MORE ON **-CONNECTEDNESS

SELAHATTİN KILINÇ

Abstract. In [4] **-connected, *-cl-connected and *-cl*-connected ideal space are introduced and studied by Modak and Noiri. We further study the properties of these sets and give a characterization of **-connected ideal space.

The concept of ideal topological space has been studied by Kuratowski [3] Kuratowski and Vaidyanathswamy, [5]. A nonempty collection I of subsets of X is called an *ideal* in X if it has the following properties:

(i) $A \in I$ and $B \subset A$ implies $B \in I$ and

(ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$.

Given a topological space (X, τ) with an ideal I in X, (X, τ, I) is an *ideal* topological space (we call it an *ideal space*). For a subset A of X the local function of A is defined as follows, [3]:

$$A^*(I,\tau) = \{ x \in X \mid U \cap A \notin I \},\$$

for every $U \in \tau(x)$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of basic facts about the local function [2] without mentioning it explicitly. A Kuratowski closure operator $cl^*()$ for a topology $\tau^*(I,\tau)$, called the ***topology finer then τ is defined by $cl^*(A) = A \cup A^*(I,\tau)$, [5]. When there is no room for confusion, we simply write A^* for $A^*(\tau, I)$ and τ^* for $\tau^*(I,\tau)$. ***_{*}-connected, ***-cl-connected and ***-cl^{*}-connected ideal spaces are introduced and studied by Modak and Noiri in [4]. In this paper we further study the properties of these spaces.

If $A \subset X$, clA and int(A) will denote the *closure* and *interior* of A in (X, τ) and $int^*(A)$ will denote the *interior* of A in (X, τ^*) . Subsets of X closed in (X, τ^*) are called *-*closed* sets. A subset A of X in ideal space (X, τ, I) is *-closed if and only if $A^* \subset A$, [2]. Nonempty subsets A, B of an ideal space (X, τ, I) are called *-*separated* if $A^* \cap B = A \cap B^* = A \cap B = \emptyset$ and are called *-*cl-separated* (resp. *-*cl^*-separated*) if $A^* \cap cl(B) = cl(A) \cap B^* = A \cap B = \emptyset$ (resp. $A^* \cap cl^*(B) = cl^*(A) \cap B^* = A \cap B = \emptyset$), [4].

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54D05.

Key words and phrases. **-connected, *-cl-connected, *-cl*-connected.

A subset A of an ideal space (X, τ, I) is called $*_*$ -connected if A is not the union of two $*_*$ -separated sets in (X, τ, I) and is called *-cl-connected (resp. *-cl*-connected) if A is not the union of two *-cl-separated (resp. *-cl*-separated sets in (X, τ, I)), [4].

1. Main Results

Lemma 1. [4] Let (X, τ, I) be an ideal space. If A is a $*_*$ -connected set of X and H, G are $*_*$ -separated sets of X with $A \subset H \cup G$, then either $A \subset H$ or $A \subset G$.

Lemma 2. [4] Let (X, τ, I) be an ideal space. If A is a *-cl-connected subset of X and H,G are * -cl-separated sets of X with $A \subset H \cup G$, then either $A \subset H$ or $A \subset G$.

Lemma 3. [4] Let (X, τ, I) be an ideal space. If A is a *-cl*-connected subset of X and H, G are *-cl*-separated sets of X with $A \subset H \cup G$, then either $A \subset H$ or $A \subset G$.

Theorem 1. Let (X, τ, I) be an ideal space. If A and B are nonempty disjoint sets such that A and B are *-open, then A and B are $*_*$ -separated.

Proof. Let A and B be nonempty disjoint sets such that $A \cap B = \emptyset$. We have $A \subset X - B$ and so $cl^*(A) \subset cl^*(X - B) = X - B$. Always $A^* \subseteq cl^*(A) \subset X - B$ which implies that $A^* \cap B = \emptyset$. Again $B \subset X - A$ which implies that $A \cap B^* = \emptyset$. So, $A^* \cap B = A \cap B^* = A \cap B = \emptyset$ and therefore A and B are **-separated.

