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CONNECTEDNESS OF INVERSE LIMIT OF
GENERALIZED TOPOLOGICAL SPACES

IVAN LONČAR

Abstract. The aim of this paper is to study the connectednes of in-
verse limit of generalized topological spaces introduced by Császár in
[3].

1. Introduction

This section contains some basic definitions and propositions concerning
supra topological and generalized topological spaces.

Definition 1. Let J be any nonempty indexed set and let X be a nonempty
set. A subfamily µ of X is said to be supra topology on X if:

i) X, ∅ ∈ µ
ii) If Ai ∈ µ for all i ∈ J , then ∪Ai ∈ µ.

This definition can be reformulated as follows.

Definition 2. A subcollection µ ⊂ 2X is called a supra topology on X, [6],
if X ∈ µ and µ is closed under arbitrary union.

Definition 3. [10, Definition 2.3] Let (X, τ) be a topological space and µ
be a supra topology on X. We call µ a supra topology associated with τ if
τ ⊆ µ.

Proposition 1.1. [11, Theorem 1] If µ is a supra topology on X, then
Tµ = {A ⊂ X : A ∩B ∈ µ for each B ∈ µ} is a topology and Tµ ⊂ µ .
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66 IVAN LONČAR

Definition 4. (X,µ) is called a supra topological space. The elements of
µ are said to be supra open in (X,µ) and the complement of a supra open
set is called a supra closed set.

Császár in [3] introduced the notion of generalized topological space
(GTS) as another name for supra topology. He also introduced the no-
tion of (µ1, µ2)-continuous function on GTS’s and the separation axioms
defined by replacing open sets by members of a GTS.

In general, letMµ denote the union of all elements of µ; of course,Mµ ∈ µ,
and Mµ = X if and only if µ is a strong general topology (strong GT). A
subset A of X is called µ-open if A ∈ µ. A subset B of X is called µ-closed
if X\B ∈ µ.

A point x ∈ X is called a µ-cluster point of A if U ∩ (A\{x}) 6= ∅ for
each U in µ such that x ∈ U .

Let B ⊂ expX satisfy ∅ ∈ B. Then all unions of some elements of B
constitute a GT µ(B), and B is said to be a base for µ(B).

Definition 5. [12, Definition 2.1] Let X be a space. Then µx = {U : x ∈
U ∈ µ}.

Definition 6. [12, Definition 2.2] Let (X,µ) be a GTS. X is called a µT2-
space if X satisfies the following µT2-separation conditions: If x, y ∈ X and
x 6= y, then there are Ux ∈ µx and Uy ∈ µy such that Ux ∩ Uy = ∅.

Definition 7. Let (X,µ) be a generalized topological space. Then X is
called a µT1-space if for x1, x2 ∈ Mµ with x1 6= x2, there exist U, V ∈ µ
such that x1 ∈ U, x2 /∈ U and x2 ∈ V, x1 /∈ V .

Definition 8. Let µ be a GT on X. We say that M ⊂ X is µ-open if and
only if M ∈ µ;N ⊂ X is µ-closed if and only if X −N ∈ µ.

Definition 9. ([7]) If A ⊂ X then iµA denotes the union of all µ-open sets
contained in A and cµA is the intersection of all µ-closed sets containing A.

Both iµ and cµ are idempotent operations (where the operation γ is said
to be idempotent if and only if γγA = γA for A ⊂ X).

Proposition 1.2. For A ⊂ X and x ∈ X, we have x ∈ cµA if and only if
x ∈M ∈ µ implies M ∩A 6= ∅.
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Definition 10. Let µ be a GT on X, µ′ a GT on X ′ and f : X → X ′.
We say that the map f is (µ, µ′)-continuous if and only if M ′ ∈ µ′ implies
f−1(M ′) ∈ µ, and (µ, µ′)-open if and only if M ∈ µ implies f(M) ∈ µ′. If
f is bijective and (µ, µ′)-continuous, moreover f−1 is (µ′, µ)-continuous,
then it is natural to say that f is a (µ, µ′)-homeomorphism.

Let X be a non-empty set and let B be a collection of subsets of X with
∅ ∈ B. Then the collection of all possible unions of elements of B forms a
GT µ(B) on X and B is called a base for µ(B).

