Скопје, Македонија

ON (k(n-1)+1)-SEMIGROUPS WITH (n-2)-NEUTRAL OPERATIONS

Janez Ušan

Abstract

In the present paper, we define [left, right] (n-2)-neutral operation E [: $Q^{n-2} \to Q$] of a (k(n-1)+1)-groupoid, $(k,n) \in N \times (N \setminus \{1\})$, so that (among others) for n=2 E(\emptyset)[$a_1^{n-2}=\emptyset$] is a neutral element of the (k+1)-groupoid (Q,A). The main result of the paper is the following proposition. If a (k(n-1)+1)-semigroup $(Q,A), k \geq 2$, has a left [right] (n-2)-neutral operation E, then there is an n-semigroup (Q,B) with $\{1,n\}$ -neutral operation [:[5], 1.2.2], such that for every $x_1^{k(n-1)+1} \in Q$, $A\left(x_1^{k(n-1)+1}\right) = B(x_1^{k(n-1)+1})$. [E.g.: $B(x_1^{2n-1}) \stackrel{\text{def}}{=} B(B(x_1^n), x_{n+1}^{2n-1})$.] Moreover, if $n \geq 3$ then (Q,A) is a (k(n-1)+1)-group.

1 Preliminaries.

1.1. About the expression $\begin{vmatrix} a_p \end{vmatrix}_{i=t}^{\frac{(i)^q}{(i)^q}}$

Let p and q be arbitrary natural numbers such that $p \leq q$, and t and s arbitrary element of the sets N and $N \cup \{0\}$, respectively. Further on, let \overline{S} be the set of all sequence $a_p^{(i)}$ over a set $S(\emptyset \in S)$, and let

$$\begin{array}{c|c}
\overline{(i)_q} |^s \\
a_p |_{i=t}
\end{array} \tag{1}$$

and

$$c_p^{p+(s-t+1)(q-p+1)-1}$$
 (2)

be arbitrary sequence the sets \overline{S} and S, respectively. The sequence (1) is nonempty iff $t \leq s$. Moreover: the sequence (2) is nonempty iff $t \leq s$. $[t \leq s \Leftrightarrow (s-t+1)(q-p+1) \geq 1; \ q-p+1 \geq 1 \Leftrightarrow p \leq q]$. In addition, if $t \leq s$ and

 $(\forall i \in \{t, \dots, s\})(\forall j \in \{p, \dots, q\} c_{(i-t)(q-p+1)+j} = a_j^{(i)},$ (3)

then to every sequence (1) over \overline{S} there corresponds exactly one sequence (2) over S, and conversely. Hence: if $t \leq s$ and (3) holds [since

 $\overline{(i)_q\atop a_p}\Big|_{i=t}^s=\emptyset\Leftrightarrow c_p^{p+(s-t+1)(q-p+1)-1}=\emptyset],$ we use the following convention:

$$\overline{\binom{(i)_q}{a_p}}_{i=t}^{s}$$
 stands for $c_p^{p+(s-t+1)(q-p+1)-1}$.

1.2. About *n*-groups

1.2.1. Definitions: Let $n \geq 2$ and let (Q, A) be an n-groupoid. Then: (a) we say that (Q, A) is an n-semigroup iff for every $i, j \in \{1, ..., n\}$, i < j, the following law holds

$$i < j, \text{ the following law holds}$$

$$A\left(x_{1}^{i-1}, A(x_{i}^{i+n-1}), x_{i+n}^{2n-1}\right) = A\left(x_{1}^{j-1}, A(x_{j}^{j+n-1}), x_{j+n}^{2n-1}\right)$$

[: < i, j >-associative law]; (b) we say that (Q, A) is an n-quasigroup iff for every $i \in \{1, ..., n\}$ and for every $a_1^n \in Q$ is exactly one $x_i \in Q$ such that the following equality holds

 $A(a_1^{i-1}, x_i, a_i^{n-1}) = a_n;$ and (c) we say that (Q, A) is a Dörnte n-group [briefly: n-group] iff (Q, A) is an n-semigroup and an n-quasigroup as well.

A notion of an n-group was introduced by W. Dörnte in [1] as a generalization of the notion of a group.