Theorem 2. Let A and B be two *-cl-separated sets in an ideal space (X, τ, I) . If C and D are nonempty subsets such that $C \subset A$ and $D \subset B$, then C and D are also *-cl-separated.

Proof. Since A and B are *-cl-separated, $A^* \cap cl(B) = cl(A) \cap B^* = A \cap B = \emptyset$. We know that, since $C \subset A$ and $D \subset B$, then $cl(C) \subset cl(A)$, $cl(D) \subset cl(B)$ and $C^* \subset A^*$, $D^* \subset B^*$ such that $C^* \cap cl(D) \subset A^* \cap cl(B) = \emptyset$ and so $C^* \cap cl(D) = \emptyset$. Similarly we can prove that $cl(C) \cap D^* = \emptyset$. Hence, $C^* \cap cl(D) = cl(C) \cap D^* = C \cap D = \emptyset$. Consequently, C and D are *-cl-separated.

Theorem 3. Let A and B be two $*_*$ -separated (resp. *-cl*-separated) sets in an ideal space (X, τ, I) . If C and D are nonempty subsets such that $C \subset A$ and $D \subset B$, then C and D are also $*_*$ -separated (resp. *-cl*-separated).

Proof. The proof is similar with the proof of Theorem 2.

Theorem 4. Let (X, τ, I) be an ideal space and $A, B \subset X$. If A and B are *-open or *-closed, then A - B and B - A are *-separated.

Proof. $(A - B)^* \cap (B - A) \subseteq (A \cap (X - B))^* \cap (B - A) \subset A^* \cap (X - B)^* \cap (B \cap (X - A))) = A^* \cap (X - A) \cap (X - B)^* \cap B$. If A is *-closed, then $A^* \subset A$, such that $A^* \cap (X - A) \cap (X - B)^* \cap B = \emptyset$. If B is *-open, (X - B) is *-closed, then $(X - B)^* \subset (X - B)$, such that $A^* \cap (X - A) \cap (X - B)^* \cap B = \emptyset$. Similarly, we can show that $(A - B) \cap (B - A)^* = \emptyset$. Consequently, A - B and B - A are **-separated. □

Theorem 5. Let a and b be distinct points of a subset C of an ideal space (X, τ, I) . If they are elements of some $*_*$ -connected subset of C, then C is a $*_*$ -connected subset of X.

Proof. Suppose C is not $*_*$ -connected. Then there exist nonempty subsets A and B of X such that $A^* \cap B = A \cap B^* = A \cap B = \emptyset$ and $C = A \cup B$. Since A and B are nonempty sets there exists a point $a \in A$ and a point $b \in B$. By hypothesis, a and b must be elements of a $*_*$ -connected subset E of C. Since $E \subset A \cup B$, by Lemma 1, either $E \subset A$ or $E \subset B$. Consequently, either a and b are both in A or both in B. Let's say that a and b are elements of the set A. Then $A \cap B \neq \emptyset$, that is a contradiction to the fact that A and B are disjoint. Therefore, C must be $*_*$ -connected.

Theorem 6. Let a and b be distinct points of a subset C of an ideal space (X, τ, I) . If they are elements of some *-cl-connected (resp. *-cl*-connected) subset of C, then C is a *-cl-connected (resp. *-cl*-connected) subset of X.

Proof. The proof is similar with the proof of Theorem 5. \Box

Theorem 7. Let (X, τ, I) be a $*_*$ -connected ideal topological space. If A is a $*_*$ -connected subset of (X, τ, I) and X - A is a union of two $*_*$ -separated sets B and C, then $A \cup B$ and $A \cup C$ are $*_*$ -connected.

