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FREE GROUPOIDS WITH zy? = 2y
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Abstract

The main results of the paper are Theorems 1, 2, 3. Theorem 1
gives a canonical description of free objects in the variety U, of
groupoids which satisfy the identity zy2 = zy. In Theorem 2
the class of U,—free groupoids. is characterized within the class of
Ur—injective groupoids, which is larger than the class of U, —free
groupoids@ ®nal , in Theorem 3, it is shown that the class of
U, —free groupoids is hereditary, and that a U, —free groupoid with
rank 2 contains subgroupoids with infinite rank.

0. Introduction

Throughout the paper we denote by F = (F, -) a free groupoid (in the
class of all groupoids) with a given basis B. It is well-known (for example
[1; I.1]) that the following two properties characterize F':

(a) F is injective, i.e. the mapping -:(a, b) — ab is an injection from
F? into F. , '

(b) The set B of primes in F generates F. (f G = (G, ) is. a groupoid,
and a € G\ GG, then we say that a is a prime in G.)

As usual, if G = (G, ) is a groupoid, and n is a positive‘ integer, then
the transformation z — z™ is defined as follows: »



gl ==, gt = g (0.1)

An element a € G is called a proper power in G iff there exist a b € G
and n €N, n > 2 (N is the set of positive integers), such that a = b".
Then we say that b is a base, and n is an ezxponent of a in G.

It can be easily shown by (a) and (0.1) that, if u is a proper power in
F, the base t = u and exponent n = ex(u) are unique. If u € F' is not a
proper power in F', then we say that u is the base of u in F, and write
4 = u; in this case, 1 is the exponent of v in F.

Notions as subgroupoids, homomorphisms, variety of groupoids, ...
have usual meanings ([2]).

Now we can state the main results of the paper.

THEOREM 1. Let R = (R, ) be defined as follows:

BCRCF & (Vu,ve F){uwwe R & u,ve R & v="1}, (0.2)
(Vu,v€ R)u*rv=unn. (0.3)

Then R is a free groupoid in U, with the (unique) basis B.
(We say that R is a canonical U,—groupoid.)

In order to state Th.2, we will define the notion of U,.—injectivity.
Namely, we say that a groupoid H = (H, -) € U, is U,—injective iff it
satisfies the following conditions:

1) (Va€ H, n eN) a # a™*1.

2) For each a € HH there is a unique pair (b, ¢) € H? such that
a = bc and:

2.1) (Vd e H, neN) ¢ # d*1.

22) (W', d € H)y[la=b'd = b =b& (' = c™, for some m > 1)].

In this case we say that b is the left and c is the right divisor of a
(or shortly: (b, ¢) is the pair of divisors of @) and we write b | a, ¢ | a.
A sequence aq, as, ... of elements of H is called a divisor chain in H iff
a;4+1 | @; whenever a;y; is a member of the sequence.

In Section 2 we give a complete description of the class of U,—injective
groupoids, and show that it is larger than the class of U, —free 1) groupoids.
The following property is a description of U,—free groupoids within the class
of U,—injective groupoids.

THEOREM 2. If H = (H, ) is a Ur—injective groupoid, then the
following conditions are equivalent:

1) We will often say "U,—free groupoid” instead of "free groupoid in U, ”.



(i) H is U,—free.

(ii) There is a mapping | |:a — |a| from H into the set N of positive
integers such that: b|a = |b| < |al.

(iii) Every divisor chain in H 1is finite.

(iv) The set B of primesin H genemtes H.
Then B is the basis of H.

THEOREM 3. (1) The class of U,—injective groupoids and the class of
U,—free groupoids are hereditary.

(2) If H is a U,.—free grbupoz’d with rank one, then each subgroupoid
of H 1is infinite and isomorphic to H.

(3) If H is a U,—free groupoid with rank two; then there exists sub-
groupoids of H with infinite rank.

Theorem ¢ (¢ =1, 2, 3) (beside other auxiliary results) will be proved
in Section 1.

