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MORE ON ∗∗-CONNECTEDNESS

SELAHATTİN KILINÇ

Abstract. In [4] ∗∗-connected, ∗-cl-connected and ∗ -cl∗-connected
ideal space are introduced and studied by Modak and Noiri. We further
study the properties of these sets and give a characterization of ∗∗-
connected ideal space.

The concept of ideal topological space has been studied by Kuratowski [3]
Kuratowski and Vaidyanathswamy, [5]. A nonempty collection I of subsets
of X is called an ideal in X if it has the following properties:

(i) A ∈ I and B ⊂ A implies B ∈ I and
(ii) A ∈ I and B ∈ I implies A ∪B ∈ I.

Given a topological space (X, τ) with an ideal I in X, (X, τ, I) is an ideal
topological space (we call it an ideal space). For a subset A of X the local
function of A is defined as follows, [3]:

A∗(I, τ) = {x ∈ X | U ∩A /∈ I} ,
for every U ∈ τ(x) where τ(x) = {U ∈ τ | x ∈ U}. We will make use of
basic facts about the local function [2] without mentioning it explicitly.
A Kuratowski closure operator cl∗() for a topology τ∗(I, τ), called the ∗-
topology finer then τ is defined by cl∗(A) = A∪A∗(I, τ), [5]. When there is
no room for confusion, we simply write A∗ for A∗(τ, I) and τ∗ for τ∗(I, τ).
∗∗-connected, ∗-cl-connected and ∗-cl∗-connected ideal spaces are introduced
and studied by Modak and Noiri in [4]. In this paper we further study the
properties of these spaces.

If A ⊂ X, clA and int(A) will denote the closure and interior of A in
(X, τ) and int∗(A) will denote the interior of A in (X, τ∗). Subsets of X
closed in (X, τ∗) are called ∗-closed sets. A subset A of X in ideal space
(X, τ, I) is ∗-closed if and only if A∗ ⊂ A, [2]. Nonempty subsets A,B of an
ideal space (X, τ, I) are called ∗∗-separated if A∗∩B = A∩B∗ = A∩B = ∅
and are called ∗-cl-separated (resp. ∗-cl∗-separated) if A∗∩cl(B) = cl(A)∩
B∗ = A ∩ B = ∅ (resp. A∗ ∩ cl∗(B) = cl∗(A) ∩ B∗ = A ∩ B = ∅), [4].
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A subset A of an ideal space (X, τ, I) is called ∗∗-connected if A is not
the union of two ∗∗-separated sets in (X, τ, I) and is called ∗-cl-connected
(resp. ∗ -cl∗-connected) if A is not the union of two ∗-cl-separated (resp.
∗-cl∗-separated sets in (X, τ, I)), [4].

1. Main Results

Lemma 1. [4] Let (X, τ, I) be an ideal space. If A is a ∗∗-connected set of
X and H,G are ∗∗-separated sets of X with A ⊂ H ∪G, then either A ⊂ H
or A ⊂ G.

Lemma 2. [4] Let (X, τ, I) be an ideal space. If A is a ∗-cl-connected subset
of X and H,G are ∗ -cl-separated sets of X with A ⊂ H ∪ G, then either
A ⊂ H or A ⊂ G.

Lemma 3. [4] Let (X, τ, I) be an ideal space. If A is a ∗-cl∗-connected
subset of X and H,G are ∗-cl∗-separated sets of X with A ⊂ H ∪ G, then
either A ⊂ H or A ⊂ G.

Theorem 1. Let (X, τ, I) be an ideal space. If A and B are nonempty
disjoint sets such that A and B are ∗ -open, then A and B are ∗∗-separated.

Proof. Let A and B be nonempty disjoint sets such that A ∩ B = ∅. We
have A ⊂ X − B and so cl∗(A) ⊂ cl∗(X − B) = X − B. Always A∗ ⊆
cl∗(A) ⊂ X − B which implies that A∗ ∩ B = ∅. Again B ⊂ X − A which
implies that A ∩B∗ = ∅. So, A∗ ∩B = A ∩B∗ = A ∩B = ∅ and therefore
A and B are ∗∗-separated. �

Theorem 2. Let A and B be two ∗-cl-separated sets in an ideal space
(X, τ, I). If C and D are nonempty subsets such that C ⊂ A and D ⊂ B,
then C and D are also ∗-cl-separated.