Proof. Suppose that $A \cup B$ is not $*_*$ -connected. Then there exist two nonempty $*_*$ -separated sets G and H, such that $A \cup B = G \cup H$. Since A is a $*_*$ -connected, $A \subset A \cup B = G \cup H$. From Lemma 2 we know either $A \subset H$ or $A \subset G$. Suppose $A \subset G$. Since $A \cup B = G \cup H$, $A \subset G$ implies that $A \cup B \subset G \cup B$ and so $G \cup H \subset G \cup B$. Hence, $H \subset B$. Since B and C are $*_*$ -separated, H and C are also $*_*$ -separated. Thus H is $*_*$ separated from G as well as C. Now, $H^* \cap (G \cup C) = (H^* \cap G) \cup (H^* \cap C) = \emptyset$, $H \cap (G \cup C)^* = H \cap (G^* \cup C^*) = (H \cap G^*) \cup (H \cap C^*) = \emptyset$ and $H \cap (G \cup C) =$ $(H \cap G) \cup (H \cap C) = \emptyset$. Therefore, H is $*_*$ -separated from $G \cup C$. Since $X - A = B \cup C$, $X = A \cup (B \cup C) = (A \cup B) \cup C = (G \cup H) \cup C$, $A \cup B = G \cup H$ and so $X = (G \cup C) \cup H$. Thus, X is the union of two nonempty $*_*$ -separated sets $G \cup C$ and H, which is a contradiction. Similarly, contradiction will arise if $A \subset H$. Hence $A \cup B$ is $*_*$ -connected. \Box S. KILINÇ

Theorem 8. If A is a *-cl-connected (*-cl^{*}-connected) subset of a *-clconnected (*-cl^{*}-connected) ideal topological space (X, τ, I) such that X - Ais a union of two *-cl-separated (*-cl^{*}-separated) sets B and C then $A \cup B$ and $A \cup C$ are *-cl-connected (*-cl^{*}-connected).

Proof. The proof is similar with the proof of Theorem 7.

Theorem 9. Let A and B be two $*_*$ -connected sets of an ideal space (X, τ, I) . If they are not $*_*$ -separated, then $A \cup B$ is $*_*$ -connected.

Proof. Let *A* and *B* be *_{*}-connected in *X*. Suppose *A* ∪ *B* is not *_{*}-connected. Then, there exist two nonempty disjoint *_{*}-separated sets *G* and *H* such that *A* ∪ *B* = *G* ∪ *H*. Since *A* and *B* are *_{*}-connected by Lemma 1 either *A* ⊂ *G* and *B* ⊂ *H* or *B* ⊂ *G* and *A* ⊂ *H*. Now, if *A* ⊂ *G* and *B* ⊂ *H*, then *A* ∩ *H* = *B* ∩ *G* = Ø. Therefore (*A* ∪ *B*) ∩ *G* = (*A* ∩ *G*) ∪ (*B* ∩ *G*) = (*A* ∩ *G*) ∪ Ø = (*A* ∩ *G*) = *A*. Also, (*A* ∪ *B*) ∩ *H* = (*A* ∩ *H*) ∪ (*B* ∩ *H*) = Ø ∪ (*B* ∩ *H*) = (*B* ∩ *H*) = *B*. Similarly, if *B* ⊂ *G* and *A* ⊂ *H* then (*A* ∪ *B*) ∩ *G* = *A* and (*A* ∪ *B*) ∩ *H* = *B*. Now, ((*A* ∪ *B*) ∩ *H*) ∩ ((*A* ∪ *B*) ∩ *G*)^{*} ⊂ ((*A* ∪ *B*) ∩ *H*) ∩ ((*A* ∪ *B*) ∩ *G*^{*}) = (*A* ∪ *B*) ∩ *H* ∩ *G*^{*} ∩ (*A* ∪ *B*)^{*} = Ø, ((*A* ∪ *B*) ∩ *H*) ^* ∩ ((*A* ∪ *B*) ∩ *G*) ⊂ ((*A* ∪ *B*) ∩ *H*) ∩ ((*A* ∪ *B*) ∩ *G*) = ((*A* ∪ *B*) ∩ *H* ∩ *G* ∩ (*A* ∪ *B*) = Ø. Therefore, (*A* ∪ *B*) ∩ *G* and (*A* ∪ *B*) ∩ *H* are *_{*}-separated. Thus, *A* and *B* are *_{*}-separated which is a contradiction. Hence, *A* ∪ *B* is *_{*}-connected.