1.2.2. Definitions [5]: Let $n \geq 2$ and let (Q, A) be an n-groupoid. Further on, let \mathbf{e} be an mapping of the set Q^{n-2} into the set Q. Let also On (k(n-1)+1)-semigroups with (n-2)-neutral operations $\{i,j\}\subseteq\{1,\ldots,n\}$ and i< j. Then: \mathbf{e} is an $\{i,j\}$ -neutral operation of the n-groupoid (Q,A) iff the following formula holds

$$(\forall a_i \in Q)_1^{n-2} (\forall x \in Q) \left(A(a_1^{i-1}, \ \mathbf{e}(a_1^{n-2}), \ a_i^{j-2}, \ x, \ a_{j-1}^{n-2} \right) = x$$

$$\land A \left(a_1^{i-1}, \ x, \ a_i^{j-2}, \ \mathbf{e}(a_1^{n-2}), \ a_{j-1}^{n-2} \right) = x \right).$$

- **1.2.3.** Proposition [5]: Let $n \geq 2$, $\{i, j\} \subseteq \{1, ..., n\}$ and i < j. Then in every n-groupoid there is at most one $\{i, j\}$ -neutral operation.
- **1.2.4.** Proposition [5]: In every n-group, $n \ge 2$, there is a $\{1, n\}$ -neutral operation.²

¹ For n=2, $\mathbf{e}(a_1^{n-2})[=\mathbf{e}(\emptyset]=e\in Q)$ is a neutral element of the groupoid (Q,A).

There are n-groups without $\{i, j\}$ -neutral operations with $\{i, j\} \neq \{1, n\}$ [:[6]]. In [6], n-groups with $\{i, j\}$ -neutral operations, for $\{i, j\} \neq \{1, n\}$ are described.

- **1.2.5. Proposition** [5]: Let $n \ge 3$ and let (Q, A) be an n-semigroup. Then: (Q, A) is an n-group iff (Q, A) has a $\{1, n\}$ -neutral operation.
- **1.2.6.** Remark: In [8] showed that the condition "...(Q, A) is an n-semigroup ..." can be weakened to the condition "...(Q, A) is an < 1, 2 >-associative n-groupoid ..." or to the condition "...(Q, A) is an < n 1, n >-associative n-groupoid ...".
- **1.2.7. Proposition** [4, 7]: Let $n \geq 3$ and let (Q, A) be an n-groupoid Further on, let E be an mapping of the set Q^{n-2} into the set Q. Then the following propositions are equivalent:
- (i) (Q, A) is an n-group;
- (ii) the laws $A(A(x_1^n), x_{n+1}^{2n-1}) = A(x_1, A(x_2^{n+1}), x_{n+2}^{2n-1}), A(x, a_1^{n-2}, E(a_1^{n-2})) = x$ and $A(b_1^{n-2}, E(b_1^{n-2}), x) = x$ hold in algebra $(Q, \{A, E\})$ of the type $\langle n, n-2 \rangle$; and
- (iii) the laws $A(x_1^{n-2}, A(x_{n-1}^{2n-1}), x_{2n-1}) = A(x_1^{n-1}, A(x_n^{2n-1})), A(E(a_1^{n-2}), a_1^{n-2}, x) = x$ and $A(x, E(b_1^{n-2}), b_1^{n-2}) = x$ hold in algebra $(Q, \{A, E\})$ of the type < n, n-2 > ...
 - 1.3. On superpositions of an n-semigroup operation
 - **1.3.1. Definition**: Let (Q, A) be an n-groupoid and $n \geq 2$. Then:
 - 1) $\stackrel{1}{B} \stackrel{\text{def}}{=} B$; and
 - 2) for every $k \in N$ and for every $x_1^{(k+1)(n-1)+1} \in Q$

$$\overset{k+1}{B} \left(x_1^{(k+1)(n-1)+1} \right) \overset{\mathrm{def}}{=} B(\overset{k}{B} \left(x_1^{k(n-1)+1} \right), \ x_{k(n-1)+2}^{(k+1)(n-1)+1} \right),$$

