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MODELING AND ESTIMATING MULTITYPE BRANCHING

PROCESSES WITH NEGATIVE MULTINOMIAL OFFSPRING

DISTRIBUTIONS
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Abstract. We consider two - type branching stochastic processes with off-

spring distributions from the negative multinomial distribution family. We

introduce the Bayesian inference in two sampling schemes - when the entire
family tree is observed and when observations only on the generation sizes

are made. Simulational and computational results are presented.

1. Introduction

Branching stochastic processes are models of many real phenomena, where a
number of objects is observed, which live some (random) time, reproduce (or
”branch”) according to some probabilistic law, and die out. These object are often
called particles, cells or individuals. They can be of multiple types and may have
different locations in space. Their evolution and generation may be independent
or according to certain probabilistic laws.

The multitype branching processes (the branching processes with several types
of particles) become popular after the pioneering works of Kolmogorov and Dmitriev
[14] and Kolmogorov and Sevastyanov [15] from 1947 on their formulation and han-
dling in the Markov case. Since then there is an impressive number of work in
the area of branching processes theory and applications (see f.e. the books of As-
mussen and Herring [1], Athreya and Ney [2], Harris [8], Jagers [10], Sevastyanov
[19], Yakovlev and Yanev [24] and others).

Statistical estimation of the process’ characteristics like the mean number of
offspring, the criticality of the process, the offspring distribution and others, is an
important issue in their study. Some of the most resent approaches devoted to
the statistical inference for branching processes can be found in González et al.
[4]. The work of Jacob [9] gives a comprehensive overview of the theoretical and
statistical methods used in epidemiology. The importance of simulation, comput-
ing and more flexible statistical procedures can also be traced in González et al.
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[6], [4], [5]. Results on the asymptotics of the relative frequancies in multitype
branching processes and applications in cell biology can be traced in Yakovlev and
Yanev [25], [26] and Yakovlev et. al. [23].

As in other fields of statistics, there are different approaches for estimation
- parametric, nonparametric and semiparametric settings. The parametric ap-
proach uses the exact offspring distribution in a specified parametric family like
the multivariate power series. The bivariate power series distribution family is a
natural generalization of the univariate power series distribution family and a sub-
class of the multivariate power series distribution family. There are many sources
concerning the properties and applications of the multivariate power series distri-
butions. Among them we mention the pioneering papers of Khatri [13], Patil [18],
Gerstenkorn [3] and the thorough books on discrete multivariate distributions of
Johnson et. al. [11] and discrete bivariate distributions of Kocherlakota[16]. The
estimation in the multivariate power series family is of interest in itself. In the
class of the univariate power series offspring distributions some topics of the para-
metric estimation are considered in Stoimenova and Yanev [21] and of the robust
parametric estimation - in Stoimenova [22]. In the present paper we consider the
maximum likelihood estimation for two-type branching processes with negative
multinomial offspring distribution ([20]) for both types of particles.

2. Two Type Branching Processes

Let us consider a multitype branching processes with two types of particles:

Z(n+ 1) = (Z1(n+ 1), Z2(n+ 1)), (2.1)

where Z(n+ 1) denotes the size of the (n+ 1)-st generation, which may be split in
two groups according to the type of the particle. Consequently Z(n+1) is a bivari-
ate vector (Z1(n+ 1), Z2(n+ 1)), where Zk(n+ 1) is the number of individuals of
type k in the (n+ 1)-st generation.

On the other hand the individuals of type k in the (n + 1)-st generation are
obtained as a sum of the numbers of offspring of type k of the individuals living
in the previous (n− th) generation (the so called ”branching property”).

Zk(n+ 1) =

Z1(n)∑
s=1

Xk
1s(n) +

Z2(n)∑
s=1

Xk
2s(n), k = 1, 2 (2.2)

where Xk
is(n) denotes the number of children of type k of the s-th particle of type

i in the (n+ 1)-st generation.
Let

Zk(n, (i, j)) =

Zk(n)∑
s=1

I{Xks(n)=(i,j)} (2.3)

be the number of particles in the n−th generation with exactly (i, j) offspring.
Here I{Xks(n)=(i,j)} is the indicator variable for the event that a particle of type k
has i children of type 1 and j children of type 2.
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The following basic relations hold:

Zk(n) =
∑
(i,j)

Zk(n, (i, j)). (2.4)

Furthermore, if Zks (n+ 1) denotes the number of particles of type s in the (n+1)-th
generation with father of type k, it can be easily seen that

Z1(n+ 1) = Z1
1 (n+ 1) + Z2

1 (n+ 1)

