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PROPERTIES OF THE k-TH UPPER ORDER STATISTICS
PROCESS THROUGH AN EXAMPLE

ANETA GACOVSKA-BARANDOVSKA

Abstract. The author has previously considered the asymptotic be-
havior of upper order statistics with central rank of a sample with
deterministic size and of randomly indexed upper order statistics. In
this paper, by using regular norming time-space changes, a theoretical
example has been constructed in order to illustrate some of the ob-
tained properties of the k-th upper order statistics process.

1. Introduction

Let X1, X2, ..., Xn be a sample of independent identically distributed
(iid) random variables (rvs) with common continuous distribution func-
tion (df) F . We denote X1,n = max {Xi}

i∈{1,2,...,n}
, X2,n = max {Xi}

i∈{1,2,...,n}\L
, for L

the index of the first maximum, · · ·, Xn,n = min {Xi}
i∈{1,2,...,n}

. The sequence

Xn,n ≤ ... ≤ Xk,n ≤ ... ≤ X1,n is the ordered sample. The random variables
Xn,n, ..., Xk,n, ..., X1,n are called upper order statistics and Xk,n is the k-th
upper order statistic (further on shortly written as u.o.s).

B.Vl. Gnedenko’s paper (1943), "Sur la Distribution Limite du Terme
Maximum d’une Serie Aleatoire", has marked the beginning of a new branch
in the modern stochastics, the extreme value theory. He stated three limit
distributions (Φα, α > 0 - Fréchet,Ψα, α > 0 - Weibull, Λ - Gumbel) for the
normalized maxima of iid random variables using linear normalization and
gave the criteria for the domain of attraction. Since then, a lot of research
has been done, both on the maxima and k-th order statistics. Smirnov,
Leadbetter, Lindgren, Rootzen, Pancheva, Balkema, Embrechts, Kluppel-
berg, Mikosch and many more, have been working on the properties, the
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asymptotic theory under linear and monotone normalization, the limit dis-
tributions and their domain of attraction in cases of central and increasing
rank ordered statistics. In Pancheva, Gacovska [9], the authors investigate
the possible limit distributions of the k-th upper order statistics with cen-
tral rank using monotone regular norming sequences and obtain thirteen
possible types. In their further research, the authors investigated the as-
ymptotic behavior of randomly indexed upper order statistics using regular
norming time-space changes, Gacovska, Pancheva [5], and have looked into
the possible application in reinsurance modeling. This paper illustrates
some of the obtained properties through a theoretical example which gives
basic directions on the further applications of ordered statistics theory in
calculating reinsurance treaties.

2. Basic Model

The theoretical background of the randomly indexed u.o.s. process has
been completely described in Gacovska, Pancheva [5]. Here we give a short
overview of the basic model, some properties are going to be proved, others
just cited from previous papers. Never the less, we certainly need to intro-
duce the terms and notations we use.

On a given probability space (Ω,A, P ), we use a point process N =
{(Tk, Xk) : k ≥ 1} defined in the following way:

i) The random arrival process {Tk} consists of increasing time points 0 <
T1 < T2 < ... < Tn → ∞. In order to use the results of the Central Limit
Problem (C.L.P.), we suppose that the inter-arrival times Yk := Tk − Tk−1,

k ≥ 1, T0 = 0 are independent rvs. Obviously Tn =
n∑
k=1

Yk. The cor-

responding counting process N(t) :=
∑
k

I {Tk ≤ t} = max {k : Tk ≤ t} is

right continuous.

ii) The random state process {Xk} is built by positive iid rvs Xk with
continuous df FX .

iii) Both sequences {Tk} and {Xk} are independent.

In this initial model, at every fixed moment t > 0, we are supplied with
a sample

{
X1, X2, ..., XN(t)

}
of random size N(t). Our interest is focused

on the u.o.s. of this sample

XN(t):N(t) < XN(t)−1:N(t) < ... < Xk:N(t) < ... < X1:N(t). (2.1)

Definition 1. We call Yk : Ω × (0,∞) → (0,∞), Yk(t) := Xk:N(t) the
k-th u.o.s. process.
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The asymptotic behavior of Yk(t) for t → ∞ and k fixed, under linear
norming, is considered e.g in Embrechts, Kluppelberg, Mikosch [4], Chapter

4.3. For k = 1 the process Y1(t) =
N(t)∨
k=1

Xk is an extremal process, taking

into consideration for example Balkema, Pancheva [1] and Pancheva [10],
where "

∨
" denotes the maximum operation. The extremal process Y1(·)

has independent max-increments I(s, t] for all 0 ≤ s < t and allows the
decomposition Y1(t) = Y1(s)

∨
I (s, t]. Consequently, as a solution of the

C.L.P. one obtains the class of the max-infinitely divisible processes and
its subclasses. Our process Yk(t) seems not to have the nice property of
decomposition in independent components.

