-hypergroupoid or vector valued hypergroupoid. Identifying the set
{z} with the element x, any (n,m)-groupoid is an (n,m)-hypergroupoid.
I[]=(li,---,[]m), we denote by (H;|[ |1,...,][ |m) the component hy-
pergroupoid of H and (H,[];) is the jth component n-ary hypergroupoid of
H.

Further on we assume that the positive integers n and m are such that
n>m,ie n=m+k, for k> 1.

Definition 4. (|9], Def.1.4.) An (n,m)-hyperoperation is said to be asso-
ciative if

[le[l,wrn n+k Jj+ny_n+k ]’

i+11 %41 G411  jnt1
holds for all z1,...,2,1x € H and for all 4,5 € {1,2,...,n}.
An (n,m)-hyperoperation is said to be weakly associative if

2}l = el {T]e

i k j1..J+ k
[z} [:Eiimx?jn—&—l]s N [$j1 [1/‘;+?]5U?in+1}s #0,
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holdsforalli,j € {1,2,...,n},z1,...,2p+k € Handevery s € {1,2,...,m}.
An (n, m)-hypergroupoid with an associative operation (weakly associa-
tive operation) is called an (n, m)-hypersemigroup (weak (n,m)-hypersemi-
group).
Examples of (n, m)-hypersemigroups and weak (n,m)-hypersemigroups
are presented in [9)].
Definition 5. ([9], Def.1.10.) Let (H,[]) and (H',[]") be (n, m)-hypergrou-
poids. A mapping ¢ : H — H' is:
a) a strong homomorphism if and only if p([al]s) = [p(a1) ... e(an)]s;
b) an inclusion homomorphism if and only if o([a}]s) C [¢(a1) ... p(an)]s;
) a weak homomorphism if and only if p([a}]s) N[e(a1)...¢(an)]s # 2,
for every s = 1,2,...,n. The mapping ¢ that is a bijection and strong

homomorphism is called an isomorphism, and it is called an automorphism
if ¢ is defined on the same (n, m)-hypergroupoid.

Theorem 1. Let H, Hy, Hs be (n, m)-hypersemigroups (weak (n, m)-hyper-
semigroups), w1 : H — Hy be a surjective strong homomorphism and s :
H — Hs be a strong homomorphism, such that kerypy C kerypa. Then there
exist a unique strong homomorphism 0 : Hi — Ho such that 0 o o1 = 9.

Proof. Let a € H. Then ¢i(a) =aj € Hy. Let 6 : Hi — Ha be a mapping
defined by 6(a1) = p2(a). Let a3 = by. Since ¢ is a surjective mapping it
follows that there is b € H such that ¢1(b) = by. Clearly, ¢1(a) = ¢1(b), i.e
(a,b) € kerpy C kerys. Thus, pa(a) = ¢a(b), i.e. O(a1) = 6(b1). Hence, 0
is a well defined mapping and

(00 p1)(a) = O(p1(a)) = 0(a1) = pa(a).
The mapping 6 is a strong homomorphism. Namely, for every s €
{1,2,...,m}
0(lai]s) = 0([wr(a)) .- pr(an)ls) = O(pr([ar - - ap]s)) = wallal - . ap]s) =
= [p2(a) ... pa(ay)ls = [(0 0 p1)(ar) ... (0 0 p1)(ay)]s = [0(ar) - .. O(an)]s.

Suppose that there is a strong homomorphism 6 : H; — Hs such that
01091 = @o. Let ap € H;. Then (91(0,1) = (91((,01(&)) = (01 o gpl)(a) =
wa(a) = (B opi)(a) =0((p1)(a)) = 6(ay), i.e. 0 is a unique strong homo-
morphism. O
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Let H be a nonempty set. Denote by B(H) the set of all binary relations
on H, by E(H) the set of all equivalence relations on H.