SOME REMARKS

1. The axion zy®? = zy of U, suggests to consider the rewriting system
(RS) on F induced by the elementary transformation uv? — uv. Clearly,
this system is terminating (T) but it is not Church-Rosser (CR) one (see
[5; 2.9, 3.5]). For example, we have: a-a?a® — a-a%a and a-a%a® =
a(a?)? — aa® — a?. But, if we allow each transformation of the form
uv® — wuv, where k > 2, then we would obtain the corresponding RS
which is a convenient TCR. We note that RS—s induced by z2y? — (zy)?
(ie z™ — z) are convenient TCR for the variety V, (V) defined by
z?y? = (zy)? (2" =1z, n>2).

2. In [3], [4] corresponding Th.1, Th 2, Th. 3 for the varieties V, and
V are shown. The formulation of these theorems for Vs ({3]) and V ([4])
are almost the same as for U,, except Th.3 for V, (the class of V,—free
groupoids is not hereditary).

3. Denote by U, the variety of groupoids with the identity z%y = zy.
Clearly:

G=(G, el & G®=(G,o)el,,

where z oy = yx. Therefore, each U,—property can be translated into
corresponding U -property.



1. Canonical U,~groupoids

A proof of Th. 1 will be given below.
First, let u — |u| be the homomorphism from F into the groupoid
(N, +) which is an extension of B — {1}. Then:

bl =1 fuo|=lul + o], (1.1)

for any b € B and u, v € F. (We say that |u| is the norm of u € F.) By
induction on norm, the following relation can be easily shown:

(Vu,veF, p,geN) [Pl =29t = wu=0, p=gq|, (1.2)
and this implies that # — u, where u is the base of u, is a well defined
transformation of F, such that

(Vve Fvy=0. (1.3)

Moreover, (0.2), (0.3) and (1.1) imply:
veER > veER, (1.4)
n>2 => (VER & v=v€ER), (1.5)

(Vu,v€R) |ul+ 1< ful + o] < [uxo| <Jul+ o], .
(1.6)
|u*v| = |ul+ |v| & v=o1r.

As a corollary from (0.2), (0.3) and (1.4) we obtain:
1.1. x: R? — R is a well defined mapping, i.e. R is a groupoid. O

Moreover, from (0.3) and (1.3) we obtain:

(Vu,v€R) ux(v*v)=ux(vy) =uvy=up=1u*v.
Therefore:
1.2. RelU,. O
It is also clear that:
1.3. B is the least generating subset of R. O

In completing the proof of Th.1 we will use the next two properties of



1.4. The following identities hold in U,:
zy” =y, 2zMa2" =™, (2™ = gl for any n, m € N.

Proof. Assuming zy™ = zy, we obtain:

eyt =z gty =0yt = 2(y")’ = oy = 2y,

The other two identities are trivial corollaries of the first one. O

1.5. If G = (G, ) €U, and ¢ is a homomorphism from F into G,
then:

(Vu, v € F) p(uv) = p(uy).
Proof. Let u, v € I" be such that ex(v) =n,ie. v = (2)". Then:

e(uv) = p(u) p(v) = () ¢((2)") =¢(v) p((2))" =¢(v) p(v) = p(up) . O

From 1.5 we obtain the following corollary:

1.6. Let G = (G,-) €U, \:B — G and ¢ be the homomorphism
from F into G which extends A. Then the restriction ¢ of ¢ on R is
a homomorphism from R into G, which extends X\. O

Finally, Th.1 is a corollary of 1.2, 1.3 and 1.6.
The following properties will be used in the next sections.
1.7. R is U.—injective and (v, w) is the pair of divisors of u € Rx R
uf
|ul = |v] + |w].
Proof. f w € R, k € N, then we denote by u* the k-th power of u

in R,i.e.
ul =u, ubtl = uf v, (1.7)

By (1.6), we have: n > 2 = |uZ| > |u|, and this implies that the condition
1) from Section O holds. If v € R+R, then v = v¥w = vw, where v, w € R
and w = w. Then v = v xw' iff v = v and w' = w = w. This implies
that the condition 2) of Section 0 is satisfied, as well. O

The following two properties are also clear.