1.3.2. Proposition: Let (Q,B) be an n-semigroup, $n \ge 2$ and $(i,j) \in \mathbb{N}^2$. Then, for every $x_1^{(i+j)(n-1)+1} \in Q$ and for every $t \in \{1,\ldots,i(n-1)+1\}$, the following equality holds

$$\overset{i+j}{B}(x_1^{(i+j)(n-1)+1}) = \overset{i}{B}\big(x_1^{t-1}, \ \overset{j}{B}(x_t^{t+j(n-1)}), \ x_{t+j(n-1)+1}^{(i+j)(n-1)+1}\big) \ .$$

An immediate consequence of Proposition 1.3.2. is the following proposition:

1.3.3. Proposition: If (Q, B) is an n-semigroup [n-group], then (Q, B) is a (k(n-1)+1)-semigroup [(k(n-1)+1)-group].

⁵ If (Q, A) is an *n*-group, then **E** its $\{1, n\}$ -neutral operation [: 1.2.7, 1.2.1, 1.2.2, 1.2.4].

This result has been commented from the particular point of view in the paper [8] [: Remark 5.2].

⁴ See Corollary 5 in [4] and Theorem 2.6 in [7]. (The sketch of the proof of this proposition can be found in [9]).

Remark: More about superpositions of an n-semigroup operation [with different notations] can be found in [3].

2. Results

2.1. Definition: Let $(k,n) \in N \times (N \setminus \{1\})$, let A be a (k(n-1)+1) -ary operation in Q and E a mapping of the set Q^{n-2} into the set Q. Then:

1) we say that E is a left (n-2)-neutral operation of a (k(n-1)+1)-groupoid. On (k(n-1)+1)-semigroups with (n-2)-neutral operations (Q,A) iff the formula

$$\left(\forall \begin{array}{c} a_{t} \in J \text{ interformation} \\ (\forall \begin{array}{c} a_{t} \in Q)_{1}^{n-2} \dots (\forall \begin{array}{c} a_{t} \in Q)_{1}^{n-2} \\ \\ (\bigwedge _{i=1}^{k} A(E(a_{1}^{n-2}), a_{1}^{n-2}) \Big|_{j=1}^{i} x, E(a_{1}^{n-2}) a_{1}^{n-2} \Big|_{j=i+1}^{k} = x \right) \\ \end{array} (1)$$

holds;

2) we say that E is a right (n-2)-neutral operation of a (k(n-1)+1)-grupoid (Q,A) iff the formula

holds; $an^{i}\overline{d}^{1}$

- 3) we say that E is a (n-2)-neutral operation of a (k(n-1)+1)-groupoid (Q,A) iff E is a left (n-2)-neutral operation of a (k(n-1)+1)-groupoid (Q,A) and a right (n-2)-neutral operation of a (k(n-1)+1)-groupoid (Q,A).
- **2.2. Remark:** For n=2 the formula (1) and the formula (2) [from 2.1] reduces, respectively, to the following formulas

$$(\forall x \in Q) \left(\bigwedge_{i=1}^{k} A(\stackrel{i}{e}, x, \stackrel{k-1}{e}) = x \right)$$
 (1)

and

$$(\forall x \in Q) \Big(\bigwedge_{i=1}^k A(\stackrel{i-1}{e}, x, \stackrel{k-i+1}{e}) = x \Big); \tag{2}$$

 $e=\mathrm{E}(\emptyset).$ Further on, the conjuction of the statements $(\hat{1})$ and $(\hat{2})$ is equivalent with the statement

$$(\forall x \in Q) \left(\bigwedge_{i=1}^{k+1} A(\stackrel{i-1}{e}, x, \stackrel{k-i+1}{e}) = x \right).$$
 (e)

Finally: $e \in Q$ is a **neutral element** of the (k+1)-groupoid (Q, A), $k \in N$, iff the formula (e) holds. \square

By Definition 2.1, and also by the definition of an $\{1, n\}$ -neutral operation of n-grupoid [:1.2.2], by Proposition 1.2.3 and finally by Remark 2.2, we conclude that the following proposition holds:

- **2.3.** Proposition: Let be a (Q, A)(k(n-1)+1)-groupoid, E its (n-2)-neutral operation and $(k, n) \in N \times (N \setminus \{1\})$. Then:
 - 1) If k = 1, then
 - E is a $\{1,n\}$ -neutral operation of the n-groupoid (Q,A),
 - for $n = 2E(\emptyset)$ is a neutral element of the groupoid (Q, A), and
 - E is uniquely determined for every $n \geq 2$; and
- 2) If $k \in N$ and n = 2. then $E(\emptyset)$ is a neutral element of a (k + 1)-groupoid (Q, A). \square
- By 1.2.5, 1.2.7, 1.3.1, 1.3.2, 1.3.3, 2:2 and 2.3, we conclude that the following proposition holds:
- **2.4.** Proposition: Let $n \geq 2$ and let (Q, B) be an n-semigroup with a $\{1, n\}$ -neutral operation e [:1.2.2]. Further on, let $k \geq 2$. Then the following statements hold: a) e is an (n-2)-neutral operation of a (k(n-1)+1)-semigroup (Q, B); and b) if $n \geq 3$, then (Q, B)(k(n-1)+1)-group.
- **2.5.** Theorem: Let $k \geq 2$, $n \geq 2$ and let (Q,A) be a (k(n-1)+1)-semigroup. Further on, let E be a left (n-2)-neutral operation of a (k(n-1)+1)-semigroup (Q,A) or a right (n-2)-neutral operation of a (k(n-1)+1)-semigroup (Q,A). Then there exists an n-groupoid (Q,B) such that the following statements hold:(i) (Q,B) is an n-semigroup; (ii) A = B; and (iii) E is a $\{1,n\}$ -neutral operation of the n-groupoid (Q,B). Moreover, if $n \geq 3$ then (Q,A) is (k(n-1)+1)-group.
- **Proof.** 1) Let E is a **right** (n-2)-neutral operation of a (k(n-1)+1)-semigroup (Q,A); $k\geq 2,\ n\geq 2$. We prove respectively that in that case the following statements hold.
- 1° Let a_1^{n-2} , $j \in \{1, ..., n-1\}$, be arbitrary sequences over Q. Further On (k(n-1)+1)-semigroups with (n-2)=neutral operations on, let for every $x_1^n \in Q$

 $B(x_1^n) \stackrel{\text{def}}{=} A(x_1^n, a_1^{n-2}, E(a_1^{n-2}) \Big|_{j=1}^{k-1}).$ (a)

Then for every sequence of the sequences b_1^{n-2} , $j \in \{1, \ldots, n-1\}$, over Q and for every $x_1^n \in Q$ the following equality holds

$$B(x_1^n) \stackrel{\text{def}}{=} A(x_1^n, b_1^{n-2}, E(b_1^{n-2}) \Big|_{j=1}^{k-1}).$$

⁶ The following proposition was proved in [2]. If (Q, A) is an m-semigroup, $m \geq 3$ and (Q, A) has a neutral element e, then there is semigroup (Q, \cdot) with a neutral element such that, for every $x_1^m \in Q$, $A(x_1^m) = x_1 \cdot \ldots \cdot x_m$

(j)2° For every $x_1^n \in Q$, for every sequence of sequences B_1^{n-1} , $j \in \{1, ..., n-1\}$, over Q and every $i \in \{1, ..., n\}$ the following equality holds

holds $B(x_1^n) = A(x_1^{i-1}, b_1^{n-2}, E(b_1^{n-2}) \Big|_{j=1}^{k-1}, x_i^n).$ 3° (Q, B), where the *n*-ary operation B in Q is defined by (a) in 1°, is an n-semigroup.

4° For every $x_1^{k(n-1)+1} \in Q$ the following equality holds $A(x_1^{k(n-1)+1}) = B(x_1^{k(n-1)+1}).$

$$A(x_1^{k(n-1)+1}) = \stackrel{k}{B} (x_1^{k(n-1)+1}).$$

5° The right (n-2)-neutral operation E of the (k(n-1)+1)-semigroup (Q,A) is an $\{1,n\}$ -neutral operation of the n-semigroup (Q,B). Moreover, if $n \geq 3$ then (Q, A) is a (k(n-1)+1)-group.