In this paper we illustrate the asymptotic behavior of the k-th u.o.s.
process Yk(t) using monotone normalization. We assume that there exists
a sequence of time-space changes on (0,∞)× (0,∞)

ζn (t, x) = (τn(t), un(x)) , (2.2)

τn(t) and un(x) continuous and strictly increasing, such that the normalized
k-th u.o.s. process converges in law to a non-degenerate random process
Y (k)(t), i.e.

Yn
(k)(t) := un

−1 ◦ Yk ◦ τn(t) = un
−1
(
Xk:N(τn(t))

) d−→Y (k)(t). (2.3)

We also suppose that the norming sequence {ζn} is regular in the following
sense: ∀s > 0 there exist mappings U(s, x) and T (s, t), strictly increasing
and continuous in x, respectively in t, such that for n→∞

lim
n→∞

u−1
[ns] ◦ un(x) = U(s, x) (2.4a)

lim
n→∞

τ−1
[ns] ◦ τn(x) = T (s, x). (2.4b)

Note that he mappings s→ U(s, ·) and s→ T (s, ·) are one-to-one. Usually
we write Us(x) and Ts(t) instead of U(s, x) and T (s, t).

The process Yn(k)(t) is connected to the point process

Nn =
{(
Tk,n := τ−1

n (Tk), Xk,n := u−1
n (Xk)

)
: k ≥ 1

}
, n ≥ 1.

Let Nn(t) = max {k : Tk,n ≤ t} = max {k : Tk ≤ τn(t)} = N(τn(t)) be the
counting process of Nn. Let us consider the u.o.s. of the n-th sample series{
X1,n, X2,n, ..., XN(t),n

}
, namely

XNn(t):Nn(t),n < ... < Xk:Nn(t),n < ... < X1:Nn(t),n (2.5)

where Xk:Nn(t),n = u−1
n

(
Xk:N(τn(t))

)
= Yn

(k)(t) is the k-th u.o.s. in the n-th
sample series of size Nn(t). In this way, with n→∞, the sample size Nn(t)
increases whereas the value of the state points Xk,n decreases.
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For the limit process Y (k)(t) in (2.3), which should be derived for cer-
tain samples, one should always be aware when does the limit distribution
exist and which class it belongs to. The answers depend essentially on the
character of the rank k. The results previously obtained take under con-
sideration two separate cases: case 1, when the rank k is fixed, and case 2,
when k = k(n) is an increasing rank so that k(n)

n → θ ∈ (0, 1) (central order
statistics).

In the following section, we answer the first question in the case of fixed
rank, and mention results that characterize the limit distribution. The case
of increasing rank has been completely considered in Gacovska, Pancheva
[5]. Theorems 1 and 3, concern the asymptotic behavior of randomly in-
dexed upper order statistics using regular norming time-space changes in
both of the cases.

3. Results on fixed rank case

We return to the initial model of Section 2. Denote by Xk:n the k-
th u.o.s. of the sample {X1, X2, ..., Xn} with a continuous df FX . The
necessary conditions for existence of a limit distribution of the normalized
Xk:n are given by:

Proposition 3.1. Suppose FX ∈ max−DA of a max-stable df G with
respect to a regular norming sequence {un(·)}. Then for fixed k and n→∞

P (Xk:n < un(x))
w−→H(x) = Γk (− logG(x)) ,

where Γk(x) = 1
(k−1)!

x∫
0

tk−1e−tdt is the Gamma df.