Theorem 10. Let A and B be two *-cl-connected sets of an ideal space (X, τ, I) . If none of them is *-cl-connected, then $A \cup B$ is *-cl-connected.

Proof. Let *A* and *B* be *-cl-connected sets in *X*. Suppose *A* ∪ *B* is not *-cl-connected. Then, there exist two nonempty disjoint *-cl-separated sets *G* and *H* such that *A* ∪ *B* = *G* ∪ *H*. Since *A* and *B* are *-cl-connected, by Lemma 1 either *A* ⊂ *G* and *B* ⊂ *H* or *B* ⊂ *G* and *A* ⊂ *H*. Now, if *A* ⊂ *G* and *B* ⊂ *H*, then *A* ∩ *H* = *B* ∩ *G* = Ø. Therefore (*A* ∪ *B*) ∩ *G* = (*A* ∩ *G*) ∪ (*B* ∩ *G*) = (*A* ∩ *G*) ∪ Ø = (*A* ∩ *G*) = *A*. Also (*A* ∪ *B*) ∩ *H* = (*A* ∩ *H*) ∪ (*B* ∩ *H*) = Ø ∪ (*B* ∩ *H*) = (*B* ∩ *H*) = *B*. Similarly, if *B* ⊂ *G* and *A* ⊂ *H*, then (*A* ∪ *B*) ∩ *G* = *A* and (*A* ∪ *B*) ∩ *H* = *B*. Now, ((*A* ∪ *B*) ∩ *H*)* ∩ *cl*((*A* ∪ *B*) ∩ *G*) ⊂ ((*A* ∪ *B*)* ∩ *cl*(*A* ∪ *B*) ∩ *G** = *cl*(*A* ∪ *B*) ∩ *H* ∩ *G* ∩ (*A* ∪ *B*) ∩ *G** = *cl*(*A* ∪ *B*) ∩ *H* ∩ *G* ∩ (*A* ∪ *B*) ∩ *G** = Ø and ((*A* ∪ *B*) ∩ *H*) ∩ ((*A* ∪ *B*) ∩ *G*) = ((*A* ∪ *B*) ∩ *H* ∩ *G* ∩ (*A* ∪ *B*) = Ø. Therefore, (*A* ∪ *B*) ∩ *G* and (*A* ∪ *B*) ∩ *H* are *-cl-separated. Thus, *A* and *B* are *-cl-separated which is a contradiction. Hence, *A* ∪ *B* is *-cl-connected.

Theorem 11. If A and B are $*-cl^*$ -connected sets of an ideal space (X, τ, I) such that none of them is $*-cl^*$ -separated, then $A \cup B$ is $*-cl^*$ -connected.

Proof. The proof is similar with the proof of Theorem 10.

The following example shows that the union of two $*_*$ -connected, (resp. *-cl-connected, $*-cl^*$ -connected) sets is not a $*_*$ -connected set, (resp. *-cl-connected, $*-cl^*$ -connected sets). However, Theorems 9, 10 and 11 show that the union of two $*_*$ -connected (resp. *-cl-connected, $*-cl^*$ -connected sets is a $*_*$ -connected, (resp. *-cl-connected, $*-cl^*$ -connected) set if none of them is $*_*$ -separated (resp. *-cl-separated, $*-cl^*$ -separated).

Example 1. Let (X, τ, I) be ideal space, where $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{b, c\}, \{a, b, d\}, X\}$ and $I = \{\emptyset, \{b\}\}$. If $A = \{a, b\}, B = \{a, d\}$, then A and B are $*_*$ -connected, but $A \cup B$ is not.

In what follows, Bd(A) denotes the of boundary A.

Theorem 12. Let (X, τ, I) be an ideal space and $A \subset X$. If C is $*_*$ connected subspace of X that intersect both A and X - A, then C intersects Bd(A).