The proof of the statement 1°:

For every $x_1^n \in Q$, for every sequence a_1^{n-2} over Q and for every

sequence of sequences b_1^{n-2} , $j \in \{1, \ldots, k-1\}$, over Q the following series of equalities holds

Bittee noids
$$(k) = (k) = (k)$$

$$= A(x_1^{n-1}, A(x_n, a_1^{n-2}, E(a_1^{n-2}), |_{j=1}^k), b_1^{n-2}, E(b_1^{n-2}) |_{j=1}^{k-1}) = \underbrace{A(x_1^{n-1}, A(x_n, a_1^{n-2}, E(a_1^{n-2}), |_{j=1}^k), b_1^{n-2}, E(b_1^{n-2}) |_{j=1}^k)}_{=}$$

 $=A\left(x_{1}^{n},\ b_{1}^{n-2},\operatorname{E}(\ b_{1}^{n-2})\ \big|_{j=1}^{k-1}\right) \text{ [: (2) from 2.1, (a) from 1°, (a) from 1.2.1]}.$ The proof statement 2°:

Let i be an arbitrary element of the set $\{1, \ldots, n\}$. Then for an ar-

bitrary sequence x_1^n over Q, an arbitrary sequence of sequences b_1^{n-2} , $j \in \{1, \dots, k-1\}$, over Q and for arbitrary sequence c_1^{n-2} over Q the following series of equalities holds

$$A(x_1^i, b_1^{n-2}, E(b_1^{n-2}) \Big|_{j=1}^{k-1}, x_{i+1}^n) = \frac{1}{(n-1)^{n-2}}$$

$$=A\left(x_{1}^{i-1},A(\begin{array}{c}b_{1}^{n-2},\mathrm{E}(\begin{array}{c}b_{1}^{n-2})\\b_{1}^{n-2}\end{array})\Big|_{j=1}^{k-1},x_{i},c_{1}^{n-2},\mathrm{E}(c_{1}^{n-2})\!\!\!\right),\begin{array}{c}\overline{(j)}\\b_{1}^{n-2},\mathrm{E}(\begin{array}{c}b_{1}^{n-2}\end{array})\Big|_{j=1}^{k-1},x_{i+1}^{n}\right)=0$$

$$=A\left(x_{1}^{i-1},\stackrel{(j)}{b_{1}^{n-2}},\stackrel{(j)}{\operatorname{E}(}\stackrel{(j)}{b_{1}^{n-2}})\right|_{j=1}^{k-1},A(x_{i},c_{1}^{n-2},\operatorname{E}(c_{1}^{n-2}),\stackrel{(j)}{b_{1}^{n-2}},\operatorname{E}(b_{1}^{n-2})\right|_{j=1}^{k-1}),x_{i+1}^{n}=$$

$$=A\left(x_{1}^{i-1}, b_{1}^{n-2}, \mathrm{E}(b_{1}^{n-2}) \Big|_{j=1}^{k-1}\right), x_{i}^{n} \quad [:\ (2)\ \mathrm{from}\ 2.1.\ (a)\ \mathrm{from}\ 1.2.1].$$

The proof of the statement 3°:

Let i be an arbitrary element of the set $\{1, \ldots, n-1\}$. Then for every $x_1^{2n-1} \in Q$, for every sequence of sequences b_1^{n-2} , $j \in \{1, \ldots, k-1\}$, over

Q and for every sequence of sequences c_1^{n-2} , $j \in \{1, \ldots, k-1\}$, over Q the following series of equalities holds

$$A\left(x_{1}^{i-1},A\left(x_{i}^{i+n-1},\overset{\overbrace{(j)}{b_{1}^{n-2}},\operatorname{E}(b_{1}^{n-2})}{b_{1}^{n-2}}\right)\Big|_{j=1}^{k-1}\right),x_{i+n}^{2n-1},\overset{\overbrace{(j)}{(j)}}{c_{1}^{n-2}},\operatorname{E}(c_{1}^{n-2},)\Big|_{j=1}^{k-1}\right)=\\ =A\left(x_{1}^{i},A\left(x_{i+1}^{i+n-1},b_{1}^{n-2},\operatorname{E}(b_{1}^{n-2})\right)\Big|_{j=1}\right),x_{i+n}\right),x_{i+n+1}^{2n-1},c_{1}^{n-2},\operatorname{E}(c_{1}^{n-2})\Big|_{j=1}\right).$$