Proof. The proof of Proposition 3.1 is similar to the proof of Theorem
4.2.3 and Corollary 4.2.4 in Embrechts, Kluppelberg, Mikosch [4]. Let FX
belong to the max−DA(G) with respect to a regular norming sequence
{un}. It means that nFX (un(x))

w−→− logG(x). For fixed x the the rv

Bn =
n∑
j=1

I {Xj ≥ un(x)} is Binomial, i.e. Bn ∼ Bi
(
n, FX(un(x))

)
. Ob-

serve that the event {Bn < k} is equivalent to the event {Xk:n < un(x)}.
Since
EBn = npn = nFX (un(x))

w−→− logG(x),
for n→∞, by the Poisson theorem, one obtainsBn

d−→Po(λ), λ = − logG(x).
Finally,
P (Xk:n < un(x)) = P (Bn < k)

=
k−1∑
j=0

P (Bn = j) =
k−1∑
j=0

(
n
j

)
F
j
(un(x))Fn−j(un(x))
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−→
k−1∑
j=0

(− logG(x))j

j! G(x)
∆
= 1

(k−1)!

∞∫
− logG(x)

tk−1e−tdt = Γk(− logG(x)). �

The equality ∆
= is a known result from mathematical analysis and can be

easily obtained by multiple partial integration.
Before analyzing the limit class of the processes obtained in (2.3), we

need to agree on the asymptotic behavior of the counting process Nn(t).
Let us assume that ∀t > 0

Nn(t)

n

d−→Λt. (3.1)

Here Λt with df FΛ is random time change.

Definition 2. Under random time change we understand a strictly in-
creasing and continuous random function Λ : (0,∞) → (0,∞), Λ(0) = 0
and Λ(t)→∞ for t→∞.

Next we formulate the first result on randomly indexed u.o.s.

Theorem 1. Suppose FX ∈ max−DA(G) with respect to a regular norming
sequence {un}. Assume that the counting process Nn(t) satisfies (3.1). Then
for fixed k and n→∞

P
(
Xk:Nn(t) < un(x)

) w−→
∞∫

0

H (U(s, x)) dFΛ(t)(s) = EH ◦ U(Λt, x) (3.2)

where H(x) = Γk(− logG(x)) is the limit distribution from Proposition 3.1
and U(s, x) = lim

n→∞
u−1

[ns] ◦ un(x).

In order to prove Theorem 1 we need the following analytical result:

Lemma 1. Assume {Qn} is a sequence of dfs on (0,∞) such that Qn−→Q
uniformly. Let {fn} be a sequence of functions on (0,∞) converging to f
Q-almost everywhere. Suppose |fn(z)| ≤ 1. Then f is Q-integrable and

lim
n→∞

∞∫
0

fn(z)dQn(z) =

∞∫
0

f(z)dQ(z).

Proof.
∣∣∣∣∞∫
0

fn(z)dQn(z)−
∞∫
0

f(z)dQ(z)

∣∣∣∣
≤
∣∣∣∣∞∫
0

fndQn −
∞∫
0

fndQ

∣∣∣∣+

∣∣∣∣∞∫
0

fndQ−
∞∫
0

fdQ

∣∣∣∣ = I1 + I2 → 0, n→∞.

Namely, I1 ≤
∞∫
0

d (Qn −Q)→ 0 due to the uniform convergence of Qn and

I2 → 0 using Lebesque’s theorem for Dominated convergence. �
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Proof of Theorem 1. Formally written, since Nn(t) is integer valued, we
have
P
(
Xk:Nn(t) < un(x)

)
=
∞∫
0

P (Xk:s < un(x) |Nn(t) = s) dP
(
Nn(t)
n = s

n

)
.

Substituting here s
n = z and taking into account the property iii) of the

initial model, we continue the above chain of equalities by

=
∞∫
0

P
(
Xk:[nz] < un(x)

)
dP
(
Nn(t)
n = z

)
.

The last integral is of the form
∞∫
0

fn(z)dQn(z), where for n→∞,

Qn(z) := P
(
Nn(t)
n < z

)
=

nz∑
j=1

P (Nn(t) = j)

w−→P (Λt < z) = FΛt(z) =: Q(z),

fn(z) := P
(
Xk:[nz] < un(x)

)
=

k−1∑
j=0

(
[nz]
j

)
F
j
(un(x))F [nz]−j(un(x))

= P
(
Xk:[nz] < u[nz]

(
u−1

[nz]
◦ un(x)

))
w−→Γk (− logG (U(z, x))) =: f(z), ∀z.