Proof. Suppose $C \cap Bd(A) = \emptyset$. So, $Bd(A) = (cl(A) \cap cl(X - A))$ and $C \cap (cl(A) \cap cl(X - A)) = \emptyset$. Now, $C = C \cap X = C \cap (A \cup (X - A)) = (C \cap A) \cup (C \cap (X - A))$. Also, we know that $(C \cap A)^* \cap (C \cap (X - A)) \subset (C^* \cap A^*) \cap (C \cap (X - A)) = C \cap C^* \cap (A^* \cap (X - A))$. So, $A^* \subset cl(A)$ and $(X - A) \subset cl(X - A) = \emptyset$, which implies that $C^* \cap C \cap (A^* \cap (X - A)) = \emptyset$. Then $(C \cap A) \cap (C \cap (X - A))^* \subset (C \cap A) \cap (C^* \cap (X - A)^*) = C \cap C^* \cap (A \cap (X - A)^*) = \emptyset$ and $(C \cap A) \cap (C \cap (X - A)) = C \cap A \cap (X - A) = \emptyset$. Thus, $(C \cap A)$ and $(C \cap (X - A))$ form a **-separation for C, which is a contradiction. Hence, $C \cap Bd(A) \neq \emptyset$.

Theorem 13. Let (X, τ, I) be an ideal space and $A \subset X$. If C is *-clconnected (resp. *-cl*-connected) subspace of X that intersect both A and X - A, then C intersects Bd(A).

Proof. The proof is similar with the proof of Theorem 12.

Theorem 14. Let (X, τ, I) be an ideal space. Both *-closed or *-open separated sets in this space are **-separated.

Proof. A and B are separated sets, $A \cap B = \emptyset$. If A and B are *-closed, then $A^* \subset A$ and $B^* \subset B$, so that $A^* \cap B = A \cap B^* = A \cap B = \emptyset$. We will prove that A and B are *_{*}-separated. If A and B are *-open, then X - A and X - B are *-closed. So, $A \subset X - B$ which implies that $A^* \subset (X - B)^* \subset X - B$, and $B \subset X - A$ which implies that $B^* \subset (X - A)^* \subset X - A$. We obtain that $A^* \cap B = (X - B) \cap B = \emptyset$ and $A \cap B^* = A \cap (X - A) = \emptyset$. Consequently, A and B are *_{*}-separated.

Theorem 15. Let (X, τ, I) be an ideal space and $A, B \subset X$. If $cl^*(A) \cap B = \emptyset$ and $A \cup B$ is *-closed, then A is *-closed set.

Proof. So $A \cup B$ is *-closed, that implies $cl^*(A \cup B) = cl^*(A) \cup cl^*(B) = A \cup B$ and $cl^*(A) \subset A \cup B$. If $cl^*(A) \cap B = \emptyset$, then $cl^*(A) \subset A$. We know that $A \subset cl^*(A)$ and thus $A = cl^*(A)$. So, A is *-closed.

Theorem 16. Let (X, τ, I) be an ideal space and $A, B \subset X$. If $A \cap cl^*(B) = \emptyset$ and $A \cup B$ is *-open, then A is *-open set.

Proof. If $A \cap cl^*(B) = \emptyset$, then $A \subset (X - cl^*(B))$. Since $A \cup B$ is *-open, then $(A \cup B) \cap (X - cl^*(B)) = (A \cap (X - cl^*(B))) \cup (B \cap (X - cl^*(B)))$ is a *-open set. So, $A = (A \cap (X - cl^*(B))) \cup (B \cap (X - cl^*(B)))$ is a *-open set.

Corollary 16.1. Let (X, τ, I) be an ideal space and $A, B \subset X$. If A and B are not * - cl-connected (resp. * - cl*-connected) and $A \cup B$ is *-closed, then A and B are *-closed; if $A \cup B$ is *-open, then A and B are *-open.

Tagi, Bhardwaj and Singh, in [1] introduced a relationship between continuousness and Cl^* -connectedness and $CL - Cl^*$ -connectedness. Now we will examine the relationship between continuousness and $*_*$ -connected, (resp. *-cl-connected, *-cl*-connected) ideal space.