=
∑
i

iZ1(n, (i, j)) +
∑
i

iZ2(n, (i, j)) (2.5)

and

Z2(n+ 1) = Z1
2 (n+ 1) + Z2

2 (n+ 1)

=
∑
j

jZ1(n, (i, j)) +
∑
j

jZ2(n, (i, j))). (2.6)

Consequently,

Z(n+ 1) =

(∑
(i,j)

i.Z
(
n, (i, j)

)
,
∑
(i,j)

j.Z
(
n, (i, j)

))
. (2.7)

Let pkij denote the probability that an individual of type k has (i, j) offspring.
In the statistical inference of branching processes usually the following three

sampling schemes are used:

• One observes the entire family tree up to the N-th generation (the number
of offspring of each particle):˜̃J (N) = {Xis(n) : s = 1, 2, .., Zi(n); i = 1, 2; n = 0, . . . , N − 1; } (2.8)

• Number of particles with (i, j) ∈ Jk offspring is known, where Jk is the
support of the offspring distribution:

J̃ (N) = {Zk(n, (i, j)) : (i, j) ∈ Jk; k = 1, 2; n = 0, . . . , N − 1; } (2.9)

• One can observe the generation sizes only:

J (N) = {Z(0), . . . , Z(N)}. (2.10)

3. The negative multinomial offspring distribution

The negative multinomial-NMn distribution is first introduced as a notion in
the model of the inverse sampling in multitype Bernoulli trials.

In the papers discussing statistical theory of accident, absenteeism and conta-
gion, the NMn distribution was introduced under the name “multivariate negative
binomial distribution”. Bates and Neyman are first which threated NMn distri-
bution systematically.

The NMn distribution is a multivariate generalization of the negative binomial
distribution. In this discrete distribution all of the counts are positively correlated.
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Suppose an experiment that generates d+1 ≥ 2 possible outcomes {X0, X1, . . . , Xd}

each occuring with non-negative probabilities {p0, p1, . . . , pd}, (
d∑
i=0

pi = 1).

If the experiment is stopped, once X0 reaches the predetermined value M ,
then the distribution of (X1, . . . , Xd) is called negative multinomial distribution
NM(M,p1, . . . , pd) with p.d.f.

fp(x1, . . . , xd) =

Γ(M +
d∑
j=1

xj)

Γ(M)
d∏
j=1

xj !

.

(
1 +

d∑
j=1

pj

)−M d∏
j=1

(
pj

1 +
d∑
j=1

pj

)xj

=

Γ(M +
d∑
j=1

xj)

Γ(M)
d∏
j=1

xj !

.

(
1−

d∑
j=1

pj

)M d∏
j=1

p
xj

j (3.1)

where
The negative multinomial distribution belongs to the family of the multivariate

power series distributions.

4. The likelihood function

In this section we find maximum likelihood estimators (MLE) for the four un-
known parameters pik in a two-type branching process, where the offspring distri-
bution for both types of particles is negative multinomial

pk(i,j) =
Γ(M + i+ j)

Γ(M) i! j!

p1k
i p2k

j

(1 + p1k + p2k)M+i+j
.

Hence we suppose that the parameter M is known and the same for the both
types of particles. This situation is possible if a particle of type 1 or 2 gives birth
to two types of particles until M failures (unsuccessfull births) occur.

With the sampling scheme J̃ (N), the likelihood function has the form:

L(J̃ (N) | θ) =
2∏
k=1

N−1∏
n=1

∏
(i,j)

(pk(i,j))
Zk(n,(i,j)) =

=

2∏
k=1

N−1∏
n=1

∏
(i,j)

(
Γ(M + i+ j)

Γ(M) i! j!

p1k
i p2k

j

(1 + p1k + p2k)M+i+j

)Zk(n,(i,j))

=

=

2∏
k=1

N−1∏
n=1

(∏
(i,j)

Γ(M + i+ j)

Γ(M)i!j!

)Zk(n,(i,j))

p

∑
(i,j)

iZk(n,(i,j))

1k p

∑
(i,j)

jZk(n,(i,j))

2k

×(1 + p1k + p2k)
−

∑
(i,j)

(M+i+j)Zk(n,(i,j))

=

=

2∏
k=1

N−1∏
n=1

Ck(n,M)p
Zk

1 (n+1)
1k p

Zk
2 (n+1)

2k ×
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×(1 + p1k + p2k)−MZk(n)−Zk
1 (n+1)−Zk

2 (n+1) =

=

2∏
k=1

Ck(M)p

N∑
n=1

Zk
1 (n)

1k p

N∑
n=1

Zk
2 (n)

2k ×

×
(

1 + p1k + p2k

)−M N−1∑
n=0

Zk(n)−
N∑

n=1
Zk

1 (n)−
N∑

n=1
Zk

2 (n)

, (4.1)

where Ck(n,M) and Ck(M) are constants, not related the parameters of interest.
From the conditions ∂L

∂p1k
= 0, ∂L

∂p2k
= 0 we find the MLE for the probabilities

p1k and p2k:

p̂1k =

N∑
n=1

Zk1 (n)

M
N−1∑
n=0

Zk(n)

, p̂2k =

N∑
n=1

Zk2 (n)

M
N−1∑
n=0

Zk(n)

, k = 1, 2. (4.2)

5. The Bayesian estimation

The Bayesian approach to statistical design and analysis is effective and prac-
tical alternative to the frequentist one.