Lemma 1 guarantees the convergence of
∫
fn(z)dQn(z)−→

∫
f(z)dQ(z) on

a set where the convergence Qn−→Q is uniform. We observe that Qn(z) is
continuous in z and converges monotonically in n to the continuous Q(z).
By Dini’s theorem (see Rudin [11]), the convergence Qn−→Q is uniform
on compact subsets of (0,∞). Then for arbitrary δ,R > 0 and δ < R,
R∫
δ

fndQn−→
R∫
δ

fdQ, by Lemma 1. Further we estimate∣∣∣∣∣ δ∫0 fndQn −
δ∫
0

fdQ

∣∣∣∣∣ =

∣∣∣∣∣ δ∫0 fndQn −
δ∫
0

fndQ+
δ∫
0

fndQ−
δ∫
0

fdQ

∣∣∣∣∣
≤

∣∣∣∣∣ δ∫0 fnd(Qn −Q)

∣∣∣∣∣+

∣∣∣∣∣ δ∫0 fndQ−
δ∫
0

fdQ

∣∣∣∣∣ = I1 + I2.

Now I1 ≤
δ∫
0

d(Qn −Q) → 0, n → ∞, because of the convergence Qn−→Q

and the fact that Q does not have mass in 0. Also I2 → 0, due to the Dom-

inated convergence theorem, and hence
δ∫
0

fndQn−→
δ∫
0

fdQ. Just analo-

gously,
∞∫
R

fndQn−→
∞∫
R

fdQ. Consequently
∞∫
0

fn(z)dQn(z)−→
∞∫
0

f(z)dQ(z).

Returning to the previous notations, for n→∞, we finally get the state-
ment
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∞∫
0

P (Xk:[nz] < un(x))dP
(
Nn(t)
n = z

)
=
∞∫
0

P
(
Xk:[nz] < u[nz]

(
u−1

[nz] ◦ un(x)
))

dP
(
Nn(t)
n = z

)
w−→
∞∫
0

H (U(z, x)) dFΛ(t)(z) = EH (U(Λt, x)) = EΓk (− logG (U(Λt, x))).

�

Remark. In the asymptotic results for randomly indexed samples with
size Nn, known in the literature, the authors usually suppose convergence in
probability Nn

n
P−→Λ, Λ positive rv, e.g. Galambos [6], Theorem 6.2.1, Bil-

ingsley [3], Theorem 17.2. In our model, we assume the sequences {Nn} and
{Xn} are independent and Λ is random time change. Those are the reasons
why it is enough to suppose only convergence in distribution Nn(t)

n
d−→Λt.

Corollary to Theorem 1. Let k = 1, then

P

Nn(t)∨
j=1

Xj < un(x)

 w−→EG ◦ U(Λt, x) = EGΛt(x).

Theorem 1 gives answer when the limit distribution exists, namely: If
Fn (un(x))

w−→G(x), where {un} is regular, and if Nn(t)
n

d−→Λt, Λt random
time change, then there exists a random process
Y (k)(t) with df P

(
Y (k)(t) < x

)
=: g(t, x) = EΓk (− logG (U(Λt, x))),

such that
Y

(k)
n (t) = u−1

n

(
Xk:Nn(t)

) d−→Y (k)(t).
Using the regularity of the norming sequence {τn}, the authors in Gacov-

ska, Pancheva [5], prove Theorem 2 and classify the obtained limit process

as self-similar process. Denote
fdd
= for equivalence of the finite dimensional

distributions.

Theorem 2. The limit process Y (k) in (2.3) is self-similar with respect
to the continuous one-parameter group {ηs(t, x) = (Ts(t),Us(x)) : s > 0} of
time-space changes, i.e.

Y (k)(t)
fdd
= U−1

s ◦ Y (k) ◦ Ts(t), ∀s > 0. (3.3)

When central u.o.s. process is considered, Y (kn)

n (t) = u−1
n ◦Xkn:Nn(t),

the rank k = kn increases with n in such a way that

kn
n
→ θ ∈ (0, 1) (3.4)
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and
Nn(t)

n

d−→Λt,

Λt random time change.
We ask for the asymptotic behavior of Y (kn)

n (t) as n → ∞. To this end,
let us preliminarily consider a sample with non-random size ln, ln → ∞
as n → ∞, namely {X1, X2, ..., Xln}. We form the central order statistics
(c.o.s.) Xkn:ln with the property kn

ln
→ λ ∈ (0, 1). As norming mappings

we again use the regular sequence {un(·)} of space changes un : (0,∞) →
(0,∞). Denote pn(·) = P (Xi ≥ un(·)). Just analogously to Theorem 2.5.2
in Leadbetter, Lindgren, Rootzen [7], where un(x) are linear, one can prove
the following statement:

Proposition 3.2. Suppose kn → ∞, kn < ln, kn
ln
→ λ ∈ (0, 1) and ln(1 −

pn(·))pn(·)→∞, as n→∞. Let

kn − lnpn(x)√
lnpn(x)(1− pn(x))

w−→ τλ(x). (3.5)

Then for n→∞

P (Xkn:ln < un(x))
w−→Φ (τλ(x)) (3.6)

where Φ(x) is the standard normal df.

