Математички Билтен 43 (LXIX) No.1 2019 (65 – 78) Скопје, Македонија ISSN 0351-336X (print) ISSN 1857-9914 (online) UDC: 515.122.8

CONNECTEDNESS OF INVERSE LIMIT OF GENERALIZED TOPOLOGICAL SPACES

IVAN LONČAR

Abstract. The aim of this paper is to study the connectednes of inverse limit of generalized topological spaces introduced by Császár in [3].

1. INTRODUCTION

This section contains some basic definitions and propositions concerning supra topological and generalized topological spaces.

Definition 1. Let J be any nonempty indexed set and let X be a nonempty set. A subfamily μ of X is said to be *supra topology* on X if:

i) $X, \emptyset \in \mu$

ii) If $A_i \in \mu$ for all $i \in J$, then $\cup A_i \in \mu$.

This definition can be reformulated as follows.

Definition 2. A subcollection $\mu \subset 2^X$ is called a *supra topology* on X, [6], if $X \in \mu$ and μ is closed under arbitrary union.

Definition 3. [10, Definition 2.3] Let (X, τ) be a topological space and μ be a supra topology on X. We call μ a supra topology *associated* with τ if $\tau \subseteq \mu$.

Proposition 1.1. [11, Theorem 1] If μ is a supra topology on X, then $T_{\mu} = \{A \subset X : A \cap B \in \mu \text{ for each } B \in \mu\}$ is a topology and $T_{\mu} \subset \mu$.

²⁰¹⁰ Mathematics Subject Classification. Primary 54A05, Secondary: 54B35.

Key words and phrases. Generalized topological spaces, weakly compact.

Definition 4. (X, μ) is called a *supra* topological space. The elements of μ are said to be *supra open* in (X, μ) and the complement of a supra open set is called a *supra closed* set.

Császár in [3] introduced the notion of generalized topological space (GTS) as another name for supra topology. He also introduced the notion of (μ_1, μ_2) -continuous function on GTS's and the separation axioms defined by replacing open sets by members of a GTS.

In general, let M_{μ} denote the union of all elements of μ ; of course, $M_{\mu} \in \mu$, and $M_{\mu} = X$ if and only if μ is a strong general topology (strong GT). A subset A of X is called μ -open if $A \in \mu$. A subset B of X is called μ -closed if $X \setminus B \in \mu$.

A point $x \in X$ is called a μ -cluster point of A if $U \cap (A \setminus \{x\}) \neq \emptyset$ for each U in μ such that $x \in U$.

Let $\mathcal{B} \subset expX$ satisfy $\emptyset \in \mathcal{B}$. Then all unions of some elements of \mathcal{B} constitute a GT $\mu(\mathcal{B})$, and \mathcal{B} is said to be a *base* for $\mu(\mathcal{B})$.

Definition 5. [12, Definition 2.1] Let X be a space. Then $\mu_x = \{U : x \in U \in \mu\}$.

Definition 6. [12, Definition 2.2] Let (X, μ) be a GTS. X is called a μT_2 -space if X satisfies the following μT_2 -separation conditions: If $x, y \in X$ and $x \neq y$, then there are $U_x \in \mu_x$ and $U_y \in \mu_y$ such that $U_x \cap U_y = \emptyset$.

Definition 7. Let (X, μ) be a generalized topological space. Then X is called a μT_1 -space if for $x_1, x_2 \in M_\mu$ with $x_1 \neq x_2$, there exist $U, V \in \mu$ such that $x_1 \in U, x_2 \notin U$ and $x_2 \in V, x_1 \notin V$.

Definition 8. Let μ be a GT on X. We say that $M \subset X$ is μ -open if and only if $M \in \mu$; $N \subset X$ is μ -closed if and only if $X - N \in \mu$.

Definition 9. ([7]) If $A \subset X$ then $i_{\mu}A$ denotes the union of all μ -open sets contained in A and $c_{\mu}A$ is the intersection of all μ -closed sets containing A.

Both i_{μ} and c_{μ} are idempotent operations (where the operation γ is said to be *idempotent* if and only if $\gamma\gamma A = \gamma A$ for $A \subset X$).

Proposition 1.2. For $A \subset X$ and $x \in X$, we have $x \in c_{\mu}A$ if and only if $x \in M \in \mu$ implies $M \cap A \neq \emptyset$.

Definition 10. Let μ be a GT on X, μ' a GT on X' and $f: X \to X'$. We say that the map f is (μ, μ') -continuous if and only if $M' \in \mu'$ implies $f^{-1}(M') \in \mu$, and (μ, μ') -open if and only if $M \in \mu$ implies $f(M) \in \mu'$. If f is bijective and (μ, μ') -continuous, moreover f^{-1} is (μ', μ) -continuous, then it is natural to say that f is a (μ, μ') -homeomorphism.