Now, let A 6= ∅ be an index set, Xa 6= ∅ for a ∈ A, and X =
∏
{Xa : a ∈

A} the Cartesian product of the sets Xa. We denote by pa the projection
pa: X → Xa.

Definition 11. ([4]) Suppose that, for a ∈ A, µa is a given GT on Xa. Let
us consider all sets of the form

∏
{Ma : Ma ∈ µa} and, with the exception

of a finite number of indices a, Ma = Xa. We denote by B the collection of
all these sets. Clearly ∅ ∈ B so that we can define a GT µ = µ(B) having
B for base. We call µ the product of the GT s µa and denote it by Paµa.

The base for
∏
{Xa : a ∈ A} described in above Definition is called the

canonical base for the Cartesian product. If each µa is a topology then
clearly µ is the product topology of the factors µa.

Proposition 1.3. If B ∈ B, then there exist a finite number of indices
a1, a2, ..., an such that B = p−1a1 (Ma1)∩ p−1a2 (Ma2)∩ ...∩ p−1a2 (Ma2).

Let us write i = iµ, c = cµ, ik = iµk , ck = cµk .
Consider in the following Ak ⊂ Xk, A =

∏
k∈K Ak, x ∈ X and xk =

pk(x).

Proposition 1.4. [4, Proposition 2.1.] iA ⊂
∏
k∈K ikAk.

Proof. If x ∈ iA then there is M ∈ µ such that x ∈ M ⊂ A. Then there
are sets Mk ∈ µk such that x ∈

∏
k∈KMk ⊂ M ⊂ A. For pk(x) = xk, we

have xk ∈Mk so that Mk 6= ∅ and therefore
∏
k∈KMk ⊂

∏
k∈K Ak implies

Mk ⊂ Ak for each k. Thus xk ∈Mk ⊂ Ak shows that xk ∈ ikAk. �

Similarly, we have the following result.

Proposition 1.5. [3, Proposition 2.3.] cA =
∏
k∈K ckAk.

Proposition 1.6. [4, Proposition 2.4] The projection pk is (µ, µk)-open.
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In general, pk need not be (µ, µk) continuous.

Proposition 1.7. [4, Proposition 2.7] If every µk is strong then µ is strong
and pk is (µ, µk)- continuous for k ∈ K.

2. Inverse systems and limits

Let A be a set directed by the relation ≤ and let {Xa : a ∈ A} be a
family of sets indexed by A. For each pair (a, b) of elements of A such that
a ≤ b, let pab be a mapping of Xb into Xa, i.e. pab : Xb → Xa. Suppose
that pab satisfy the following conditions [2, p. 191]:

(LPI): The relations a ≤ b ≤ c imply pac = pabpbc,

(LPII): For each a ∈ A, paa is the identity mapping of Xa.
Then we say that X = {Xa, pab, A} is an inverse system of sets Xa

and bonding mapping pab.

Let Y = Π{Xa : a ∈ A} be the product of the family of sets {Xa : a ∈ A}
and X denote the subset of Y consisting of all x = (xa : a ∈ A) (called a
thread of X) which satisfy each of the relation xa = pab(xb) for each pair of
indices (a, b) such that a ≤ b. The set X is called inverse limit of the inverse
system X = {Xa, pab, A} and is denoted by limX or by lim{Xa, pab, A}.

Proposition 2.1. [5, 2.5.1. Proposition] The limit of an inverse system
X = {Xa, pab, A} of Hausdorff spaces Xa is the closed subset of the Carte-
sian product Π{Xa : a ∈ A}.

This Proposition is true for inverse systems X = {Xa, pab, A} of genera-
lized spaces.

Proposition 2.2. The limit of an inverse system X = {Xa, pab, A} of µT2
generalized topological spaces Xa is the closed subset of the Cartesian pro-
duct Π{Xa : a ∈ A}.