Sometimes we use the notation τ(λ, x) instead of τλ(x). In order to obtain
a unique limit distribution in (3.6), usually one assumes the second order
condition

√
n(knln − λ)→ 0, for n→∞.

An equivalent version of Proposition 3.2 is proved in Pancheva, Gacov-
ska [9]. Moreover, there it has been shown that τθ satisfies the functional
equation √

z · τ(θ, x) = τ (θ,Uz(x)) (3.7)
∀z > 0, x continuity points of τ and Uz(x) from (2.4a). As a consequence
one deduces that the limit class in (3.6) contains thirteen possible types.

More results on the asymptotic behavior of randomly indexed ordered
statistics can be found in Barakat, El-Shandidy [2] and in Surkov [12].

For the randomly indexed c.o.s. Xkn:Nn(t) satisfying (3.1) and (3.4), using
the previous Proposition 3.2, Gacovska, Pancheva [5] stated the main result
and give proofs to the following two theorems:

Theorem 3. Suppose kn →∞ and (3.4) is satisfied. Assume there exists a
regular norming sequence {un(·)} such that nF (un(x))F (un(x))→∞ and

√
n
θ − F (un(x))√

θ (1− θ)
w−→ τθ(x), (3.8)
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for n→∞. If additionally (3.1) holds true, then ∀t > 0

u−1
n ◦Xkn:Nn(t)

d−→Y0(t)

where the limit process has df

g0 (t, x) =

∞∫
θ

Φ ◦ τ
(
θ
z ,Uz(x)

)
dFΛ(t)(z) = E[Φ◦τ

(
θΛt
−1,UΛ(t)(x)

)
I {Λt > θ}]

and U(·, ·) is defined in (2.4a).

Theorem 3 provides the conditions for existance of the limit distribution
of the k-th u.o.s. process, in the case of increasing rank kn. The authors also
characterize the limit process Y0 as self-similar. A nice consequence of the
selfsimilarity of a random process Y , i.e. Us◦Y (t)

d
=Y ◦Ts(t), is the possibil-

ity to determine its fdd’s knowing only the df g(1, x) := P (Y (1) < x). De-

note by s(t) the unite solution of Ts(t) = 1. Consequently Y (t)
d
=U−1

s(t)◦Y (1),
∀t > 0. Then

P (Y (t1) < x1, ..., Y (tk) < xk) = P (Y (1) < min(Us(t1)(x1), ...,Us(tk)(xk))).

4. Example

To stress out the importance of application of the basic model in con-
crete cases, mostly in insurance mathematics, hereby we construct a specific
example. To make it closer to practise, we specify the initial model enriched
by some additional assumptions:

For i): We additionally assume that the inter-arrival times {Yk}, Yk =
Tk − Tk−1, are iid rvs which df FY has a regularly varying tail, namely
F Y ∈ RV−β , β ∈ (0, 1). Consequently, by the stable CLT there exists a
sequence {b(n)}, b(n) > 0, such that

Tn
b(n)

=

n∑
k=1

Yk
b(n)

d−→Dβ, (4.1)

where Dβ is a β-stable rv. Then ∀t > 0, by the functional stable CLT,

Dn(t) :=
T[nt]

b(n)
=

[nt]∑
k=1

Yk
b(n)

d−→D(t), D(1)
d
=Dβ. (4.2)

Here D(t) is an one-sided β-stable random process.
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The counting process N(t) associated with the arrival time process {Tn}
is determined by

N(t) = max {n : Tn ≤ t} = max

{
n :

n∑
k=1

Yk
b(n)

≤ t

b(n)

}
.

Let us denote by E(t) the inverse process to D(t), the so called hitting
time process for D(t):

E(t) = inf {s : D(s) > t} .
Now the equivalence of the random events

{N(t) ≥ n} ⇐⇒ {Tn ≤ t} (4.3)

implies the equivalence

{D(x) ≥ t} ⇐⇒ {E(t) ≤ x}.