Let X be a non-empty set and let \mathcal{B} be a collection of subsets of X with $\emptyset \in \mathcal{B}$. Then the collection of all possible unions of elements of \mathcal{B} forms a GT $\mu(\mathcal{B})$ on X and \mathcal{B} is called a base for $\mu(\mathcal{B})$.

Now, let $A \neq \emptyset$ be an index set, $X_a \neq \emptyset$ for $a \in A$, and $X = \prod \{X_a : a \in A\}$ the Cartesian product of the sets X_a . We denote by p_a the projection $p_a: X \to X_a$.

Definition 11. ([4]) Suppose that, for $a \in A$, μ_a is a given GT on X_a . Let us consider all sets of the form $\prod \{M_a : M_a \in \mu_a\}$ and, with the exception of a finite number of indices a, $M_a = X_a$. We denote by \mathfrak{B} the collection of all these sets. Clearly $\emptyset \in \mathfrak{B}$ so that we can define a GT $\mu = \mu(\mathfrak{B})$ having \mathfrak{B} for base. We call μ the *product* of the GT s μ_a and denote it by $P_a\mu_a$.

The base for $\prod \{X_a : a \in A\}$ described in above Definition is called the *canonical base* for the Cartesian product. If each μ_a is a topology then clearly μ is the product topology of the factors μ_a .

Proposition 1.3. If $B \in \mathfrak{B}$, then there exist a finite number of indices $a_1, a_2, ..., a_n$ such that $B = p_{a_1}^{-1}(M_{a_1}) \cap p_{a_2}^{-1}(M_{a_2}) \cap ... \cap p_{a_2}^{-1}(M_{a_2})$.

Let us write $i = i_{\mu}$, $c = c_{\mu}$, $i_k = i_{\mu_k}$, $c_k = c_{\mu_k}$.

Consider in the following $A_k \subset X_k$, $A = \prod_{k \in K} A_k$, $x \in X$ and $x_k = p_k(x)$.

Proposition 1.4. [4, Proposition 2.1.] $iA \subset \prod_{k \in K} i_k A_k$.

Proof. If $x \in iA$ then there is $M \in \mu$ such that $x \in M \subset A$. Then there are sets $M_k \in \mu_k$ such that $x \in \prod_{k \in K} M_k \subset M \subset A$. For $p_k(x) = x_k$, we have $x_k \in M_k$ so that $M_k \neq \emptyset$ and therefore $\prod_{k \in K} M_k \subset \prod_{k \in K} A_k$ implies $M_k \subset A_k$ for each k. Thus $x_k \in M_k \subset A_k$ shows that $x_k \in i_k A_k$. \Box

Similarly, we have the following result.

Proposition 1.5. [3, Proposition 2.3.] $cA = \prod_{k \in K} c_k A_k$.

Proposition 1.6. [4, Proposition 2.4] The projection p_k is (μ, μ_k) -open.

In general, p_k need not be (μ, μ_k) continuous.

Proposition 1.7. [4, Proposition 2.7] If every μ_k is strong then μ is strong and p_k is (μ, μ_k) - continuous for $k \in K$.

2. Inverse systems and limits

Let A be a set directed by the relation \leq and let $\{X_a : a \in A\}$ be a family of sets indexed by A. For each pair (a, b) of elements of A such that $a \leq b$, let p_{ab} be a mapping of X_b into X_a , i.e. $p_{ab} : X_b \to X_a$. Suppose that p_{ab} satisfy the following conditions [2, p. 191]:

(LP_I): The relations $a \le b \le c$ imply $p_{ac} = p_{ab}p_{bc}$,

(LP_{II}): For each $a \in A$, p_{aa} is the identity mapping of X_a .

Then we say that $\mathbf{X} = \{X_a, p_{ab}, A\}$ is an *inverse system* of sets X_a and *bonding* mapping p_{ab} .

Let $Y = \prod\{X_a : a \in A\}$ be the product of the family of sets $\{X_a : a \in A\}$ and X denote the subset of Y consisting of all $x = (x_a : a \in A)$ (called a *thread* of **X**) which satisfy each of the relation $x_a = p_{ab}(x_b)$ for each pair of indices (a, b) such that $a \leq b$. The set X is called inverse limit of the inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ and is denoted by $\lim \mathbf{X}$ or by $\lim\{X_a, p_{ab}, A\}$.

Proposition 2.1. [5, 2.5.1. Proposition] The limit of an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of Hausdorff spaces X_a is the closed subset of the Cartesian product $\Pi\{X_a : a \in A\}$.

This Proposition is true for inverse systems $\mathbf{X} = \{X_a, p_{ab}, A\}$ of generalized spaces.

Proposition 2.2. The limit of an inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ of μT_2 generalized topological spaces X_a is the closed subset of the Cartesian product $\Pi\{X_a : a \in A\}$.