Definition 6. Let (H,[]) be an (n,m)-hypersemigroup. A relation p €
B(H) is said to be:

a) i-compatible, where i € {0,1,...,n — 1}, if for any a,b € H and
s=1,....m

(apb A = € [shazlols) = Gy € [21ba7,a)s) Ty,
Specially, for i = 0 (i = n — 1) we say that p is right (left) compatible.
b) compatible if for every j =1,2,...,nand s=1,...,m
(ajpbj N x € [af]s) = (Jy € [b]s) zpy.
c) strongly i-compatible if for any a,b € H
apb = xpy,

for every @ € [z4aa?,]s, y € [w;ba?, |]s. Specially, for i =0 (i =n — 1) we
say that p is strongly right compatible (strongly left compatible).
d) strongly compatible if the following implication holds:

Vj=1,...,n) ajpb; = zpy,

for every x € [al]s, y € [b}]s, s=1,...,m.

If p € E(H) and it is i-compatible, compatible, strongly i-compatible and
strongly compatible (i € {0,1,...,n — 1}), then p is said to be i-reqular,
reqular, strongly i-reqular, strongly reqular, respectively.

Example 1. Let H = Zyand [ ] : H3 — (P*(H))? be a (3, 2)-hyperoperation
defined by:
3 ({2,3},:133), if Tr] = L9 = I3 = 0
[ﬂ:{ ({1,3}, z3), otherwi
, 3}, x3), otherwise.
By a direct verification of each case, one can show: [[z3]x4] = ({1,3},24) =
[z1[z3]], i-e. (H,[]) is a (3,2)-hypersemigroup.

Let p = {(1,1),(1,2),(1,3),(3,1)} € B(H). It can be easily verified
that p is strongly left compatible (i.e. strongly 2-compatible), since apb
implies that xpy, for every x € [z2a]s and y € [22b]s, s = 1,2. For in-
stance, (1,1) € p implies that xpy, for every x,y € [221]; = {1,3} and
x,y € [#21]y = 1. This relation is not strongly 0-compatible or 1-compatible
since, for instance, [210]2 =0, [22 0] = 0, but (0,0) & p.



A NOTE ON COMPATIBLE BINARY RELATIONS ON ... 43

Example 2. Let H = {1,2,3,4} and let [ ] : H* — (P*(H))? be a
(4,2)-hyperoperation defined by [z{] = ({1,2},{3,4}). Then (H,[]) is a
(4,2)-hypersemigroup. Namely:

[24]28] = [{1,2} {3,4} a5] =
[1328] U[1428], U [2328], U [2428] 1, [1328]o U [1428]o U[2328]o U[2428]0) =
{1,2},{3,4}),

[
(
= (
(el = 1 (1,2} {3,4) ] =
= ([x113x6]1 U [z114x6]1 U [212326]1 U [£124x6]1,
[
[
= (
= (

$113l‘6]2 U [x114x6]2 U [$123$6]2 U [.%'124%’(;] ) ({1, 2}, {3,4}),
flz8]] = [#% {1,2} {3,4}] =
[313]); U[2314], U [2223]1 U [z324]1, [313]o U [2214]o U [2223]2 U [2324]5) =

{1,2},{3,4}).

Let p = {(1,1),(2.2), (3,3), (4,4), (1,2), (2,1), (3,4), (4,3)} be an equiv-
alence relation on H and let a;jpbj, for j = 1,...,4. Then [aj]; = [b}]; =
{1,2} and [af]2 = [b}]2 = {3,4}. For every x € [al]s and y € [bf]s, s = 1,2,
one obtains that xzpy holds. Thus, p is a strongly regular relation.

X

Proposition 1. Let (H,[]) be an (n,m)-hypersemigroup. If p € B(H) is
reflexive and strongly compatible, then p is strongly i-compatible for every
i€{0,...,n—1}.