Proof. Let us prove that each point x = {xa : a ∈ A} /∈ limX has a
neighbourhood which is disjoint with limX. From {xa : a ∈ A} /∈ limX it
follows that there exist a b ∈ A such that for c ≤ b we have pbc(xb) 6= xc.
There exist disjoint µ−open sets Uc and Vc such that xc ∈ Uc and pbc(xb) ∈
Vc. Now Ub = p−1bc (Uc)∩p−1bc (Vc) is µ−open set containing xb. It follows that
U = p−1b (Ub) is an µ−open set containing x = {xa : a ∈ A}. Let us prove
U∩limX = ∅. If y = {ya : a ∈ A} ∈ U then pb(y) ∈ Ub = p−1bc (Uc)∩p−1bc (Vc).
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It follows that pbc(yb) 6= yc. Thus, y /∈ limX. This means that U∩limX = ∅
and the proof is completed. �

Let X = {Xa, pab, A} be an inverse system of generalized topological
spaces and let X = lim X. For every a ∈ A there is a continuous mapping
pa = Pa|X : X → Xa, where Pa : Π{Xa : a ∈ A} → Xa is the projection,

Definition 12. Let U ∈ µ so that x ∈ U and U is contained in every V ∈ µ
with x ∈ V . In this case we call x a representative element for U .

Definition 13. A space X that every x ∈ X is a representative element
for some U ∈ µx is called a C0-space in [12].

Proposition 2.3. The family of all sets p−1a (Ua) , where Ua is an µ−open
subset of Xa and runs over a subset Al cofinal in A, is a base for the limit
of the inverse system X ={Xa, pab, A}. Moreover, if for every a ∈ A base
Ba for Xa is fixed, then the subfamily consisting of those p−1a (Ua) in which
Ua ∈ Ba, also is a base.

3. Quasi-compact generalized topological spaces

Definition 14. A generalized topological space (X,µ) is µ−quasi-compact
if every cover of µ− open subsets of (X,µ) has the finite subcover.

Theorem 1. A generalized topological space (X,µ) is µ−quasi-compact if
and only if every family of µ−closed subsets of (X,µ) which has the finite
intersection property has non-empty intersection.

Let X = {Xa, pab, A} be an inverse system such that for every a ∈ A

there exists a family Sa of subsets of Xa with the following properties, [2,
p. 190]:

(I) Arbitrary intersection of the sets from Sa is a set from Sa,
(II) If a family of subsets F ⊂ Sa has the finite intersection property,

then ∩{M : M ∈ F} is non-empty,
(III) p−1ab (xa) ∈ Sb for every xa ∈ Xa and for every pair a, b, a ≤ b,
(IV) pab(Mb) ∈ Sa for every Mb ∈ Sb and for every pair a, b, a ≤ b.

Theorem 2. Let X = {Xa, pab, A} be an inverse system which satisfies
conditions (I), (II), (III) and (IV). If X = limX, then:

a) For all a ∈ A

pa(X) = ∩{pab(Xb) : b ≥ a}, a ∈ A, (3.1)
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b) If Xa 6= ∅ for every a ∈ A, then X 6= ∅.

Proof. Let Sa be a family of all non-empty subsets of Xa and let Y be a
family of all collections Y = {Ya : Ya ∈ Sa, a ∈ A} such that pab(Yb) ⊂ Ya.
The family Y is non-empty since X ∈ Y. For two collections Y = {Ya :

Ya ∈ Sa, a ∈ A} and Z = {Za : Za ∈ Sa, a ∈ A} we shall write Y ≥ Z if
Ya ⊂ Za for every a ∈ A. It is clear that (Y, ≥) is a partially ordered set.
The remaining part of the proof consists of several steps.

Step 1. There exists a maximal element in (Y, ≥).
It suffices to prove that (Y, ≥) is inductive, i.e. if L = {Y λ : λ ∈ Λ} is

a strictly increasing chain in (Y, ≥), then there is an element M ∈ (Y, ≥)

such thatM ≥ Y λ for every λ ∈ Λ. We defineM = {Ma : Ma ∈ Sa, a ∈ A}
such that Ma = ∩{Y λ

a : λ ∈ Λ}. From the properties (I) and (II) it follows
that the set Ma is non-empty Sa subset of Xa. Moreover, pab(Mb) ⊂Ma.

Step 2. If Y = {Ya : Ya ∈ Sa, a ∈ A} is a maximal element of (Y, ≥),
then Ya = pab(Yb) for every pair a, b ∈ A such that a ≤ b.