Proof. Let us prove that each point $x = \{x_a : a \in A\} \notin \lim \mathbf{X}$ has a neighbourhood which is disjoint with $\lim \mathbf{X}$. From $\{x_a : a \in A\} \notin \lim \mathbf{X}$ it follows that there exist a $b \in A$ such that for $c \leq b$ we have $p_{bc}(x_b) \neq x_c$. There exist disjoint μ -open sets U_c and V_c such that $x_c \in U_c$ and $p_{bc}(x_b) \in$ V_c . Now $U_b = p_{bc}^{-1}(U_c) \cap p_{bc}^{-1}(V_c)$ is μ -open set containing x_b . It follows that $U = p_b^{-1}(U_b)$ is an μ -open set containing $x = \{x_a : a \in A\}$. Let us prove $U \cap \lim \mathbf{X} = \emptyset$. If $y = \{y_a : a \in A\} \in U$ then $p_b(y) \in U_b = p_{bc}^{-1}(U_c) \cap p_{bc}^{-1}(V_c)$.

It follows that $p_{bc}(y_b) \neq y_c$. Thus, $y \notin \lim \mathbf{X}$. This means that $U \cap \lim \mathbf{X} = \emptyset$ and the proof is completed.

Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of generalized topological spaces and let $X = \lim \mathbf{X}$. For every $a \in A$ there is a continuous mapping $p_a = P_a | X : X \to X_a$, where $P_a : \prod \{X_a : a \in A\} \to X_a$ is the projection,

Definition 12. Let $U \in \mu$ so that $x \in U$ and U is contained in every $V \in \mu$ with $x \in V$. In this case we call x a representative element for U.

Definition 13. A space X that every $x \in X$ is a representative element for some $U \in \mu_x$ is called a C_0 -space in [12].

Proposition 2.3. The family of all sets $p_a^{-1}(U_a)$, where U_a is an μ -open subset of X_a and runs over a subset A^l cofinal in A, is a base for the limit of the inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$. Moreover, if for every $a \in A$ base B_a for X_a is fixed, then the subfamily consisting of those $p_a^{-1}(U_a)$ in which $U_a \in B_a$, also is a base.

3. QUASI-COMPACT GENERALIZED TOPOLOGICAL SPACES

Definition 14. A generalized topological space (X, μ) is μ -quasi-compact if every cover of μ - open subsets of (X, μ) has the finite subcover.

Theorem 1. A generalized topological space (X, μ) is μ -quasi-compact if and only if every family of μ -closed subsets of (X, μ) which has the finite intersection property has non-empty intersection.

Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system such that for every $a \in A$ there exists a family S_a of subsets of X_a with the following properties, [2, p. 190]:

- (I) Arbitrary intersection of the sets from S_a is a set from S_a ,
- (II) If a family of subsets $\mathcal{F} \subset \mathcal{S}_a$ has the finite intersection property, then $\cap \{M : M \in \mathcal{F}\}$ is non-empty,
- (III) $p_{ab}^{-1}(x_a) \in \mathcal{S}_b$ for every $x_a \in X_a$ and for every pair $a, b, a \leq b$,
- (**IV**) $p_{ab}(M_b) \in S_a$ for every $M_b \in S_b$ and for every pair $a, b, a \leq b$.

Theorem 2. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system which satisfies conditions (I), (II), (III) and (IV). If $X = \lim \mathbf{X}$, then:

a) For all $a \in A$

$$p_a(X) = \cap \{ p_{ab}(X_b) : b \ge a \}, a \in A,$$
(3.1)

b) If $X_a \neq \emptyset$ for every $a \in A$, then $X \neq \emptyset$.

Proof. Let S_a be a family of all non-empty subsets of X_a and let \mathcal{Y} be a family of all collections $Y = \{Y_a : Y_a \in S_a, a \in A\}$ such that $p_{ab}(Y_b) \subset Y_a$. The family \mathcal{Y} is non-empty since $\mathbf{X} \in \mathcal{Y}$. For two collections $Y = \{Y_a : Y_a \in S_a, a \in A\}$ and $Z = \{Z_a : Z_a \in S_a, a \in A\}$ we shall write $Y \geq Z$ if $Y_a \subset Z_a$ for every $a \in A$. It is clear that (\mathcal{Y}, \geq) is a partially ordered set. The remaining part of the proof consists of several steps.

Step 1. There exists a maximal element in (\mathcal{Y}, \geq) .

It suffices to prove that (\mathcal{Y}, \geq) is inductive, i.e. if $L = \{Y^{\lambda} : \lambda \in \Lambda\}$ is a strictly increasing chain in (\mathcal{Y}, \geq) , then there is an element $M \in (\mathcal{Y}, \geq)$ such that $M \geq Y^{\lambda}$ for every $\lambda \in \Lambda$. We define $M = \{M_a : M_a \in S_a, a \in A\}$ such that $M_a = \cap \{Y_a^{\lambda} : \lambda \in \Lambda\}$. From the properties (I) and (II) it follows that the set M_a is non-empty \mathcal{S}_a subset of X_a . Moreover, $p_{ab}(M_b) \subset M_a$.