Definition 1. [1] A function $f: (X, \tau_1, I_1) \to (X, \tau_2, I_2)$ is said to be:

(1) continuous if the inverse image of each open set in Y under f is open in X;

(2) contra-continuous if the inverse image of each open set in Y under f is closed in X;

(3) $\tau_1 - \tau_{2^*}$ -continuous if the inverse image of each *-open set in Y under f is open in X;

(4) $\tau_{1*} - \tau_{2*}$ -continuous if the inverse image of each *-open set in Y under f is *-open in X;

(5) $\tau_1 - \tau_{2^*}$ -contra-continuous if the inverse image of each *-open set in Y under f is closed in X;

(6) $\tau_{1*} - \tau_{2*}$ -contra-continuous if the inverse image of each *-open set in Y under f is *-closed in X.

Theorem 17. [1] Let $f : (X, \tau_1, I_1) \to (Y, \tau_2, I_2)$ be a continuous surjection. If X is $*_*$ -connected, then Y is connected.

Proof. Suppose that Y is not connected. So, there is a nonempty clopen proper subset A of Y. Then $f^{-1}(A)$ is nonempty clopen subset of X and hence, $f^{-1}(A)$ and $X - f^{-1}(A)$ are disjoint. We know that $A^* \subset cl^*(A) \subset$ cl(A). So, $f^{-1}(A)$ is clopen since $(f^{-1}(A))^* \cap (X - f^{-1}(A)) = (f^{-1}(A)) \cap$ $(X - f^{-1}(A))^* = \emptyset$, i.e. X is not **-connected, that is a contradiction. \Box **Theorem 18.** Let $f : (X, \tau_1, I_1) \to (Y, \tau_2, I_2)$ be a continuous surjection. If X is resp. *-cl-connected, *-cl*-connected, then Y is connected.

Proof. The proof is similar with the proof of Theorem 17.

Theorem 19. Let $f : (X, \tau_1, I_1) \to (Y, \tau_2, I_2)$ be a continuous surjection. If X is $*_*$ -connected, then Y is $*_*$ -connected.

Proof. Suppose that Y is not $*_*$ -connected. Then there are nonempty subsets A and B of Y and hence $Y = A \cup B$, $A^* \cap B = A \cap B^* = A \cap B = \emptyset$. From the fact that f is a continuous surjection, $X = f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A)$, $f^{-1}(B)$ are clopen that $(f^{-1}(A))^* \cap f^{-1}(B) = f^{-1}(A) \cap (f^{-1}(B))^* = f^{-1}(A) \cap f^{-1}(B) = \emptyset$. We proved that X is not $*_*$ -connected, that is a contradiction.

Theorem 20. Let $f : (X, \tau_1, I_1) \to (Y, \tau_2, I_2)$ be a continuous surjection. If X is resp. * - cl-connected, $* - cl^*$ -connected, then Y is resp. * - cl-connected, $* - cl^*$ -connected.

Proof. The proof is similar with the proof of Theorem 19.

Theorem 21. Let $f : (X, \tau_1, I_1) \to (Y, \tau_2, I_2)$ be a contra-continuous surjection. If X is $*_*$ -connected, then Y is connected.

Proof. Suppose that Y is not connected. Then there are nonempty subsets A and B of Y and hence $Y = A \cup B$, $A^* \cap B = A \cap B^* = A \cap B = \emptyset$. From the fact that f is contra-continuous surjection, $X = f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A)$, $f^{-1}(B)$ are clopen that $(f^{-1}(A))^* \cap f^{-1}(B) = f^{-1}(A) \cap (f^{-1}(B))^* = f^{-1}(A) \cap f^{-1}(B) = \emptyset$. We proved that X is not $*_*$ -connected, that is a contradiction.

Theorem 22. Let $f : (X, \tau_1, I_1) \to (Y, \tau_2, I_2)$ be a contra-continuous surjection. If X is *-cl-connected, $*-cl^*$ -connected, then Y is *-cl-connected, $*-cl^*$ -connected.