Proof. Since A and B are ∗-cl-separated, A∗∩cl(B) = cl(A)∩B∗ = A∩B =
∅. We know that, since C ⊂ A and D ⊂ B, then cl(C) ⊂ cl(A), cl(D) ⊂
cl(B) and C∗ ⊂ A∗, D∗ ⊂ B∗ such that C∗ ∩ cl(D) ⊂ A∗ ∩ cl(B) = ∅ and
so C∗ ∩ cl(D) = ∅. Similarly we can prove that cl(C) ∩ D∗ = ∅. Hence,
C∗ ∩ cl(D) = cl(C) ∩ D∗ = C ∩ D = ∅. Consequently, C and D are
∗-cl-separated. �

Theorem 3. Let A and B be two ∗∗-separated (resp. ∗-cl∗-separated) sets in
an ideal space (X, τ, I). If C and D are nonempty subsets such that C ⊂ A
and D ⊂ B, then C and D are also ∗∗-separated (resp. ∗-cl∗-separated).

Proof. The proof is similar with the proof of Theorem 2. �

Theorem 4. Let (X, τ, I) be an ideal space and A,B ⊂ X. If A and B are
∗-open or ∗-closed, then A−B and B −A are ∗∗-separated.
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Proof. (A−B)∗∩ (B −A) ⊆ (A ∩ (X −B))∗∩ (B −A) ⊂ A∗∩ (X−B)∗∩
(B ∩ (X −A)) = A∗∩(X−A)∩(X−B)∗∩B. If A is ∗-closed, then A∗ ⊂ A,
such that A∗ ∩ (X −A) ∩ (X −B)∗ ∩B = ∅. If B is ∗-open, (X −B) is ∗-
closed, then (X−B)∗ ⊂ (X−B), such that A∗∩(X−A)∩(X−B)∗∩B = ∅.
Similarly, we can show that (A−B)∩ (B −A)∗ = ∅. Consequently, A−B
and B −A are ∗∗-separated. �

Theorem 5. Let a and b be distinct points of a subset C of an ideal space
(X, τ, I). If they are elements of some ∗∗-connected subset of C, then C is
a ∗∗-connected subset of X.

Proof. Suppose C is not ∗∗-connected. Then there exist nonempty subsets
A and B of X such that A∗∩B = A∩B∗ = A∩B = ∅ and C = A∪B. Since
A and B are nonempty sets there exists a point a ∈ A and a point b ∈ B.
By hypothesis, a and b must be elements of a ∗∗-connected subset E of C.
Since E ⊂ A ∪ B, by Lemma 1, either E ⊂ A or E ⊂ B. Consequently,
either a and b are both in A or both in B. Let’s say that a and b are
elements of the set A. Then A ∩ B 6= ∅, that is a contradiction to the fact
that A and B are disjoint. Therefore, C must be ∗∗-connected. �

Theorem 6. Let a and b be distinct points of a subset C of an ideal space
(X, τ, I). If they are elements of some ∗-cl-connected (resp. ∗-cl∗-connected)
subset of C, then C is a ∗-cl-connected (resp. ∗-cl∗-connected) subset of X.

Proof. The proof is similar with the proof of Theorem 5. �

Theorem 7. Let (X, τ, I) be a ∗∗-connected ideal topological space. If A is
a ∗∗-connected subset of (X, τ, I) and X −A is a union of two ∗∗-separated
sets B and C, then A ∪B and A ∪ C are ∗∗-connected.

Proof. Suppose that A ∪ B is not ∗∗-connected. Then there exist two
nonempty ∗∗-separated sets G and H, such that A ∪ B = G ∪ H. Since
A is a ∗∗-connected, A ⊂ A ∪ B = G ∪H. From Lemma 2 we know either
A ⊂ H or A ⊂ G. Suppose A ⊂ G. Since A ∪ B = G ∪H, A ⊂ G implies
that A ∪ B ⊂ G ∪ B and so G ∪ H ⊂ G ∪ B. Hence, H ⊂ B. Since
B and C are ∗∗-separated, H and C are also ∗∗-separated. Thus H is ∗∗-
separated from G as well as C. Now, H∗∩(G∪C) = (H∗∩G)∪(H∗∩C) = ∅,
H∩(G∪C)∗ = H∩(G∗∪C∗) = (H∩G∗)∪(H∩C∗) = ∅ and H∩(G∪C) =
(H ∩ G) ∪ (H ∩ C) = ∅. Therefore, H is ∗∗-separated from G ∪ C. Since
X − A = B ∪ C, X = A ∪ (B ∪ C) = (A ∪ B) ∪ C = (G ∪ H) ∪ C,
A ∪ B = G ∪ H and so X = (G ∪ C) ∪ H. Thus, X is the union of two
nonempty ∗∗-separated sets G ∪ C and H, which is a contradiction. Simi-
larly, contradiction will arise if A ⊂ H. Hence A ∪B is ∗∗-connected. One
can prove in a similar way that A ∪ C is ∗∗-connected. �



56 S. KILINÇ

Theorem 8. If A is a ∗-cl-connected (∗-cl∗-connected) subset of a ∗-cl-
connected (∗-cl∗-connected) ideal topological space (X, τ, I) such that X−A
is a union of two ∗-cl-separated (∗-cl∗-separated) sets B and C then A ∪B
and A ∪ C are ∗-cl-connected (∗-cl∗-connected).

Proof. The proof is similar with the proof of Theorem 7. �

Theorem 9. Let A and B be two ∗∗-connected sets of an ideal space
(X, τ, I). If they are not ∗∗-separated, then A ∪B is ∗∗-connected.

Proof. Let A and B be ∗∗-connected in X. Suppose A ∪ B is not ∗∗-
connected. Then, there exist two nonempty disjoint ∗∗-separated sets G
and H such that A ∪ B = G ∪ H. Since A and B are ∗∗-connected by
Lemma 1 either A ⊂ G and B ⊂ H or B ⊂ G and A ⊂ H. Now, if
A ⊂ G and B ⊂ H, then A ∩H = B ∩ G = ∅. Therefore (A ∪ B) ∩ G =
(A ∩ G) ∪ (B ∩ G) = (A ∩ G) ∪ ∅ = (A ∩ G) = A. Also, (A ∪ B) ∩
H = (A ∩ H) ∪ (B ∩ H) = ∅ ∪ (B ∩ H) = (B ∩ H) = B. Similarly, if
B ⊂ G and A ⊂ H then (A ∪ B) ∩ G = A and (A ∪ B) ∩ H = B. Now,
((A ∪ B) ∩ H) ∩ ((A ∪ B) ∩ G)∗ ⊂ ((A ∪ B) ∩ H) ∩ ((A ∪ B)∗ ∩ G∗) =
(A ∪ B) ∩ H ∩ G∗ ∩ (A ∪ B)∗ = ∅, ((A ∪ B) ∩ H)∗ ∩ ((A ∪ B) ∩ G) ⊂
((A ∪ B)∗ ∩ H∗) ∩ ((A ∪ B) ∩ G) = (A ∪ B)∗ ∩ H∗ ∩ G ∩ (A ∪ B) = ∅
and ((A ∪ B) ∩ H) ∩ ((A ∪ B) ∩ G) = ((A ∪ B) ∩ H ∩ G ∩ (A ∪ B) = ∅.
Therefore, (A∪B)∩G and (A∪B)∩H are ∗∗-separated. Thus, A and B are
∗∗-separated which is a contradiction. Hence, A ∪B is ∗∗-connected. �

Theorem 10. Let A and B be two ∗-cl-connected sets of an ideal space
(X, τ, I). If none of them is ∗-cl-connected, then A ∪B is ∗-cl-connected.