Step 2. If $Y = \{Y_a : Y_a \in S_a, a \in A\}$ is a maximal element of (\mathcal{Y}, \geq) , then $Y_a = p_{ab}(Y_b)$ for every pair $a, b \in A$ such that $a \leq b$.

Let $Z = \{Z_a : Z_a \in S_a, a \in A\}$ be a collection such that $Z_a = \cap \{p_{ab}(Y_b) : b \geq a\}$. Each $p_{ab}(Y_b) \in S_a$ since $Y_b \in S_b$. From the properties (I) and (II) it follows that the set Z_a is non-empty S_a subset of X_a . In order to prove that $Z \in (\mathcal{Y}, \geq)$ it suffices to prove that $p_{ab}(M_b) \subset M_a$. If $a \leq b$ then $p_{ab}(Z_b) \subset \cap \{p_{ab}(p_{bc}(Y_c)) : b \leq c\} = \cap \{p_{ac}(Y_c) : c \geq b\}$. On the other hand, for every $d \geq a$ there is a $c \in A$ such that $c \geq b$, d. It follows that $p_{ac}(Y_c) \subset p_{ad}(Y_d)$. This means that

$$\cap \{p_{ac}(Y_c) : c \ge b\} = \cap \{p_{ad}(Y_d) : c \ge b\} = Z_a$$

Finally, we have $Z \in (\mathcal{Y}, \geq)$. Moreover, $Z_a \subset Y_a$ for each $a \in A$. This means that Z = Y since Y is maximal.

Step 3. If $Y = \{Y_a : Y_a \in S_a, a \in A\}$ is a maximal element of (\mathcal{Y}, \geq) , then Y_a is one-point set for every $a \in A$.

Let $x_a \in Y_a$. Define

$$Z_b = \begin{cases} Y_b \cap p_{ab}^{-1}(x_a), & \text{if } b \ge a, \\ Y_b, & \text{if } b \nleq a. \end{cases}$$

Let us prove that $Z = \{Z_a : Z_a \in S_a, a \in A\}$. We infer that each $Y_b \cap p_{ab}^{-1}(x_a)$ is in S_a . It is easy to prove that $p_{ab}(Z_b) \subset Z_a$. Hence, $Z \in (\mathcal{Y}, \geq)$. Now, Z = Y since $Z \geq Y$ and Y is maximal. This means $Y_a = \{x_a\}$.

Step 4. $\lim \mathbf{X}$ is non-empty.

From Step 3 we have that $Z = \{Z_a : Z_a \in \mathcal{S}_a, a \in A\} = \{x_a : a \in A\}$ such that $p_{ab}(x_b) = x_a$ for every pair a, b such that $b \ge a$.

Step 5. Let us prove that $p_a(X) = \cap \{p_{ab}(X_b) : b \ge a\}$.

It is clear that $p_a(X) \subset \cap \{p_{ab}(X_b) : b \ge a\}$. Let us prove that $p_a(X) \supset \cap \{p_{ab}(X_b) : b \ge a\}$. Let $x_a \in \cap \{p_{ab}(X_b) : b \ge a\}$. This means that $Y_b = p_{ab}^{-1}(x_a)$ is non-empty for each $b \ge a$. Moreover, $Y_b \in \mathcal{S}_b$. For each b non-comparable with a, let $Y_b = X_b$. Now, we have a collection $Y = \{Y_a : Y_a \in \mathcal{S}_a, a \in A\}$ which is evidently in (\mathcal{Y}, \ge) . There exists a maximal element $Z = \{Z_a : Z_a \in \mathcal{S}_a, a \in A\}$ in (\mathcal{Y}, \ge) such that $Z \ge Y$. It follows that each Y_a is some Z_a which is a point $z_a \in X_a$ (Step 3) since Z is maximal. The collections (z_a) is a point of lim \mathbf{X} . Hence, $p_a(X) = \cap \{p_{ab}(X_b) : b \ge a\}$. \Box

Theorem 3. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty μ -quasi-compact μT_1 spaces X_a and μ -closed mappings p_{ab} . Then $\lim \mathbf{X}$ is non-empty.

Proof. Let S_a be a family of μ -closed subsets of X_a and let each p_{ab} be a closed mapping. Now, we have the following properties:

(I) arbitrary intersection of μ -closed sets from S_a is a μ -closed set from S_a , since arbitrary union of the μ -open sets is a μ -open.