1.8. If the operation e is defined in N as follows:
(Vm,neN) men=m+1, (1.8)
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then (N, o) is a U.—free grupoid with the basis {1}. The family of
subgroupoids of (N, e) is infinite, and each of them is isomorphic to
(N,e). O

1.9. If G = (G, ) €Uy, and a € G, then the subgroupoid Q =< a >
of G generated by a is determined as follows:

Q={a"|neN}, a™a"=a""". (1.9)
And, Q is U,—free with basis {a} iff:
(Vm,neN) (a"=a" = m=n). O (1.10)

(As usual we say that <a> is the cyclic subgroupoid of G, generated
by a.)

2. U,.—injective groupoids

Below we assume that H = (H,-) is a U,—injective groupoid, and:
a,b,e,de H, m, n, k €N.

Using the implication: zy = z'y’ = =z = 2’, and the definition of the
class of U,—injective groupoids, the statements that follow can be easily
shown.

a®=b" = a=5b. (2.1)
a™tl = b = a =D (2.2)
a”=a" = m=n. (2.3)

As a collorary of 1.9 and (2.3), we obtain:

2.1. The subgroupoid < a> of H, generated by a € H s U,—free
with the basis {a}. O

2.2. For every a € H there is a unique pair (b, n), such that
a=b" and (b=c" = m=1).

(As in the groupoid F we say that b is the base and n the exponent
of a, and use the following notations: b =g, n = ex(a).)

Proof. Assume that there exists a pair (b, n), such that a = d™ and
n > 2. Then, the right divisor ¢ of a is the base of a. From b"71b =
b"~1c it follows that there exists m € N such that b = ¢™, and therefore
a = (c™)" = ¢™*"~1, which implies that ex(a) =m+n—1. O

The following two statements are clear.
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(¢")=ga, ex(a™)=m—1+ex(a). (2.4)
a”=b" = a=b). (2.5)

As a corollary from 2.1 and (2.5) we obtain:

2.3. A cyclic subgroupoid <a> of H is mazimal iff a = a; and, any
two distinct mazimal cyclic subgroupoids of H are disjoint. O

24. Ifa=a, b=b, a# b, n eN and ¢ = a™b, then c = c.
Proof. Assume that ¢ = d # c¢. Then ¢ = d™*!, where m + 1 =

ex(¢) > 2, and therefore b = d, a™ = d™; by (2.5), a™ = d™ implies
a=a=d=d=0>, a contradiction. O
2.5. If the subset A C H is defined by

A={ala€e H}, (2.6)
then A 1is either singleton or infinite.

Proof. If A contains at least two distinct elements, then by 2.4, A
is infinite. . O

2.6. Let v be the mapping from (HxN) x H into H defined by
¥((a, n), b) = a™b, (2.7)

D=(AxN)x A\ {((a,n),a)|a€ A, neN}, (2.8)

where A is defined in (2.6). Then the restriction ¢ of 1 on D is injective
and tmp C A.

Proof. The inclusion imp C A follows from 2.4. If a,b,c,d € A,
m,n € N are such that a # b, ¢ # d, a™b = ¢™d, then b = d, and
a™ = ¢™, and therefore: ¢ = ¢, m = n. (Note that if A is a singleton set,
then D=10.) O

The last result suggests the following construction.

Let A be a singleton or an infinite set, and let M = AXN, where
the equality (a, 1) = a, for each a € A is assumed. Let ¢: ((a, n), b) —
©((a, n), b) be an injection from the set (2.8) into A. Define an operation
e on M as follows:

and

(a, m)e(a,n)=(a,m+1), (2.9)
a#b = (a,m)e(b,n)=¢p((a, m),b). (2.10)

Denote by (A4, ¢) the groupoid M = (M, e).
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The following characterization of U, —injective grovpoids can be easlily
shown.