Proof. Let A and B be ∗-cl-connected sets in X. Suppose A ∪ B is not
∗-cl-connected. Then, there exist two nonempty disjoint ∗-cl-separated sets
G and H such that A ∪ B = G ∪ H. Since A and B are ∗-cl-connected,
by Lemma 1 either A ⊂ G and B ⊂ H or B ⊂ G and A ⊂ H. Now, if
A ⊂ G and B ⊂ H, then A ∩H = B ∩ G = ∅. Therefore (A ∪ B) ∩ G =
(A ∩ G) ∪ (B ∩ G) = (A ∩ G) ∪ ∅ = (A ∩ G) = A. Also (A ∪ B) ∩
H = (A ∩ H) ∪ (B ∩ H) = ∅ ∪ (B ∩ H) = (B ∩ H) = B. Similarly, if
B ⊂ G and A ⊂ H, then (A ∪ B) ∩ G = A and (A ∪ B) ∩ H = B. Now,
((A ∪ B) ∩H)∗ ∩ cl((A ∪ B) ∩G) ⊂ ((A ∪ B)∗ ∩H∗) ∩ cl(A ∪ B) ∩ clG =
(A ∪B)∗ ∩ cl(A ∪B) ∩H∗ ∩ clG = ∅, cl((A ∪B) ∩H) ∩ ((A ∪B) ∩G)∗ ⊂
cl(A ∪ B) ∩ clH ∩ (A ∪ B)∗ ∩ G∗ = cl(A ∪ B) ∩ (A ∪ B)∗ ∩ clH ∩ G∗ = ∅
and ((A ∪ B) ∩ H) ∩ ((A ∪ B) ∩ G) = ((A ∪ B) ∩ H ∩ G ∩ (A ∪ B) = ∅.
Therefore, (A∪B)∩G and (A∪B)∩H are ∗-cl-separated. Thus, A and B are
∗-cl-separated which is a contradiction. Hence, A∪B is ∗-cl-connected. �

Theorem 11. If A and B are ∗-cl∗-connected sets of an ideal space (X, τ, I)
such that none of them is ∗-cl∗-separated, then A ∪B is ∗-cl∗-connected.
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Proof. The proof is similar with the proof of Theorem 10. �

The following example shows that the union of two ∗∗-connected, (resp.
∗-cl-connected, ∗-cl∗-connected) sets is not a ∗∗-connected set, (resp. ∗-cl-
connected, ∗-cl∗-connected sets). However, Theorems 9, 10 and 11 show
that the union of two ∗∗-connected (resp. ∗-cl-connected, ∗-cl∗-connected
sets is a ∗∗-connected, (resp. ∗−cl-connected, ∗−cl∗-connected) set if none
of them is ∗∗-separated (resp. ∗ − cl-separated, ∗ − cl∗-separated).

Example 1. Let (X, τ, I) be ideal space, where X = {a, b, c, d}, τ =
{∅, {b}, {b, c}, {a, b, d}, X} and I = {∅, {b}}. If A = {a, b}, B = {a, d},
then A and B are ∗∗-connected, but A ∪B is not.

In what follows, Bd(A) denotes the of boundary A.

Theorem 12. Let (X, τ, I) be an ideal space and A ⊂ X. If C is ∗∗-
connected subspace of X that intersect both A and X−A, then C intersects
Bd(A).

Proof. Suppose C ∩ Bd(A) = ∅. So, Bd(A) = (cl(A) ∩ cl(X − A)) and
C ∩ (cl(A) ∩ cl(X − A)) = ∅. Now, C = C ∩ X = C ∩ (A ∪ (X − A)) =
(C ∩A) ∪ (C ∩ (X −A)). Also, we know that (C ∩A)∗ ∩ (C ∩ (X −A)) ⊂
(C∗ ∩A∗)∩ (C ∩ (X −A)) = C ∩C∗ ∩ (A∗ ∩ (X −A)). So, A∗ ⊂ cl(A) and
(X −A) ⊂ cl(X −A) = ∅, which implies that C∗ ∩C ∩ (A∗ ∩ (X −A)) = ∅.
Then (C ∩ A) ∩ (C ∩ (X − A))∗ ⊂ (C ∩ A) ∩ (C∗ ∩ (X − A)∗) = C ∩ C∗ ∩
(A ∩ (X −A)∗) = ∅ and (C ∩A) ∩ (C ∩ (X −A)) = C ∩A ∩ (X −A) = ∅.
Thus, (C ∩ A) and (C ∩ (X − A)) form a ∗∗-separation for C, which is a
contradiction. Hence, C ∩Bd(A) 6= ∅. �

Theorem 13. Let (X, τ, I) be an ideal space and A ⊂ X. If C is ∗-cl-
connected (resp. ∗-cl∗-connected) subspace of X that intersect both A and
X −A, then C intersects Bd(A).

Proof. The proof is similar with the proof of Theorem 12. �

Theorem 14. Let (X, τ, I) be an ideal space. Both ∗-closed or ∗-open
separated sets in this space are ∗∗-separated.