On (k(n-1)+1)-semigroups with (n-2)-neutral operations [: (a) from 1.2.1], where, by 1° and 2°, we conclude that for every $x_1^{2n-1} \in Q$ the following equality holds

$$B(x_1^{i-1}, B(x_i^{i+n-1}), x_{i+n}^{2n-1}) = B(x_1^i, B(x_{i+1}^{i+n}), x_{i+n+1}^{2n-1})$$

The proof of the statement 4°:

a) For every $x_1^{k(n-1)+1} \in Q$, for every sequence b_1^{n-2} over Q and for

every sequence of sequences $c_1^{(j)}$, $j \in \{1, \ldots, k-1\}$, over Q the following series of equalities holds

$$A\left(x_{1}^{(k-1)(n-1)},\,B(x_{(k-1)(n-1)+1}^{k(n-1)+1}),\,b_{1}^{n-2},\,\mathrm{E}(b_{1}^{n-2})\right)=\\ =A\left(x_{1}^{(k-1)(n-1)},\,A(x_{(k-1)(n-1)+1}^{k(n-1)+1}),\,c_{1}^{n-2},\,\mathrm{E}(c_{1}^{n-2})\,\big|_{j=1}^{k-1},\,b_{1}^{n-2},\,\mathrm{E}(b_{1}^{n-2})\right)=\\ =A\left(x_{1}^{k(n-1)},\,A(x_{k(n-1)+1}),\,c_{1}^{n-2},\,\mathrm{E}(c_{1}^{n-2})\,\big|_{j=1}^{k-1},\,b_{1}^{n-2},\,\mathrm{E}(b_{1}^{n-2})\right)=\\ =A\left(x_{1}^{k(n-1)},\,A(x_{k(n-1)+1}),\,c_{1}^{n-2},\,\mathrm{E}(c_{1}^{n-2})\,\big|_{j=1},\,b_{1}^{n-2},\,\mathrm{E}(b_{1}^{n-2})\right)=\\ =A\left(x_{1}^{k(n-1)+1}\right)\,\left[:\,1^{\circ},\,(2)\,\mathrm{from}\,\,2.1\right].$$
 Whence, besides, we conclude that 4° for $k=2$ holds $[:\,1^{\circ},\,1.3.2,\,(2)]$

from 2.11.

b) Let k > 2. Further on, let i be an arbitrary integer such that $i \leq k - 2 \Leftrightarrow k - (i + 1) \geq 1$. Then for every $x^{k(n-1)+1} \in Q$, for every sequence of sequences b_1^{n-2} , $j \in \{1, ..., k-1\}$, over Q and for every sequence of sequences c_1^{n-2} , $t \in \{1, \dots, k-1\}$, over Q the following series of equalities holds $A(x_1^{i(n-1)}, \stackrel{k-i}{B}(x_{i(n-1)+1}^{k(n-1)+1}), \stackrel{(j)}{b_1^{n-2}}, \operatorname{E}(b_1^{n-2})|_{j=i}^{k-1}) =$

$$A(x_1, B(x_{i(n-1)+1}), b_1, E(b_1, j)|_{j=i}) = \frac{1}{(j)}$$

$$=A\big(x_1^{i(n-1)},B\big(x_{i(n-1)+1}^{(i+1)(n-1)},\overset{k-(i+1)}{B}(x_{(i+1)(n-1)+1}^{k(n-1)+1})\big),\overset{(j)}{b_1^{n-2}},\overset{(j)}{\operatorname{E}}(b_1^{n-2})\Big|_{j=i}^{k-1}\big)=$$