2.7. (A, ¢) is a U.—injective groupoid, such that
A={(a,n)|a€ A, neN}, (2.6")

and A\ imy is the sct of primes in (A, ¢).

Conversely, let H be a U,—injective groupoid and A be defined by
(2.6). Then H 1is isomorphic to (A, @), where ¢ is the restriction on D
of the mapping 1, defined by (2.7). O

2.8. The class of U.—free groupoids is a proper subclass of the class of
U,.—injective groupoids.

Proof. By 1.7, the class of U,—free groupoids is a subclass of the
class of U,—injective groupoids. Let A be an infinite set. Then there exist
groupoids (A, ¢) such that ime = A, and thus the set of primes in (A, ¢)
is empty. Therefore (A, @) is not U,—free. 0O

2.9. A groupoid (A, ¢) is U.—free iff the set of primes generates

Proof. If (A. @) is U,—free, then the set of primes generates (A, ¢) by
Th.1. Assume that B = A\ ime (the set of primes in (A, ¢)) generates
(A, p). By 2.1,if B = {b} is ~'singleton set, (A4, ¢) is U,~free. It remains
the case when B contains z* least tww distinct elements. Then, A is
infinite.

Define a sequence of sets {Bj | k > 1} as follows: B = By,

¢c€ Biy1 & c¢=¢((a,n),b), (2.11)
where: ' :

a#b, neN, a€B;, beB;, i,j<k, kel{ij}. (2.12)

The relations BNimy = @, tmyp C A, (2.11), (2.12), and the fact that
@ is injective, imply:

CBep N(U{B; |[1<i<k)) =0, (2.13)

and U{By | k > 1} = A, where the unioun is disjoint.
Let G € U,, and A: B — (. Define a set of mappings
{ag: By — G | k > 1} as follows:

a =X app(d) = o) ayb), (2.14)

where d = c;»(((a, i)y b)) € Dys1, a € B, be B, n €N
There is o unigue mapping a: A — (' such that, for each k € N, oy,

is the restriction of a un By. Finally, the mapping A: (A, ¢) - G defined
by:
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-)‘—((a’ n)) = a(a)"
is a homomorphism which extends A. O

Now we can complete the proof of Th. 2.

Assume that H is a U,—injective groupoid.

By 1.7, (i) = (ii). (Namely, if H is U,—free, then it is isomorphic
to the coresponding canonical U,-groupoid.) Clearly, (ii) = (iii).

Assume that H satifies (iii), i.e. every divisor chain in H is finite.
From the U,.—injectivity of H, it follows that any element of H has at
most two distinct divisors, and this, by an application of Koénig Lemma
(for example [6; 381] or [7; 4]) implies that the set of divisor chains in
H with the same first member « is finite. Then the last members of such
maximal divisor chains are primes in H and a belongs to the subgroupoid
generated by them. Therefore, the set B of primes in H generates H.
Thus (iii) = (iv). From 2.8 we also obtain that (iv) = (i). This
completes the proof of Th.2. 0O

3. Subgroupoids of U/,.—free groupoids

The following statement is ”a half” of the first part of Th. 3.
3.1. The class of U,—injective groupotids is hereditary.

Proof. Let H be a U,—injective groupoid and @ a subgroupoid of
H. We will show that Q is U,.—injective . Clearly, the condition 1), in the
definition of the class of U,—injective groupoids, is hereditary, and thus it
remains to show that Q satisfies the condition 2).

Let a € QQ. Then there exist b/, ¢! € @ such that a = b'c’. If (b, ¢)
is the pair of divisors of @ in H, then b =¥, and ¢’ = ¢, for a (unique)
n €N. Let k be the least positive integer such that d = ¢* € Q. Then
k < n and ¢ = d*~*t1. This implies that Q satisfies the condition 2)
as well. Namely, if a € QQ, and (b, ¢) is the pair of divisors of a in H ,
then (b, c*) is the pair of divisors of @ in Q. O

In 3.2 and 3.3 we assume that H is a U,—injective groupoid, and Q
a subgoupoid of H.