Gonzalez et.al. [6] apply the non-parametric Baysian approach to multitype
branching processes. In the present work we use the parametric Bayesian approach,
applied for the bivariate negative multinomial offspring distribution in multitype
branching processes.

We use the form (4.1) of the likelihood function.
For a conjugate prior distribution of the random vector pk = (p1k, p2k) we

choose the Inverted Dirichlet distribution IDirichlet(αk, βk, γk), αk, βk, γk > 0.
Hence the prior distribution is:

πk(p1k, p2k) =
Γ(αk + βk + γk)

Γ(αk)Γ(αk)Γ(αk)
.

p αk−1
1k .p βk−1

2k

(1 + p1k + p2k)αk+βk+γk
. (5.1)

Since the two types of particles reproduce independently, we make the assump-
tion that the parameters of their offspring distributions are independent too, and
the joint prior distribution has the form

π(p;α) = π1(p1;α1).π2(p2;α2) (5.2)

Hence we obtain the following posterior distribution of the parameters p

f(p | J̃ ) =
π(p;α).L(J̃ | p)∫
π(p;α) .L(J̃ | p)dp

∝ π(p;α).L(J̃ | p)

∝
2∏
k=1

Γ(α1k + α2k + α3k)

Γ(α1k)Γ(α2k)Γ(α3k)

p

N∑
n=1

Zk
1 (n)+αk−1

1k .p

N∑
n=1

Zk
2 (n)+βk−1

2k

(1 + p1k + p2k)
M

N∑
n=0

Zk(n)+
N∑

n=1
Zk

1 (n)+
N∑

n=1
Zk

2 (n)+αk+βk+γk

(5.3)



34 STANEVA AND STOIMENOVA

Consequently

f(pk | J̃ ) ∼ IDirichlet

(
N∑
n=1

Zk1 (n) + αk,

N∑
n=1

Zk2 (n) + βk, M

N−1∑
n=0

Zk(n) + γk

)

6. The Gibbs sampler

The next step of Bayesian approach is simulation of parameters to obtain a
sample from the posterior distribution of the parameters.

If the entire family tree in the considered model is not observed, the number of
particles having a fixed number of children Zk(n, (i, j)), k = 1, 2 is not available.
In the considered model we suppose that only the size of the population in each
generation J (N) = {Z(0), . . . , Z(N)} is observed.

We approximate the posterior density f(p|J̃ ) using the Gibbs sampler algo-
rithm.

Gibbs sampler, described D.Geman and S.Geman (1984) is a Markov chain
Monte Carlo (MCMC) method used to approximate the sampling from an arbitrary
distribution. The main idea of the MCMC methods is to generate a Markov chain
whose limiting distribution is equal to the desired distribution.

According to Gonzalez et.al.[6], [4], [5], the conditional distribution can be
expressed as a product of conditional probabilities

P

(
J̃ (N) | J (N),p

)
=

N−1∏
n=0

P

(
(Z(n, (i, j)), (i, j) ∈ Jk | Z(n), Z(n+ 1),p

)
,

(6.1)
each of them stemming from a multinomial distribution.

In the case of a two-type branching process (6.1) can be written in the form:

P

(
Z(n, (i,j)) | Z(n),Z(n + 1),p

)
=

=

2∏
k=1

(Zk(n))!
∏
(i,j)

P

(
Xks(n)=(i,j)

)Zk(n,(i,j))

Zk(n,(i,j))!

P (Z(n + 1) | Z(n),p)
(6.2)

The numerator of (6.2) is Multinomial distribution with parameters, which
may be used to generate the sample {Zk(n, (i, j))} on the basis of two consecutive
generation sizes Z(n) and Z(n+ 1), n = 0, 1, . . . , N − 1.

Hance, we can obtain a sample from P

(
J̃ (N) | J (N),p

)
.