(II) If a family of subsets $\mathcal{F} \subset \mathcal{S}_a$ has the finite intersection property, then $\cap \{M : M \in \mathcal{F}\}$ is non-empty since each X_a is μ -quasi-compact.

(III) $p_{ab}^{-1}(x_a) \in S_b$ for every $x_a \in X_a$ and for every pair $a, b, a \leq b$, since in T_1 space each point is closed. Thus, is $p_{ab}^{-1}(x_a) \mu$ -closed.

(IV) $p_{ab}(M_b) \in S_a$ for every $M_b \in S_b$ and for every pair $a, b, a \leq b$ since p_{ab} is μ -closed.

Using Theorem 2 we complete the proof.

Remark 3.1: In fact, from the proof of Theorem 2 it follows that each closed subsystem **Z** contains some minimal closed subsystem **Y**.

Now we prove the quasi-compactness of the limit space.

Theorem 4. Let $\mathbf{X} = \{X_{\alpha}, p_{\alpha\theta}, A\}$ be an inverse system of quasi- compact μT_1 spaces X_{α} and μ -closed mappings $p_{\alpha\beta}$. Then $\lim \mathbf{X}$ is μ -quasi-compact.

IVAN LONČAR

Proof. Let $\mathcal{U} = \{U_{\mu} : \mu \in M\}$ be an μ -open cover of $\lim \mathbf{X}$. By virtue of the definition of a base in $\lim \mathbf{X}$ there is an open set $U_{\mu,a} \subseteq X_{\alpha}$, for each $\alpha \in A$ and $\mu \in M$, such that $U_{\mu} = \prod \{ U_{\mu,\alpha} : \alpha \in A \}, p_{\alpha}^{-1}(U_{\mu,\alpha}) \subseteq U_{\mu}$ and $U_{\mu,\alpha}$ is a maximal set with respect to property $p^{-1}(U_{\mu,\alpha}) \subseteq U_{\mu}$. Let \mathcal{U}_{α} be a family $\{U_{\mu,\alpha}, \alpha \in A\}$. If \mathcal{U}_{α} is the cover of X_a then $p_{\alpha}^{-1}(\mathcal{U}_{\alpha})$ is a cover lim **X** which refines \mathcal{U} . This means that \mathcal{U} has a finite subcover since \mathcal{U}_{α} has a finite subcover. Now we prove that there exists an $\alpha \in A$ such \mathcal{U}_{α} is a cover of X_{α} . In the opposite case the set $Z_{\alpha} = X_{\alpha} \setminus (\bigcup \{U_{\mu\alpha} : \mu \in M\})$ is non-empty for each $\alpha \in A$. Now we obtain a closed subsystem $\mathbf{Z} = \{Z_{\alpha}, p_{\alpha\beta} | Z_{\beta}, A\}$. By virtue of Remark 3.1 it follows that there is a closed subsystem $\mathbf{Y} \leq \mathbf{Z}$ such that \mathbf{Y} is minimal. From the proof of Theorem 2 it follows that $\lim \mathbf{Y}$ is non-empty. This means that $\lim \mathbf{Z} \neq \emptyset$. Let z be any point of $\lim \mathbf{Z}$. It is easy to prove that $z \notin \bigcup \{ f_{\alpha}^{\to 1}(U_{\mu,\alpha}) : \alpha \in A, \mu \in M \}$. This is impossible since $\mathcal{U} = \{U_{\mu} : \mu \in M\}$ is the cover of $\lim \mathbf{X}$. Thus, there exists an $\alpha \in A$ such \mathcal{U}_{α} is a cover of X_{α} . The proof is complete.

4. Connectedness of inverse limit of generalized connected spaces

Definition 15. [1, Definition 3.1] Let (X, μ) be a GTS. X is called μ -*connected* if there are no nonempty disjoint μ -open subsets U, V of X such
that $U \cup V = X$.

Theorem 5. A generalized topological space (X, μ) is μ -quasi-compact if and only if every family of μ -closed subsets of (X, μ) which has the finite intersection property has non-empty intersection.

Let us recall, [1], that if (X, μ) GTS then X is called μ -connected if there are no nonempty disjoint μ -open subsets U, V of X such that $U \cup V = X$.

Corollary 5.1. It is clear that X is μ -connected if and only if there are no nonempty disjoint μ -closed subsets F_1, F_2 of X such that $F_1 \cup F_2 = X$.

We shall prove the following result.

Theorem 6. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of μ -quasicompact spaces X_a such that $X = \lim \mathbf{X}$ is μ -quasi-compact and surjective projections $p_a : X \to X_a$. Then $\lim \mathbf{X}$ is μ -connected if each X_a is μ -connected.