Let Z = {Za : Za ∈ Sa, a ∈ A} be a collection such that Za = ∩{pab(Yb) :

b ≥ a}. Each pab(Yb) ∈ Sa since Yb ∈ Sb. From the properties (I) and
(II) it follows that the set Za is non-empty Sa subset of Xa. In order to
prove that Z ∈ (Y, ≥) it suffices to prove that pab(Mb) ⊂ Ma. If a ≤ b

then pab(Zb) ⊂ ∩{pab(pbc(Yc)) : b ≤ c} = ∩{pac(Yc) : c ≥ b}. On the other
hand, for every d ≥ a there is a c ∈ A such that c ≥ b, d. It follows that
pac(Yc) ⊂ pad(Yd). This means that

∩{pac(Yc) : c ≥ b} = ∩{pad(Yd) : c ≥ b} = Za.

Finally, we have Z ∈ (Y, ≥). Moreover, Za ⊂ Ya for each a ∈ A. This
means that Z = Y since Y is maximal.

Step 3. If Y = {Ya : Ya ∈ Sa, a ∈ A} is a maximal element of (Y,≥),
then Ya is one-point set for every a ∈ A.

Let xa ∈ Ya. Define

Zb =

{
Yb ∩ p−1ab (xa), if b ≥ a,

Yb, if b � a.

Let us prove that Z = {Za : Za ∈ Sa, a ∈ A}. We infer that each Yb ∩
p−1ab (xa) is in Sa. It is easy to prove that pab(Zb) ⊂ Za. Hence, Z ∈ (Y,≥).
Now, Z = Y since Z ≥ Y and Y is maximal. This means Ya = {xa}.



CONNECTEDNESS OF INVERSE LIMIT OF GTS 71

Step 4. limX is non-empty.
From Step 3 we have that Z = {Za : Za ∈ Sa, a ∈ A} = {xa : a ∈ A}

such that pab(xb) = xa for every pair a, b such that b ≥ a.
Step 5. Let us prove that pa(X) = ∩ {pab(Xb) : b ≥ a}.

It is clear that pa(X) ⊂ ∩{pab(Xb) : b ≥ a}. Let us prove that pa(X) ⊃
∩{pab(Xb) : b ≥ a}. Let xa ∈ ∩{pab(Xb) : b ≥ a}. This means that
Yb = p−1ab (xa) is non-empty for each b ≥ a. Moreover, Yb ∈ Sb. For each b
non-comparable with a, let Yb = Xb. Now, we have a collection Y = {Ya :

Ya ∈ Sa, a ∈ A} which is evidently in (Y, ≥). There exists a maximal
element Z = {Za : Za ∈ Sa, a ∈ A} in (Y, ≥) such that Z ≥ Y . It follows
that each Ya is some Za which is a point za ∈ Xa (Step 3) since Z is maximal.
The collections (za) is a point of limX. Hence, pa(X) = ∩{pab(Xb) : b ≥ a}.
�

Theorem 3. Let X = {Xa, pab, A} be an inverse system of non-empty
µ−quasi-compact µT1 spaces Xa and µ−closed mappings pab. Then limX

is non-empty.

Proof. Let Sa be a family of µ−closed subsets of Xa and let each pab be a
closed mapping. Now, we have the following properties:
(I) arbitrary intersection of µ-closed sets from Sa is a µ−closed set from

Sa, since arbitrary union of the µ-open sets is a µ-open.
(II) If a family of subsets F ⊂ Sa has the finite intersection property,

then ∩{M : M ∈ F} is non-empty since each Xa is µ−quasi-compact.
(III) p−1ab (xa) ∈ Sb for every xa ∈ Xa and for every pair a, b, a ≤ b, since

in T1 space each point is closed.Thus, is p−1ab (xa) µ−closed.
(IV) pab(Mb) ∈ Sa for every Mb ∈ Sb and for every pair a, b, a ≤ b since

pab is µ-closed.
Using Theorem 2 we complete the proof. �

Remark 3.1: In fact, from the proof of Theorem 2 it follows that each
closed subsystem Z contains some minimal closed subsystem Y.

Now we prove the quasi-compactness of the limit space.