Proof. Let apb for any elements a,b € H and x € [z}azl, ,]s, y € [2}bzl,]s
for every s = 1,...,m. Since p is reflexive, zjpz;, j € {1,...,4,i+2,...,n}
and apb. The strong compatibility of p implies that apy.

Proposition 2. Let (H,[]) be an (n,m)-hypersemigroup and p € B(H) be
reflexive and transitive. The relation p is strongly compatible if and only if
p 18 strongly i-compatible for every i € {0,...,n — 1}.

Proof. The direct statement follows from Prop.1. Conversely, let p be a re-
flexive, transitive and strongly i-compatible relation for every i € {0,1,...,
n —1}. Let ajpbj, j = 1,...,n, v € [a}]s and y € [b}] for every s =
1,...,m. Since:

(a1pbr A z € [al]s A x1 € [bral]s) = xpx,
(agpbg N X1 € [blag]s N X9 € [blbgag]s) = T1pT2,

(anpby N Tp_1 € [b?_lan}s Ay € [b1]s) = xp-1py,
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and the transitivity of p, it follows that xpy. O
As a consequence of the previous proposition we obtain the following

Corollary 1. If p € E(H) is a strongly reqular relation on (n, m)-hypersemi-
group (H,[]), then p is strongly i-regular relation for everyi € {0, ..., n—1}.

Proposition 3. Let (H,[]) be an (n,m)-hypersemigroup. If p,6 € B(H)
are strongly i-compatible for some i € {0,1,...,n—1} (strongly compatible),
then p o 0 is strongly i-compatible (strongly compatible).

Proof. Let p,0 € B(H) be strongly i-compatible for some i € {0,...,n—1}
and a po 6 b, x € [zghaal,,]s, y € [xibal )]s, for every s = 1,...,m.
Since a p o 0 b, it follows that there exists ¢ € H such that apc and cb.
If z € [z}cal, ]s, then by the strong i-compatibility of p it follows that
zpz. One can analogously conclude that zfy and thus z po 6 y. Strong
compatibility can be shown in a similar way. U

Proposition 4. Let (H,[ |) be an (n,m)-hypersemigroup. If the rela-
tions p; € B(H), j € {1,...,n}, are strongly i-compatible for every i €
{0,...,n—1}, then U{p;| 1 = 1,...,n} is strongly i-compatible.

Proof. Let a U;‘L:1 p;j band = € [:cziaasyﬂ]s, y € [xilb:rzyﬁ]s, for every
s € {1,...,m}. Then, there exists j € {1,...,n} such that ap;b. Since
p is a strongly i-compatible relation it follows that xp;y and therefore
T U;‘L:1 Pi Y- O

Proposition 5. Let (H,[]) be an (n,m)-hypersemigroup. If the relations
p; € E(H), je{l,...,n}, are strongly i-regular for every i € {0,...,n—1},
then (\{pj] 7 =1,...,n} is strongly i-regular.

Proof. Let a ﬂ?zl p; band x € [xﬁaa:ﬁz]s, Yy € [x’ib:zgﬁr?]s, for every s €
{1,...,m}. Then, for every j € {1,...,n}, ap;b. Since p; are i-regular
relations it follows that xp;y, for every j. Therefore, x ﬂ?zl P Y- O

Theorem 2. Let H and K be two (n,m)-hypersemigroups and ¢ : H — K
be a strong homomorphism. Then p = {(a,b) € H?|¢(a) = ©(b)} is a
regular relation.

Proof. 1t is obvious that p is an equivalence relation on H. Let a;pb;
for every j € {1,2,...,n} and let € [a}]s for s € {1,2,...,m}. Then
p(a;) = p(bj). Since x € [a}]s it follows that ¢(z) € ¢([al]s) and, since
¢ is a strong homomorphism, we obtain that p(z) = [p(a1)...¢(an)]s =
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[p(b1) ... @(bn)]s = @([b]]s). Hence, there exists y € [b}] such that p(z) =

©(y), i.e. xpy. Therefore, p is a regular relation. (]
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