Proof. Suppose that X is not μ -connected. It follows that there exist μ -closed sets F_1, F_2 such that

$$F_1 \cup F_2 = X \tag{1}$$

and

$$F_1 \cap F_2 = \emptyset. \tag{2}$$

Consider the sets

$$Y_a = c_\mu(p_a(F_1)) \cap c_\mu(p_a(F_2))$$
(3)

From the ontoness of $p_a: X \to X_a$ it follows that

$$c_{\mu}(p_a(F_1)) \cup c_{\mu}(p_a(F_2)) = X_a.$$
 (4)

This relations implies that $Y_a \neq \emptyset$ since from $Y_a = \emptyset$ it follows that X_a is not μ -connected.

Now the family $\{p_a^{-1}(Y_a) : a \in A\}$ is the family with finite intersection property of μ -closed subset of μ -quasi-compact space $X = \lim \mathbf{X}$. Thus

$$Y = \cap \{p_a^{-1}(Y_a) : a \in A\} \neq \emptyset$$
(5)

Let $y \in Y$. From the relations (1) and (2) that $y \in F_1/F_2$ or $y \in F_2/F_1$. In any case there exists $b \in A$ and a μ -open set $V_b \subset X_b$ such that $p_b^{-1}(V_b) \cap$ $F_2 = \emptyset$ or $p_b^{-1}(V_b) \cap F_1 = \emptyset$. It follows that $p_b(y) \notin p_b(F_2)$ or $p_b(y) \notin p_b(F_1)$. We infer that $p_b(y) \notin Y_b$. This is impossible because (5). This means that $F_1 = \emptyset$ or $F_2 = \emptyset$, i.e. that X is μ -connected. \Box

5. Connectedness if inverse limit of weakly μ -compact spaces

Definition 16. A function $f : (X, \mu) \to (Y, \kappa)$ is called (μ, κ) -continuous if the inverse image of each κ -open set is μ -open.

Definition 17. Let A be a nonempty subset of a space $(X; \mu)$. The generalized subspace topology on A is the collection $\{U \cap A : U \in \mu\}$, and will be denoted by μ_A . The generalized subspace A is the generalized topological space (A, μ_A) .

Definition 18. [8, Definition 2.1.] A space $(X; \mu)$ is called *weakly* μ -*compact* (briefly $w\mu$ -*compact*) if any μ -open cover of X has a finite sub-family, the union of the μ -closures of whose members covers X.

It is clear that every μ -compact space $(X; \mu)$ is $w\mu$ -compact.

Lemma 1. [8, Proposition 2.7.] A space (X, μ) is w μ -compact if and only if any μ -regular open cover of X has a finite subfamily, the union of the μ -closures of whose members covers X.

Lemma 2. [8, Proposition 2.8.] For a space $(X; \mu)$, the following are equivalent:

- (i) X is $w\mu$ -compact,
- (ii) For any family $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ of μ -closed subsets of X such that $\cap \{U_{\alpha} : \alpha \in \Lambda\} = \emptyset$, there exists a finite subset Λ_0 of Λ such that $\cap \{i_{\mu}(U_{\alpha}) : \alpha \in \Lambda_0\} = \emptyset$,
- (iii) For any family $\mathcal{U} = \{U_{\alpha} : \alpha \in \Lambda\}$ of μ -regular closed subsets of Xsuch that $\cap \{U_{\alpha} : \alpha \in \Lambda\} = \emptyset$, there exists a finite subset Λ_0 of Λ such that $\cap \{i_{\mu}(U_{\alpha}) : \alpha \in \Lambda_0\} = \emptyset$.

Definition 19. [8, Definition 2.9.] Let A be a subset of a space (X, μ) . A point $x \in X$ is said to be a θ_{μ} -accumulation point of A if $c_{\mu}(U) \cap A \neq \emptyset$ for every μ -open subset U of X that contains x. The set of all θ_{μ} -accumulation points of A is called the θ_{μ} -closure of A and is denoted by $(c_{\mu})_{\theta}(A)$. A is said to be μ_{θ} -closed if $(c_{\mu})_{\theta}(A) = A$. The complement of a μ_{θ} -closed set is called μ_{θ} -open.

It is clear that A is μ_{θ} -open if and only if for each $x \in A$, there exists a μ -open set U such that $x \in U \subset c_{\mu}(U) \subset A$.

Theorem 7. If X is a μ -space then:

- (a) the empty set and the whole space are μ_{θ} -closed,
- (b) arbitrary intersection of μ_{θ} -closed sets are μ_{θ} -closed,
- (c) $c_{\mu}(K) \subset (c_{\mu})_{\theta}(K)$ for each subset K,
- (d) a μ_{θ} -closed subset is closed.

Lemma 3. If X is a μ - space, then for each $Y \subset X$ there exists a minimal μ_{θ} -closed subset $Z \subset X$ such that $Y \subset Z$.