Denote by b̃(n) the asymptotically inverse sequence to b(n) in the sense that

b
(
b̃(n)

)
∼ n. (4.4)

Since Tn =
n∑
k=1

Yk is strictly increasing, one takes ad hoc b(n) strictly in-

creasing in n, too. Thus, b̃n (b(n)) ∼ n is also true. In view of (4.2), (4.3)
and (4.4) one may conclude that

N(nt)

b̃(n)

d−→E(t). (4.5)

Indeed:
P
(
N(nt)

b̃(n)
< x

)
= P

(
N(nt) < b̃(n)x

)
= P

(
T[̃b(n)x] > nt

)
= P

([
b
(
b̃(n)

)]−1
· T[̃b(n)x] >

[
b
(
b̃(n)

)]−1
· nt
)

w−→P (D(x) > t) = P (E(t) < x) = FE(t)(x).
Here the limit process E(t) is a β-self-similar process in the sense that

E(ct)
fdd
= cβE(t), ∀c > 0.

This and other properties of the hitting time process E(t) are studied in
Meerschaert, Scheffler [8]. Note that (4.5) is equivalent to

N(b(n)t)

n

d−→E(t). (4.6)

Here E(t) = tβE(1) is stochastically continuous and strictly increasing. The
last limit relation is nothing else but condition (3.1) in the previous section.
Thus, in the transformed model Nn we are left to choose τn(t) = b(n)t.
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For ii) we additionally assume that the state points Xk are iid, standard
Pareto distributed rvs, i.e. FX(x) = 1− 1

x , x ≥ 1. This assumption brings
the example closer to practise. The Pareto tailed claims are regularly used
in insurance for modeling reinsurance treaties.

For iii) there are no additional assumptions.
Next we have to determine the space changes un(x) for the transformed

model Nn = {(Tkn, Xkn) : k ≥ 1}. In the Pareto case, Proposition 3.2 says
that for ln = n, knn → θ ∈ (0, 1) and n→∞,
P (Xkn:n < un(x))

w−→H(x) = Φ (τθ(x)) if
√
n · θ−1/un(x)√

θ(1−θ)
w−→ τθ(x).

Let us consider the particular case where H(x) is continuous and strictly
increasing on its support. Then τθ satisfies the functional equation
τ−1
θ (
√
z · τθ(x)) = Uz(x) (equivalent to (3.7)), where Uz is the limit mapping

in (2.4a). We may take τθ(x) =
√

x
θ(1−θ) , for x ∈ suppH and observe that

θ − 1
un(x) ∼

√
x
n . This suggests to determine the space changes as un(x) =

√
n

θ
√
n−
√
x
. Doing so, we obtain u−1

n (x) = n
(

1
x − θ

)2 and u−1
[nz] ◦ un(x) =

[nz]
n x→ zx = Uz(x). Thus, P (Xkn:n < un(x))

w−→Φ

(√
x

θ(1−θ)

)
.

We apply the last result to randomly indexed c.o.s. in the transformed
model Nn:
P
(
Xkn:Nn(t) < un(x)

)
= P

(
Xkn:N(b(n)t) < un(x)

)
=
∞∫
0

P
(
Xkn:N(b(n)t) < un(x) |N(b(n)t) = s

)
dP
(
N(b(n)t)

n = s
n

)
w−→
∞∫
θ

Φ
(
τ
(
θ
z , Uz(x)

))
dFE(t)(z).

Since in our model τ
(
θ
z , Uz(x)

)
=
√

z3x
θ(z−θ) , we can continue with

=
∞∫
θ

Φ
(√

z3x
θ(z−θ)

)
dFE(t)(z) = g0(t, x) = P (Y0(t) < x).

In this way, the univariate distributions g0(t, x) of the limit process are
being determined.

At the end, let us discuss the asymptotic character of the space changes
un(x):
a) Assume k is fixed. The properties of {un(x)} are a consequence of the
condition FX ∈ max − DA(G), i.e. FX (un(x)) ∼ − 1

n logG(x). Then for
n→∞, un(x)−→rF , where rF is the right end point of the suppFX .
b) Assume k = kn increases to ∞ in such a way that kn

n → θ ∈ (0, 1). In
this case the properties of {un(x)} are determined by condition (14). Then
FX 6∈ max − DA of any max-stable df and θ − FX(un(x))−→0. Hence,
un(x)−→x1−θ, the (1− θ) quantile of FX .
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