3.2. If a € Q, and a, is the base of a in Q, then there is a (unique)
k € N such that a , = (a)*, where a is the base of a in H. O

33. If a € Q is such that ¢, = a = (0)*, where k > 2, then a is
prime in Q.

Proof. Namely, the assumption that a = (a)* is not a prime in Q
would imply that (a)*~1€ Q. O
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3.4. If Q is a subgroupoid of a U.—free groupoid H, then the set P
of primes in Q generates Q.

Proof. By 1.7 H is U,-injective and there exists a mapping a + |a|
from H into N such that: if a € HH and (b, ¢) is the pair of divisors of
a in H, then |a| = |b| + |¢|. By 8.1, Q is U,.—injective, and if a € QQ
and (b, ¢) is the pair of divisors of a in H, then there exists a (unique)
k € N such that (b, ¢*) is the pair of divisors of a in Q.

Let m be the least positive integer such that @ N{a | ¢ € H,
|a| = m} = § is non-empty. Then S C P and thus P # (. Denote
by T the subgroupoid of Q generated by P, and assume that

ae€Q & la|<n = acT.

Let ¢ € @ and la| = n+ 1. We will show that a € T. Clearly,
a € P = a€T,and thus we can assume that a € QQ. Let (b, ¢) be
the pair of divisors of a in H. By 1.7, we have |a| = |b| + |c¢| and thus
|b], |¢] £ n. By the proof of 3.1, there is a (unique) k& € N such that
(b, c*) is the pair of divisors of a in @, and thus b, ¥ € Q, and |b| < n.
If k=1, then ¢ € Q as well, and thus ¢ € T. Finally, if £ > 2, then by
3.3, cF € P, and therefore a = bc* ¢ T. O

Now we can complete the proof of the first part of Th.3.
3.5. The class of U,.—free groupoids is hereditary.

Proof. Let @ be a subgroupoid of a U,—free groupoid H. By 1.7,
3.1,3.4 and Th.2, Q is U,—free. O '

The second part of Th.3 follows from 1.8, and the third one is a
corollary from the following proposition.

3.6. Let: H = (H, ) be a U,—free groupoid, a,b € H be such that
a=a#b=">b and C ={Ck |k > 1} be defined by:

c1 =ab, cpy1 =cpb. (3.2)
Then the subgroupoid Q generated by C is U.—free with infinite rank.

Proof. By 3.5, Q is U.—free. By induction on m + n, one can show
that: ¢, = ¢, & m = n, and thus C is infinite. Clearly a ¢ Q, b ¢ Q,
and this implies that C coincides with the set of primes in Q. (Namely,
(a, b) is the pair of divisors of ¢; in H, and a ¢ Q, b ¢ Q; this implies
that ¢; is a prime in @Q; assuming that ¢, is a prime in @, we obtain in
the same way that ¢y is also primein Q. O
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CJIOBOJHU I'PYTIOUIM CO 232 = zy

a

I'. YUynona*, H. Hemakocku™*

Peszuwme

I'naBauTe pesynratu Bo paborasa ce Teopemute 1, 2 m 3. Bo
TeopeMaTa 1 ce maBa KaHOHUUEH OOWC Ha CI0GOMHHTE 00jeKTH BO MHO-
ryobpa3neto U, OX TPpYNOMAN KOUWIITO 'O 3aJ0BOJYBaaT UIAEHTUTETOT
zy? = rzy. Bo Teopemara 2 e okapakTepusmpaHa KilacaTa UU,—cCJO-
GomHM TPymoOWIW BO pPaMKWATE Ha KiacaTa U,—WHjeKTUBHY TPYIOWIM.
Ha xpajot, Bo Teopemara 3 e mokakaHO NleKa CEKOja Ol CIOMEHATUTE
KJIacCy € HacleldHa ¥ HeKa ceKoj U,.—ciobomeH Tpymoui co paHT 2 co-
APKHA TOACPYTOUIN cO OecKOoHeYeH PaHT.
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