Proof. A and B are separated sets, A∩B = ∅. If A and B are ∗-closed, then
A∗ ⊂ A and B∗ ⊂ B, so that A∗ ∩B = A∩B∗ = A∩B = ∅. We will prove
that A and B are ∗∗-separated. If A and B are ∗-open, thenX−A andX−B
are ∗-closed. So, A ⊂ X −B which implies that A∗ ⊂ (X −B)∗ ⊂ X −B,
and B ⊂ X−A which implies that B∗ ⊂ (X−A)∗ ⊂ X−A. We obtain that
A∗ ∩B = (X −B) ∩B = ∅ and A ∩B∗ = A ∩ (X −A) = ∅. Consequently,
A and B are ∗∗-separated. �
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Theorem 15. Let (X, τ, I) be an ideal space and A,B ⊂ X. If cl∗(A)∩B =
∅ and A ∪B is ∗-closed, then A is ∗-closed set.

Proof. So A∪B is ∗-closed, that implies cl∗(A∪B) = cl∗(A)∪cl∗(B) = A∪B
and cl∗(A) ⊂ A ∪ B. If cl∗(A) ∩ B = ∅, then cl∗(A) ⊂ A. We know that
A ⊂ cl∗(A) and thus A = cl∗(A). So, A is ∗-closed. �

Theorem 16. Let (X, τ, I) be an ideal space and A,B ⊂ X. If A∩cl∗(B) =
∅ and A ∪B is ∗-open, then A is ∗-open set.

Proof. If A ∩ cl∗(B) = ∅, then A ⊂ (X − cl∗(B)). Since A ∪ B is ∗-open,
then (A ∪B) ∩ (X − cl∗(B)) = (A ∩ (X − cl∗(B))) ∪ (B ∩ (X − cl∗(B))) is
a ∗-open set. So, A = (A ∩ (X − cl∗(B))) ∪ (B ∩ (X − cl∗(B))) is a ∗-open
set. �

Corollary 16.1. Let (X, τ, I) be an ideal space and A,B ⊂ X. If A and
B are not ∗ − cl-connected (resp. ∗ − cl∗-connected) and A ∪B is ∗-closed,
then A and B are ∗-closed; if A ∪B is ∗-open, then A and B are ∗-open.

Tagı, Bhardwaj and Sıngh, in [1] introduced a relationship between con-
tinuousness and Cl∗-connectedness and CL − Cl∗-connectedness. Now we
will examine the relationship between continuousness and ∗∗-connected,
(resp. ∗-cl-connected, ∗-cl∗-connected) ideal space.

Definition 1. [1] A function f : (X, τ1, I1)→ (X, τ2, I2) is said to be:
(1) continuous if the inverse image of each open set in Y under f is open

in X;
(2) contra-continuous if the inverse image of each open set in Y under f

is closed in X;
(3) τ1− τ2∗-continuous if the inverse image of each ∗-open set in Y under

f is open in X;
(4) τ1∗−τ2∗-continuous if the inverse image of each ∗-open set in Y under

f is ∗-open in X;
(5) τ1 − τ2∗-contra-continuous if the inverse image of each ∗-open set in

Y under f is closed in X;
(6) τ1∗ − τ2∗-contra-continuous if the inverse image of each ∗-open set in

Y under f is ∗-closed in X.

Theorem 17. [1] Let f : (X, τ1, I1)→ (Y, τ2, I2) be a continuous surjection.
If X is ∗∗-connected, then Y is connected.

Proof. Suppose that Y is not connected. So, there is a nonempty clopen
proper subset A of Y . Then f−1(A) is nonempty clopen subset of X and
hence, f−1(A) and X − f−1(A) are disjoint. We know that A∗ ⊂ cl∗(A) ⊂
cl(A). So, f−1(A) is clopen since (f−1(A))∗ ∩ (X − f−1(A)) = (f−1(A)) ∩
(X − f−1(A))∗ = ∅, i.e. X is not ∗∗-connected, that is a contradiction. �
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Theorem 18. Let f : (X, τ1, I1) → (Y, τ2, I2) be a continuous surjection.
If X is resp. ∗-cl-connected, ∗-cl∗-connected, then Y is connected.

Proof. The proof is similar with the proof of Theorem 17. �

Theorem 19. Let f : (X, τ1, I1) → (Y, τ2, I2) be a continuous surjection.
If X is ∗∗-connected, then Y is ∗∗-connected.