Proof. The collection Φ of all μ_{θ} -closed subsets W of X which contains Y is non-empty since $X \in \Phi$. By (b) of Theorem 7 we infer that $Z = \cap \{W : W \in \Phi\}$ is a minimal μ_{θ} -closed subset $Z \subset X$ containing Y. \Box

From Theorem 7 it follows that the family of all μ_{θ} -open subsets of (X, μ) is a new generalized topology (GT) μ_{θ} on X.

Definition 20. Let (X, μ) be a GT space. The μ_{θ} -space of X is the space (X, μ_{θ}) .

In the sequel we shall use denotations X_{μ} and $X_{\mu_{\theta}}$.

Definition 21. Let X be a space. Then $\mu_x = \{U : x \in U \in \mu\}$.

Lemma 4. If X_{μ} is a μT_2 space, then $X_{\mu_{\theta}}$ is μT_1 -space.

Proof. Let x be any point of X_{μ} . For every another point $y \in X_{\mu}$, $y \neq x$, there exists a pair of μ -open disjoint set U, V (see 6) such such that $x \in U$ and $y \in V$. It follows that $U \cap c_{\mu}(V) = \emptyset$. We conclude that x is μ_{θ} -closed and, consequently, $X_{\mu_{\theta}}$ is μT_1 -space.

Proposition 5.1. If X_{μ} is a μT_2 and $w\mu$ -compact space, then each family of μ_{θ} -closed subsets with the finite intersection property has non-empty intersection.

Proof. If $\{F_{\alpha} : \alpha \in \Lambda\}$ is a family of μ_{θ} -closed subsets with the finite intersection property, then $\{F_{\alpha} : \alpha \in \Lambda\}$ is a family of μ -closed subsets of $X_{\mu_{\theta}}$ with the finite intersection property. Thus, $\cap\{F_{\alpha} : \alpha \in \Lambda\}$ is non-empty since $X_{\mu_{\theta}}$ is μ -quasi-compact, [9].

Theorem 8. X_{μ} is a μ T_2 and $w\mu$ -compact space if and only if $X_{\mu\theta}$ is μT_1 and μ -compact space.

Proof. If. Let $X_{\mu_{\theta}}$ be μT_1 and μ -compact space and let $\{F_a : a \in A\}$ be a family of μ_{θ} -closed subsets of X_{μ} with the finite intersection property. Now $\{F_a : a \in A\}$ is the family of μ -closed subsets of $X_{\mu_{\theta}}$ which is μT_1 and μ -compact space. It follows that the family $\{F_a : a \in A\}$ has non-empty intersection. Thus, X_{μ} is a $w\mu$ -compact space.

Only if. If $\{F_a : a \in A\}$ is a family of μ -closed subsets of $\{F_a : a \in A\}$ with the finite intersection property, then $\{F_a : a \in A\}$ is a family of μ_{θ} -closed subsets of X_{μ} with the finite intersection property. Since X_{μ} is $w\mu$ -compact space, we infer that $\cap\{F_a : a \in A\}$ is non-empty. By this we infer that $X_{\mu\theta}$ μ -compact space.

The following theorems are the main results of this section.

Theorem 9. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of non-empty wucompact μT_2 spaces and μ -closed mappings p_{ab} . If $X = \lim X$, then: a) For all $a \in A$

$$p_a(X) = \cap \{p_{ab}(X_b) : b \ge a\},\$$

b) If $X_a \neq \emptyset$ for every $a \in A$, then $X \neq \emptyset$.

Proof. Now inverse system $\mathbf{X} = \{X_a, p_{ab}, A\}$ is inverse system

$$\mathbf{X}_{\mu} = \{X_{a_{\mu o}}, p_{ab}, A\}$$

of μ - quasi-compact spaces and closed mappings p_{ab} . Using Theorem 2 we complete the proof.

Lemma 5. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of $w\mu$ -compact μT_2 non-empty spaces and μ -closed surjective bonding mapping p_{ab} . Then the projections $p_a : \lim \mathbf{X} \to \mathbf{X}_a, a \in A$, are surjective and μ -closed.

Proof. The inverse system $\mathbf{X}_{\mu} = \{X_{a_{\mu_{\theta}}}, p_{ab}, A\}$ satisfies the condition of Theorem 2 by which we complete the proof.

Theorem 10. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of $w\mu$ -compact μT_2 non-empty spaces and μ -closed surjective bonding mapping p_{ab} . Then $\lim \mathbf{X}$ is $w\mu$ -compact.

Proof. By Theorem 2 the inverse system $\mathbf{X}_{\mu} = \{X_{a_{\mu_{\theta}}}, p_{ab}, A\}$ of μ -quasicompact spaces has μ -quasi-compact limit lim \mathbf{X}_{μ} . This means that lim \mathbf{X} $w\mu$ -compact space.

Definition 22. We say that the mapping $f : X \to Y$ has the inverse property if $f^{-1}(c_{\mu}V) = c_{\mu}f^{-1}(V)$ for every μ -open set $V \subset Y$.