$$=A\left(x_{1}^{i(n-1)},A(x_{i(n-1)+1}^{(i+1)(n-1)},\overset{k-(i+1)}{B}\times X_{i(n-1)+1}^{(i-1)},A(x_{i(n-1)+1}^{(i+1)(n-1)},\overset{k-(i+1)}{B}\times X_{i(n-1)+1}^{(i-1)},A(x_{i(n-1)+1}^{(i-1)},\underbrace{c_{1}^{n-2},\operatorname{E}(c_{1}^{n-2})}_{t=1}),\overset{k-1}{b_{1}^{n-2}},\operatorname{E}(b_{1}^{n-2})}_{t=1}^{k-1}\right)=\\=A(x_{1}^{(i+1)(n-1)},A(\overset{k-(i+1)}{B}(x_{(i+1)(n-1)+1}^{k(n-1)+1}),\overset{k-1}{c_{1}^{n-2}},\operatorname{E}(c_{1}^{n-2})}_{t=1}),\overset{k-1}{b_{1}^{n-2}},\operatorname{E}\times X_{i(n-1)+1}^{(i)},\overset{k-1}{b_{1}^{n-2}},\overset{k-1}{b_{1}^{n-2}},\overset{k-1}{b_{1}^{n-2}},\overset{k-1}{b_{1}^{n-2}},\overset{k-1}{b_{1}^{n-2}})_{j=i+1}^{k-1})=\\=A(x_{1}^{(i+1)(n-1)},B^{k-(i+1)}(x_{(i+1)(n-1)+1}^{k(n-1)+1}),\overset{k-1}{b_{1}^{n-2}},\operatorname{E}(b_{1}^{n-2})}_{j=i+1})\overset{k-1}{j=i+1})\overset{(i)}{[i-1,3,2,1^{\circ},(2))}$$
from 2.1].

The proof of the statement 5°:

By (2) from 2.1, we conclude that for every $x \in Q$, for every sequence a_1^{n-2} over Q and for every sequence of sequences c_1^{n-2} , $j \in \{1, \ldots, k-1\}$, over Q the following series of equalities holds

and

$$A\left(x,a_{1}^{n-2},\mathrm{E}(a_{1}^{n-2}),\frac{\overbrace{c_{1}^{n-2},\mathrm{E}(c_{1}^{n-2})}^{(j)}}{c_{1}^{n-2},\mathrm{E}(c_{1}^{n-2})}\Big|_{j=1}^{k-1}\right)=x$$

$$A\left(a_{1}^{n-2},\mathrm{E}(a_{1}^{n-2}),x,\frac{c_{1}^{n-2},\mathrm{E}(c_{1}^{n-2})}{(j)}\Big|_{j=1}^{k-1}\right)=x,$$

whence, by 1°, we conclude that the following formula is satisfied $(\forall a_i \in Q)_1^{n-2}(\forall x \in Q)(B(x,a_1^{n-2},\mathbb{E}(a_1^{n-2})) =$

$$(\forall a_i \in Q)_1^{n-2} (\forall x \in Q) (B(x, a_1^{n-2}, E(a_1^{n-2})) = x \wedge B(a_1^{n-2}, E(a_1^{n-2}), x) = x).$$

For n=2 this formula reduces to the formula

$$(\forall x \in Q)(B(x, E(\emptyset)) = x \land B(E(\emptyset), x) = x)$$

[: 1.2.2, foot-note 1)], and for $n \ge 3$, by Proposition 1.2.7, Proposition 1.2.4 and 1.2.1, we conclude the following statement holds: E is an $\{1, n\}$ -neutral operation of the n-semigroups (Q, B). Whence, by 1.3.3 (and by 1.2.5), we conclude that (Q, A) is a (k(n-1)+1)-group for $n \ge 3$.

2) Let E be a **left** (n-2)-neutral operation of the (k(n-1)+1)-semigroup (Q,A); $k \geq 2$, $n \geq 2$. Then by a simple imitation of the proof of statements 1°-5° it is possible to prove that following statements hold.

°1 Let $a_1^{n-2}, j \in \{1, \dots, k-1\}$, be arbitary sequences over Q. Further on, let for every $x_1^n \in Q$

$$(\overline{a})\overline{B}(x_1^n) \stackrel{\text{def}}{=} A\left(E(a_1^{n-2}), a_1^{n-2} \Big|_{j=1}^{k-1}, x_1^n \right).$$

On (k(n-1)+1)-semigroups with (n-2)-neutral operations.