Proof. Suppose that Y is not ∗∗-connected. Then there are nonempty sub-
sets A and B of Y and hence Y = A ∪ B, A∗ ∩ B = A ∩ B∗ = A ∩ B = ∅.
From the fact that f is a continuous surjection, X = f−1(A)∪ f−1(B)
and f−1(A), f−1(B) are clopen that

(
f−1(A)

)∗ ∩ f−1(B) = f−1(A) ∩(
f−1(B)

)∗
= f−1(A)∩ f−1(B) = ∅. We proved that X is not ∗∗-connected,

that is a contradiction. �

Theorem 20. Let f : (X, τ1, I1) → (Y, τ2, I2) be a continuous surjection.
If X is resp. ∗ − cl-connected, ∗ − cl∗-connected, then Y is resp. ∗ − cl-
connected, ∗ − cl∗-connected.

Proof. The proof is similar with the proof of Theorem 19. �

Theorem 21. Let f : (X, τ1, I1) → (Y, τ2, I2) be a contra-continuous sur-
jection. If X is ∗∗-connected, then Y is connected.

Proof. Suppose that Y is not connected. Then there are nonempty subsets
A and B of Y and hence Y = A ∪ B, A∗ ∩ B = A ∩ B∗ = A ∩ B = ∅.
From the fact that f is contra-continuous surjection, X = f−1(A)∪f−1(B)
and f−1(A), f−1(B) are clopen that

(
f−1(A)

)∗ ∩ f−1(B) = f−1(A) ∩(
f−1(B)

)∗
= f−1(A)∩ f−1(B) = ∅. We proved that X is not ∗∗-connected,

that is a contradiction. �

Theorem 22. Let f : (X, τ1, I1)→ (Y, τ2, I2) be a contra-continuous surjec-
tion. If X is ∗− cl-connected, ∗− cl∗-connected, then Y is ∗− cl-connected,
∗ − cl∗-connected.

Proof. The proof is similar with the proof of Theorem 21. �

Theorem 23. Let f : (X, τ1, I1) → (Y, τ2, I2) be a τ1∗ − τ2∗-continuous
surjection. If X is ∗∗-connected, then Y is ∗∗-connected.

Proof. Suppose that Y is not ∗∗-connected. Then there are nonempty sub-
sets A and B of Y and hence Y = A ∪ B, A∗ ∩ B = A ∩ B∗ = A ∩ B =
∅. Since f is τ1∗ − τ2∗-continuous surjection, then A and B are ∗-open
sets in Y so that f−1(A), f−1(B) are ∗-open and ∗-closed in X and so(
f−1(A)

)∗∩f−1(B) = f−1(A)∩
(
f−1(B)

)∗
= f−1(A)∩f−1(B) = ∅. Hence,

X is not ∗∗-connected, that is a contradiction. �
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Theorem 24. Let f : (X, τ1, I1) → (Y, τ2, I2) be a τ1∗ − τ2∗-continuous
surjection. If X is ∗ − cl∗-connected, then Y is ∗ − cl∗-connected.

Proof. The proof is similar with the proof of Theorem 23 �

Theorem 25. Let f : (X, τ1, I1)→ (Y, τ2, I2) be a τ1∗−τ2∗-contra-continuous
surjection. If X is ∗∗-connected and ∗−cl∗-connected, then Y is ∗∗-connected
and ∗ − cl∗-connected.

Proof. The proof is similar with the proof of Theorem 23 �

Theorem 26. Let f : (X, τ1, I1) → (Y, τ2, I2) be a τ1 − τ2∗-continuous
surjection. If X is ∗∗-connected, then Y is ∗∗-connected.

Proof. We know that τ1 ⊂ τ∗1 and τ2 ⊂ τ∗2 . If f : (X, τ1, I1)→ (Y, τ2, I2) is
τ1 − τ2∗-continuous, then f is τ1∗ − τ2∗-continuous. And so, via Theorem
25, Y is ∗∗-connected. �

Theorem 27. Let f : (X, τ1, I1) → (Y, τ2, I2) be a τ1 − τ2∗-continuous
surjection. If X is ∗ − cl∗-connected, then Y is ∗ − cl∗-connected.

Proof. The proof is similar with the proof of Theorem 26. �

Theorem 28. Let f : (X, τ1, I1)→ (Y, τ2, I2) be a τ1−τ2∗-contra-continuous
surjection. If X is ∗∗-connected and ∗−cl∗-connected, then Y is ∗∗-connected
and ∗ − cl∗-connected.

Proof. The proof is similar with the proof of Theorem 26. �
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