Theorem 4. Let X = {Xα, pαθ, A} be an inverse system of quasi- com-
pact µT1 spaces Xα and µ−closed mappings pαβ. Then limX is µ−quasi-
compact.
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Proof. Let U = {Uµ : µ ∈M} be an µ−open cover of limX. By virtue of
the definition of a base in limX there is an open set Uµ,a ⊆ Xα, for each
α ∈ A and µ ∈ M , such that Uµ = Π{Uµ,α : α ∈ A}, p−1α (Uµ,α) ⊆ Uµ and
Uµ,α is a maximal set with respect to property p−1(Uµ,α) ⊆ Uµ. Let Uα be a
family {Uµ,α\ . α ∈ A}. If Uα is the cover ofXa then p−1α (Uα) is a cover limX

which refines U . This means that U has a finite subcover since Uα has a finite
subcover. Now we prove that there exists an α ∈ A such Uα is a cover of
Xα. In the opposite case the set Zα = Xα\(∪{Uµα : µ ∈M}〉 is non-empty
for each α ∈ A. Now we obtain a closed subsystem Z = {Zα, , paβ|Zβ, A}.
By virtue of Remark 3.1 it follows that there is a closed subsystem Y ≤ Z

such that Y is minimal. From the proof of Theorem 2 it follows that limY

is non-empty. This means that limZ 6= ∅. Let z be any point of limZ. It is
easy to prove that z 6∈ ∪{f→1

α (Uµ,α) : α ∈ A, µ ∈M}. This is impossible
since U = {Uµ : µ ∈ M} is the cover of limX. Thus, there exists an
α ∈ A such Uα is a cover of Xα. The proof is complete. �

4. Connectedness of inverse limit of
generalized connected spaces

Definition 15. [1, Definition 3.1] Let (X, µ) be a GTS. X is called µ-
connected if there are no nonempty disjoint µ-open subsets U, V of X such
that U ∪ V = X.

Theorem 5. A generalized topological space (X,µ) is µ−quasi-compact if
and only if every family of µ−closed subsets of (X,µ) which has the finite
intersection property has non-empty intersection.

Let us recall, [1], that if (X, µ) GTS then X is called µ-connected if there
are no nonempty disjoint µ-open subsets U, V of X such that U ∪ V = X.

Corollary 5.1. It is clear that X is µ-connected if and only if there are no
nonempty disjoint µ-closed subsets F1, F2 of X such that F1 ∪ F2 = X.

We shall prove the following result.

Theorem 6. Let X = {Xa, pab, A} be an inverse system of µ−quasi-
compact spaces Xa such that X = limX is µ−quasi-compact and surjec-
tive projections pa : X → Xa. Then limX is µ−connected if each Xa is
µ−connected.
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Proof. Suppose that X is not µ−connected. It follows that there exist µ-
closed sets F1, F2 such that

F1 ∪ F2 = X (1)

and
F1 ∩ F2 = ∅. (2)

Consider the sets
Ya = cµ(pa(F1)) ∩ cµ(pa(F2)) (3)

From the ontoness of pa : X → Xa it follows that

cµ(pa(F1)) ∪ cµ(pa(F2)) = Xa. (4)

This relations implies that Ya 6= ∅ since from Ya = ∅ it follows that Xa is
not µ-connected.

Now the family {p−1a (Ya) : a ∈ A} is the family with finite intersection
property of µ-closed subset of µ-quasi-compact space X = limX. Thus

Y = ∩{p−1a (Ya) : a ∈ A} 6= ∅ (5)

Let y ∈ Y. From the relations (1) and (2) that y ∈ F1/F2 or y ∈ F2/F1. In
any case there exists b ∈ A and a µ-open set Vb ⊂ Xb such that p−1b (Vb) ∩
F2 = ∅ or p−1b (Vb)∩F1 = ∅. It follows that pb(y) /∈ pb(F2) or pb(y) /∈ pb(F1).
We infer that pb(y) /∈ Yb. This is impossible because (5). This means that
F1 = ∅ or F2 = ∅, i.e. that X is µ−connected. �

5. Connectedness if inverse limit of weakly µ-compact spaces

Definition 16. A function f : (X, µ)→ (Y, κ) is called (µ, κ)−continuous
if the inverse image of each κ-open set is µ-open.

Definition 17. Let A be a nonempty subset of a space (X; µ). The
generalized subspace topology on A is the collection {U ∩ A : U ∈ µ},
and will be denoted by µA. The generalized subspace A is the generalized
topological space (A, µA).