Then for every sequence of sequences b_1^{n-2} , $j \in \{1, ..., k-1\}$, over Q and for every $x_1^n \in Q$ the following equality holds

$$\overline{B}(x_1^n) = A(E(b_1^{n-2}), b_1^{n-2}|_{j=1}^{k-1}, x_1^n).$$
(j)

°2 For every $x_1^n \in Q$, for every sequence of sequences b_1^{n-2} , $j \in \{1, \ldots, k-1\}$, over Q and for every $i \in \{1, \ldots, n\}$ the following equality holds

$$\overline{B}(x_1^n) = A(x_1^i, \overline{E(b_1^{n-2})}, b_1^{n-2}|_{j=1}^{k-1}, x_{x+1}^n).$$

°3 (Q, \overline{B}) is an n-semigroup, where \overline{B} is an n-ary operation in Q defined by (\overline{a}) in °1.

°4 For every $x_1^{k(n-1)+1} \in Q$ the following equality holds $A(x_1^{k(n-1)+1}) = \overline{B}(x_1^{k(n-1)+1}).$

°5 A left (n-2)-neutral operation E of the (k(n-1)+1)-semigroup (Q,A) is an $\{1,n\}$ -neutral operation of the n-semigroup (Q,\overline{B}) . Moreover, if $n \geq 3$, then (Q,A) is a (k(n-1)+1)-group.

References

- [1] Dörnte W.: Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math, Z., 29, 1-19, 1928.
- [2] Čupona G. and Trpenovski B.: Finitary associative operations with neutral elements, Bilt. Društ. mat. fiz. Maked. 12, 15-24, 1961.
- [3] Čupona G.: Finitary associative operations, Matem. bibl. 39, 135-149, 1969. (In Serbo-Croation).
- [4] Dudek W. A., Glazek K. and Gleichgewicht B.: A note on the axioms of n-groups, Coll. Math. Soc. J. Bolyai, 29. Universal Algebra, Esztergrom (Hungary), 195-202, 1977.
- [5] Ušan J.: Neutral operations of n-groupoids, Rev. of Research, Fac. of Sci. Univ. of Novi Sad. Math. Ser., 18-2, 117-126, 1988. (In Russian)
- [6] Ušan J.: On n-groups with $\{i,j\}$ -neutral operation for $\{i,j\} \neq \{1,n\}$, Rev. of Research, Fac. of Sci. Univ. of Novi Sad. Math. Ser., **25-2**, 167-178, 1995.
- [7] Dudek W.: Varieties of polyadic groups, Filomat 9, No.3. 657-674, 1995.
- [8] Ušan J.: n-groups, $n \ge 2$, as varieties of type (n, n-1, n-2), Algebra and Model Theory, Collection of papers edited by A. G. Pinus and K. N. Ponomaryov, Novosibirsk, 182-208, 1997.
- [9] Ušan J.: n-groups, $n \ge 3$, as varieties of type < n, n-2, 1 >, preprint 1997.

3A (k(n-1)+1)-ПОЛУГРУПИ СО (n-2)-НЕУТРАЛНИ ОПЕРАЦИИ

Јанез Ушан

Резиме

Во трудов дефинираме (лева, десна) (n-2)-неутрална операција $\mathrm{E}[:Q^{n-2}\to Q]$ на еден (k(n-1)+1)-групоид, $(k,n)\in N\times (N\setminus\{1\})$, така што за n=2 $\mathrm{E}(\emptyset)[a_1^{n-2}=\emptyset]$ е неутрален елемент на (k+1) групоидот (Q,A). Главниот резултат е следниов: Ако (k(n-1)+1)-полугрупата $(Q,A),\,k\geq 2$, има лева (десна) (n-2)-неутрална операција $\mathrm{E},\,$ тогаш постои n-полугрупата (Q,B) со $\{1,n\}$ -неутрална операција [:[5],1.2.2], така што за секои $x_1^{k(n-1)+1}\in Q,\,A\left(x_1^{k(n-1)+1}\right)=\frac{k}{B}(x_1^{k(n-1)+1}).$ [E.g.: $\frac{2}{B}(x_1^{2n-1})\stackrel{\mathrm{def}}{=} B(B(x_1^n),x_{n+1}^{2n-1})].$ Уште повеќе, ако $n\geq 3$, тогаш (Q,A) е (k(n-1)+1)-група.

University of Novi Sad Institute of Mathematics, Trg Dositeja Obradovića 4, 21000 Novi Sad Yugoslavia