Now we shall prove the following result.

Theorem 11. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of $w\mu$ -compact spaces such that $\lim \mathbf{X}$ is $w\mu$ -compact and the projections $p_a : \lim \mathbf{X} \to \mathbf{X}_a$, $a \in A$, are surjective with the inverse property. If the spaces X_a are μ -connected, then $X = \lim \mathbf{X}$ is μ -connected.

Proof. Suppose that X is not μ -connected. It follows that there exist μ -closed sets F_1, F_2 such that

$$F_1 \cup F_2 = X \tag{1}$$

and

$$F_1 \cap F_2 = \emptyset. \tag{2}$$

For each $a \in A$ let $U_a \subset X_a$ be a maximal μ -open set such that $p_a^{-1}(U_a) \subset F_1$. Similarly, let $V_a \subset X_a$ be a maximal μ -open set such that $p_a^{-1}(V_a) \subset F_2$. From the $w\mu$ -compactness of X it follows that there exist finitely many $U_{a1}, ..., U_{an}, V_{b1}, ..., V_{bm}$

$$X = \bigcup_{i=1}^{n} c_{\mu}(p_{ai}^{-1}(U_{ai})) \cup (\bigcup_{j=1}^{m} c_{\mu}(p_{bj}^{-1}(U_{bj})))$$

We may use that $a_i = b_j$. This means that

$$X = \bigcup_{i=1}^{n} c_{\mu}(p_{ai}^{-1}(U_{ai})) \cup (\bigcup_{j=1}^{m} c_{\mu}(p_{aj}^{-1}(U_{aj}))).$$

It follows from the inverse property of the projections it follows

$$X = p_a^{-1}(\bigcup_{i=1}^n c_\mu(U_{ai}) \cup \bigcup_{j=1}^m (c_\mu(U_{aj})).$$

Now

$$X_a = \bigcup_{i=1}^n c_\mu(U_{ai}) \cup \bigcup_{j=1}^m (c_\mu(U_{aj})).$$

From $F_1 \cap F_2 = \emptyset$ it follows that

$$\cup_{i=1}^{n} c_{\mu}(U_{ai}) \cap \cup_{j=1}^{m} (c_{\mu}(U_{aj}) = \emptyset$$

This is impossible since X_a is μ -connected. Thus $X = \lim \mathbf{X}$ is μ -connected.

Since each open mapping has the inverse property we have the following result.

Theorem 12. Let $\mathbf{X} = \{X_a, p_{ab}, A\}$ be an inverse system of $w\mu$ -compact spaces such that $\lim \mathbf{X}$ is $w\mu$ -compact and the projections $p_a : \lim \mathbf{X} \to \mathbf{X}_a$, $a \in A$, are surjective and open. If the spaces X_a are μ -connected, then $X = \lim \mathbf{X}$ is μ -connected.

References

- I. Basdouria, R. Messaouda, A. Missaouia, Connected and hyperconnected generalized topological spaces, Journal of Linear and Topological Algebra, 05(04), 229–234.
- [2] N. Bourbaki, Theory of sets, Herrman Publishers, 1968.
- [3] Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96(4) (2002), 351–357.
- [4] Á. Császár, Product generalized topologies, Acta Math. Hungar., 123 (1 2) (2009), 127 - 132.
- [5] R. Engelking, General topology, PWN, Warszawa, 1977.
- [6] A. S. Mashhour, A. A. Allam, F. S. Mahmoud, F. H. Khedr, On supra topological spaces, Indian J. Pure and Appl. Math., 14(4) (1983), 502–510.

IVAN LONČAR

- [7] W. K. Min, Some results on generalized topological spaces and generalized systems Acta Math. Hungar., 108 (2005), 171–181.
- [8] M. S. Sarsak, Weakly μ-compact spaces, Demonstratio Mathematica, XLV (4) (2012), 929–934.
- [9] J. Thomas, S. J. John,μ-Compactness in Generalized Topological Spaces, Journal of Advanced Studies in Topology, 3(3) (2012), 18–22.
- [10] L. Vidyarani, M. Vigneshwaran, Some forms of N-closed Maps in supra Topological spaces, IOSR Journal of Mathematics(IOSR-JM), 6(4) (2013), 13–17.
- [11] T. H. Yalvac, Relations between new topologies obtained from old ones, Acta Math. Hungar., 64(3) (1994), 231–235.
- [12] X. Ge, Y. Ge, μ-separations in generalized topological spaces, Appl. Math. J. Chinese Univ, 25 (2010), 243–252.

UNIVERSITY OF ZAGREB, FACULTY OF ORGANIZATIONS AND INFORMATICS, PAVLINSKA 2 42000, VARAŽDIN, CROATIA *E-mail address*: ivanloncar18@gmail.com