Definition 18. [8, Definition 2.1.] A space (X; µ) is called weakly µ-
compact (briefly wµ−compact) if any µ-open cover of X has a finite sub-
family, the union of the µ-closures of whose members covers X.

It is clear that every µ-compact space (X; µ) is wµ-compact.
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Lemma 1. [8, Proposition 2.7.] A space (X, µ) is wµ-compact if and only
if any µ-regular open cover of X has a finite subfamily, the union of the µ−
closures of whose members covers X.

Lemma 2. [8, Proposition 2.8.] For a space (X; µ), the following are
equivalent:

(i) X is wµ-compact,
(ii) For any family U = {Uα : α ∈ Λ} of µ-closed subsets of X such that
∩{Uα : α ∈ Λ} = ∅, there exists a finite subset Λ0 of Λ such that
∩{iµ(Uα) : α ∈ Λ0} = ∅,

(iii) For any family U = {Uα : α ∈ Λ} of µ-regular closed subsets of X
such that ∩{Uα : α ∈ Λ} = ∅, there exists a finite subset Λ0 of Λ

such that ∩{iµ(Uα) : α ∈ Λ0} = ∅.

Definition 19. [8, Definition 2.9.] Let A be a subset of a space (X, µ). A
point x ∈ X is said to be a θµ-accumulation point of A if cµ(U)∩A 6= ∅ for
every µ-open subset U of X that contains x. The set of all θµ-accumulation
points of A is called the θµ-closure of A and is denoted by (cµ)θ(A). A is
said to be µθ-closed if (cµ)θ(A) = A. The complement of a µθ-closed set is
called µθ-open.

It is clear that A is µθ-open if and only if for each x ∈ A, there exists a
µ-open set U such that x ∈ U ⊂ cµ(U) ⊂ A.

Theorem 7. If X is a µ-space then:

(a) the empty set and the whole space are µθ-closed,
(b) arbitrary intersection of µθ-closed sets are µθ-closed,
(c) cµ(K) ⊂ (cµ)θ(K) for each subset K,
(d) a µθ-closed subset is closed.

Lemma 3. If X is a µ- space, then for each Y ⊂ X there exists a minimal
µθ-closed subset Z ⊂ X such that Y ⊂ Z.

Proof. The collection Φ of all µθ-closed subsets W of X which contains Y
is non-empty since X ∈ Φ. By (b) of Theorem 7 we infer that Z = ∩{W :

W ∈ Φ} is a minimal µθ-closed subset Z ⊂ X containing Y . �

From Theorem 7 it follows that the family of all µθ-open subsets of (X,µ)

is a new generalized topology (GT) µθ on X.



CONNECTEDNESS OF INVERSE LIMIT OF GTS 75

Definition 20. Let (X,µ) be a GT space. The µθ-space of X is the space
(X,µθ).

In the sequel we shall use denotations Xµ and Xµθ .

Definition 21. Let X be a space. Then µx = {U : x ∈ U ∈ µ}.

Lemma 4. If Xµ is a µT2 space, then Xµθ is µT1-space.

Proof. Let x be any point of Xµ. For every another point y ∈ Xµ, y 6= x,
there exists a pair of µ-open disjoint set U, V (see 6)such such that x ∈ U
and y ∈ V . It follows that U ∩ cµ(V ) = ∅. We conclude that x is µθ-closed
and, consequently, Xµθ is µT1-space. �

Proposition 5.1. If Xµ is a µT2 and wµ-compact space, then each fam-
ily of µθ-closed subsets with the finite intersection property has non-empty
intersection.

Proof. If {Fα : α ∈ Λ} is a family of µθ-closed subsets with the finite
intersection property, then {Fα : α ∈ Λ} is a family of µ-closed subsets
of Xµθ with the finite intersection property. Thus, ∩{Fα : α ∈ Λ} is non-
empty since Xµθ is µ−quasi-compact, [9]. �

Theorem 8. Xµ is a µ T2 and wµ-compact space if and only if Xµθ is µT1
and µ-compact space.