Proof. The proof is similar with the proof of Theorem 21.

Theorem 23. Let $f : (X, \tau_1, I_1) \to (Y, \tau_2, I_2)$ be a $\tau_{1^*} - \tau_{2^*}$ -continuous surjection. If X is $*_*$ -connected, then Y is $*_*$ -connected.

Proof. Suppose that Y is not $*_*$ -connected. Then there are nonempty subsets A and B of Y and hence $Y = A \cup B$, $A^* \cap B = A \cap B^* = A \cap B = \emptyset$. Since f is $\tau_{1^*} - \tau_{2^*}$ -continuous surjection, then A and B are *-open sets in Y so that $f^{-1}(A)$, $f^{-1}(B)$ are *-open and *-closed in X and so $(f^{-1}(A))^* \cap f^{-1}(B) = f^{-1}(A) \cap (f^{-1}(B))^* = f^{-1}(A) \cap f^{-1}(B) = \emptyset$. Hence, X is not $*_*$ -connected, that is a contradiction.

S. KILINÇ

Theorem 24. Let $f : (X, \tau_1, I_1) \to (Y, \tau_2, I_2)$ be a $\tau_{1^*} - \tau_{2^*}$ -continuous surjection. If X is $* - cl^*$ -connected, then Y is $* - cl^*$ -connected.

Proof. The proof is similar with the proof of Theorem 23

Theorem 25. Let $f : (X, \tau_1, I_1) \to (Y, \tau_2, I_2)$ be a $\tau_{1^*} - \tau_{2^*}$ -contra-continuous surjection. If X is $*_*$ -connected and $*-cl^*$ -connected, then Y is $*_*$ -connected and $*-cl^*$ -connected.

Proof. The proof is similar with the proof of Theorem 23 \Box

Theorem 26. Let $f : (X, \tau_1, I_1) \to (Y, \tau_2, I_2)$ be a $\tau_1 - \tau_{2^*}$ -continuous surjection. If X is $*_*$ -connected, then Y is $*_*$ -connected.

Proof. We know that $\tau_1 \subset \tau_1^*$ and $\tau_2 \subset \tau_2^*$. If $f: (X, \tau_1, I_1) \to (Y, \tau_2, I_2)$ is $\tau_1 - \tau_{2^*}$ -continuous, then f is $\tau_{1^*} - \tau_{2^*}$ -continuous. And so, via Theorem 25, Y is $*_*$ -connected.

Theorem 27. Let $f : (X, \tau_1, I_1) \to (Y, \tau_2, I_2)$ be a $\tau_1 - \tau_{2^*}$ -continuous surjection. If X is $* - cl^*$ -connected, then Y is $* - cl^*$ -connected.

Proof. The proof is similar with the proof of Theorem 26.

Theorem 28. Let $f : (X, \tau_1, I_1) \to (Y, \tau_2, I_2)$ be a $\tau_1 - \tau_{2^*}$ -contra-continuous surjection. If X is $*_*$ -connected and $*-cl^*$ -connected, then Y is $*_*$ -connected and $*-cl^*$ -connected.

Proof. The proof is similar with the proof of Theorem 26.

References

- B.K. Tagı, M. Bhardwaj and S. Singh, Cl^{*}-connectedness and CL-Cl^{*}-connectedness in ideal topological space, Mat. Bilten, 42 (LXVIII) 2 (2018), 91–100.
- [2] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monhtly 97 (1990), 295–310.
- [3] K. Kuratowski, Topology, Vol I. New York, Academic press, 1996.
- [4] S. Modak and T. Noiri, Connectedness of ideal topological spaces, Filomat 29 (4) (2015), 661-665 DOI 10.2298/FIL1504661M
- [5] V. Vaidyanathaswamy, The localization theory in set topology, Proc. Indian Acad. Sci. 20 (1945), 51–61.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND LITERATURE UNIVERSITY OF ÇUKUROVA TURKEY *E-mail address*: selahattinkilinc@hotmail.com

60