In the considered model the Gibbs sampler algorithm works by the following
way:

Step 0: Initialize l = 0.
Step 1: Generate :
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• p(0)1 ∼ IDirichlet(α1, β1, γ1)

• p(0)2 ∼ IDirichlet(α2, β2, γ2)
Step 2: Iterate :

(1) l = l + 1

(2) Generate: J̃ (N )
(l)

using the conditional distribution f(J̃ |J ,p) on
the basis of multinomial distributions.

(3) Generate:

p
(l)
1 ∼ IDirichlet

(
N∑
l=1

Z1
1 (l) + α1,

N∑
l=1

Z1
2 (l) + β1, M

N−1∑
l=0

Z1(l) + γ1

)

p
(l)
2 ∼ IDirichlet

(
N∑
l=1

Z2
1 (l) + α2,

N∑
l=1

Z2
2 (l) + β2, M

N−1∑
l=0

Z2(l) + γ2

)
Step 3: Go to Step 2.

7. Simulation

For the simulations in this article we used R - the system for statistical compu-
tation and graphics.

Let us first observe the sensitivity of the model to the choice of the parameters.
Suppose we have a sample of the parameters from the prior distribution. We
make a simulation of the two-type branching process with negative multinomial
distribution with parameters from the sample. The trajectories of the processes
can be seen on the following graphics.

n Z1
1 (l) Z2

1 (l) Z1(l) Z1
2 (l) Z2

2 (l) Z2(l)

1 0 0 1 0 0 1

2 12 526 538 17 663 680

3 3 544 547 4 694 698
4 4 632 636 5 763 768

5 8 359 367 10 445 455
6 8 449 457 3 515 518

7 8 875 883 5 981 986

8 3 279 282 1 350 351
9 5 470 475 3 584 587

10 4 397 401 2 507 509
11 5 635 640 4 758 762
12 4 536 540 1 636 637

13 7 352 359 8 386 394

14 4 738 742 4 895 899
15 7 550 557 9 602 611

16 14 839 853 16 1015 1031
17 11 260 271 6 317 323
18 3 678 681 4 796 800

19 3 490 493 0 552 552
20 4 485 489 10 635 645
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n Z1
1 (l) Z2

1 (l) Z1(l) Z1
2 (l) Z2

2 (l) Z2(l)

1 0 0 1 0 0 1

2 19 1 20 33 0 33
3 1 4 5 3 3 6

4 4 1 5 11 4 15

5 3 1 4 5 1 6
6 12 1 13 19 1 20

7 13 5 18 19 0 19

8 12 1 13 18 1 19
9 9 2 11 13 0 13

10 3 2 5 7 1 8

11 7 0 7 5 0 5
12 12 3 15 19 4 23

13 6 4 10 7 0 7

14 3 1 4 12 0 12
15 4 1 5 12 1 13

16 18 4 22 27 1 28
17 6 1 7 9 2 11

18 10 4 14 16 1 17

19 6 3 9 15 0 15
20 2 2 4 5 1 6

On the graphs below the points are the generation sizes (the number of particles
of type 1 and the number of particles of type 2), generated via negative multinomial
distribution
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After applying the algorithm, one can obtain the number of children of each type
and then calculate the MLE of the parameters. In the table below one can see the
estimates after each iteration of the algorithm (we have made 20 iterations). The
generated process has negative multionmial offspring distribution with parameters
p11 = 0.06 , p21 = 0.2, p12 = 0.3 p22 = 0.1. All parameters of the prior distribution
are equal to 1.

p̂11 p̂21 p̂12 p̂22
1 0.18367347 0.6530612 1.1560976 0.04878049
2 0.10779817 0.3698394 0.5308353 0.02107728
3 0.07228916 0.2548065 0.3302872 0.01664491
4 0.07465453 0.2561510 0.3379630 0.01978114
5 0.06170831 0.2135967 0.2834414 0.01546847
6 0.07464444 0.2484827 0.3261542 0.01764234
7 0.06788048 0.2248303 0.2955788 0.01623794
8 0.06078950 0.2053617 0.2718778 0.01546591
9 0.06174485 0.2077559 0.2739888 0.01623596

10 0.06767756 0.2215780 0.2956374 0.01816556
11 0.06342196 0.2096693 0.2813661 0.01790205
12 0.05950262 0.1953924 0.2590490 0.01667850
13 0.05892276 0.1923781 0.2555957 0.01615523
14 0.06096126 0.1985348 0.2642744 0.01692620
15 0.06182473 0.2014206 0.2678980 0.01684366
16 0.06085005 0.2002387 0.2673698 0.01701897
17 0.05758448 0.1900792 0.2536528 0.01607644
18 0.05718179 0.1898542 0.2520903 0.01596791
19 0.05763122 0.1922251 0.2534633 0.01616509
20 0.05703698 0.1907142 0.2499405 0.01595287
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