Proof. If. Let Xµθ be µT1 and µ-compact space and let {Fa : a ∈ A}be a
family of µθ-closed subsets of Xµ with the finite intersection property. Now
{Fa : a ∈ A} is the family of µ-closed subsets of Xµθ which is µT1 and
µ-compact space. It follows that the family {Fa : a ∈ A}has non-empty
intersection. Thus, Xµ is a wµ-compact space.
Only if. If {Fa : a ∈ A} is a family of µ-closed subsets of {Fa : a ∈ A}

with the finite intersection property, then {Fa : a ∈ A} is a family of
µθ-closed subsets of Xµ with the finite intersection property. Since Xµ is
wµ-compact space, we infer that ∩{Fa : a ∈ A} is non-empty. By this we
infer that Xµθ µ-compact space. �

The following theorems are the main results of this section.

Theorem 9. Let X = {Xa, pab, A} be an inverse system of non-empty wµ-
compact µT2 spaces and µ−closed mappings pab. If X = limX, then:
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a) For all a ∈ A

pa(X) = ∩{pab(Xb) : b ≥ a},

b) If Xa 6= ∅ for every a ∈ A, then X 6= ∅.

Proof. Now inverse system X = {Xa, pab, A} is inverse system

Xµ = {Xaµθ
, pab, A}

of µ− quasi-compact spaces and closed mappings pab. Using Theorem 2 we
complete the proof. �

Lemma 5. Let X = {Xa, pab, A} be an inverse system of wµ-compact µT2
non-empty spaces and µ−closed surjective bonding mapping pab. Then the
projections pa : limX→ Xa, a ∈ A, are surjective and µ−closed.

Proof. The inverse system Xµ = {Xaµθ
, pab, A} satisfies the condition of

Theorem 2 by which we complete the proof. �

Theorem 10. Let X = {Xa, pab, A} be an inverse system of wµ-compact
µT2 non-empty spaces and µ-closed surjective bonding mapping pab. Then
limX is wµ-compact.

Proof. By Theorem 2 the inverse system Xµ = {Xaµθ
, pab, A} of µ−quasi-

compact spaces has µ−quasi-compact limit limXµ. This means that limX

wµ-compact space. �

Definition 22. We say that the mapping f : X → Y has the inverse
property if f−1(cµ V ) = cµ f

−1(V ) for every µ-open set V ⊂ Y .

Now we shall prove the following result.

Theorem 11. Let X = {Xa, pab, A} be an inverse system of wµ-compact
spaces such that limX is wµ-compact and the projections pa : limX→ Xa,
a ∈ A, are surjective with the inverse property. If the spaces Xa are µ-
connected, then X = limX is µ-connected.

Proof. Suppose that X is not µ−connected. It follows that there exist µ-
closed sets F1, F2 such that

F1 ∪ F2 = X (1)

and
F1 ∩ F2 = ∅. (2)
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For each a ∈ A let Ua ⊂ Xa be a maximal µ-open set such that p−1a (Ua) ⊂
F1.Similarly, let Va ⊂ Xa be a maximal µ-open set such that p−1a (Va) ⊂ F2.
From the wµ-compactness of X it follows that there exist finitely many
Ua1, ..., Uan, Vb1, ..., Vbm

X = ∪ni=1cµ(p−1ai (Uai)) ∪ (∪mj=1cµ(p−1bj (Ubj))).

We may use that ai = bj . This means that

X = ∪ni=1cµ(p−1ai (Uai)) ∪ (∪mj=1cµ(p−1aj (Uaj))).

It follows from the inverse property of the projections it follows

X = p−1a (∪ni=1cµ(Uai) ∪ ∪mj=1 (cµ(Uaj)).

Now
Xa = ∪ni=1cµ(Uai) ∪ ∪mj=1 (cµ(Uaj).

From F1 ∩ F2 = ∅ it follows that

∪ni=1cµ(Uai) ∩ ∪mj=1 (cµ(Uaj) = ∅.

This is impossible since Xa is µ-connected. Thus X = limX is µ-connected.
�

Since each open mapping has the inverse property we have the following
result.

Theorem 12. Let X = {Xa, pab, A} be an inverse system of wµ-compact
spaces such that limX is wµ-compact and the projections pa : limX→ Xa,
a ∈ A, are surjective and open. If the spaces Xa are µ-connected, then
X = limX is µ-connected.
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