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COVERING THE EDGES OF A GRAPH BY

FOUR ODD SUBGRAPHS

MIRKO PETRU�EVSKI

Abstract. A graph is odd if all its vertices have odd degrees. A Shannon
triangle is a loopless graph on three pairwise adjacent vertices. If the parities
of the sizes of its bouquets (of parallel edges) are denoted by p, q, r in non-
increasing order, with 2 (resp. 1) denoting an even-sized (resp. odd-sized)
bouquet, we then say the Shannon triangle is of type (p, q, r). The minimum
number of odd subgraphs which cover its edges is p + q + r. For a Shannon
triangle of type (2, 2, 2) (resp. (2, 2, 1)) this number equals 6 (resp. 5). We
prove that, by excluding these two types of Shannon triangles, every other
loopless connected graph admits an edge cover by four odd subgraphs.

1. Introduction

1.1. Terminology and notation. Throughout the article we mainly follow the
terminology and notation used in [1, 9]. A graph G = (V (G), E(G)) is always
regarded as being �nite (i.e. having �nite sets of vertices V (G), and of edges E(G))
with loops and parallel edges allowed. The maximum number of pairwise parallel
edges is calledmultiplicity of G. Whenever G is loopless and of multiplicity at most
1, we say it is a simple graph. The parameters n(G) = |V (G)| and m(G) = |E(G)|
are called order and size of G, respectively. For X ⊆ V (G)∪E(G), the subgraph of
G induced by X is denoted with G[X]; on the other hand, the subgraph obtained
by the removal of X is denoted with G−X. We refer to each vertex v of G having
an even (resp. odd) degree dG(v) as an even (resp. odd) vertex. In particular,
if dG(v) equals 0 (resp. 1), we say that v is an isolated (resp. pendant) vertex
of G. A graph is called even (resp. odd) whenever all its vertices are even (resp.
odd). An edge cover of G is a family {H1, . . . ,Hk} of subgraphs of G such that⋃k

i=1E(Hi) = E(G). Moreover, if the sets E(H1), . . . , E(Hk) are pairwise disjoint,
then {H1, . . . ,Hk} is a decomposition of G. An arbitrary mapping ϕ : E(G)→ S is
called edge-coloring of G, and then S is the color set of ϕ. Whenever |S|= k, we say
that ϕ is a k-edge-coloring of G. For each color c ∈ S, Ec(G,ϕ) denotes the color
class of c, being the set of edges colored by c. In other words, Ec(G,ϕ) = ϕ−1(c),
and whenever G and ϕ are clear from the context, we will use Ec to denote the
color class of c. Any decomposition {H1, . . . ,Hk} of G can be interpreted as a
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k-edge-coloring of G for which the color classes are E(H1), . . . , E(Hk). For every
v ∈ V (G), EG(v) denotes the set of edges incident to v. Given an edge-coloring of
G and a vertex v, we say the color c appears at v if Ec ∩ EG(v) 6= ∅.

In a connected graph G, a vertex v is said to be a cut vertex if G − v is
disconnected. A block is a connected graph without cut vertices. Given a graph
G, any maximal subgraph without cut vertices is called a block of G. So, if B is a
block of G, then B as a graph has no cut vertex but V (B) may contain cut vertices
of G (if G is not a block, then V (B) contains at least one cut vertex of G). For
a block B of G, if V (B) contains at most one cut vertex of G, we say that B is
an end-block of G. Every connected graph G which is not a block has at least two
end-blocks. On the other hand, if G is a block, then its only end-block is G itself.
Given a block B of G, each v ∈ V (B) which is not a cut vertex of G is called an
internal vertex of B. Note that any vertex v of a block G, has a neighbor among
the internal vertices of every end-block of G− v.

Given a connected graph G, an edge e is said to be a bridge if G − e is dis-
connected. Observe that whenever e = vw is a bridge of G and w is not the only
neighbor of v in G, then v is a cut vertex of G.

1.2. Edge covers and decompositions. Let H be a class of graphs and G
a given graph. The minimum size of an edge cover (resp. decomposition) of
G by members of H is denoted with covH(G) (resp. decH(G)). Obviously, a
decomposition of G by members of H can be interpreted as an edge-coloring of G
such that each color class induces a member of H. Usually, the following questions
are of interest.

Problem 1. Does G admit an edge cover (resp. decomposition) by members
of H? If so, what is the value of covH(G) (resp. decH(G))? Does there ex-
ist maxG covH(G) (resp. maxG decH(G)), taken over all the graphs G admitting
such edge covers (resp. decompositions)? If this maximum exists, for which graphs
G is it attained?

Historically speaking, the topic of Problem 1 started with the classical paper [2]
on covering the edges of simple graphs by complete graphs. For the class H of
even graphs, Problem 1 was answered by Matthews in [6]. The parity counter part
is the case when H represents the class of odd graphs, and we will use O to denote
it. The following result is proven in [7].

Theorem 1 (Pyber, 1991). For every simple graph G, it holds that decO(G) ≤ 4.

It is easily checked that W4, the wheel with 4 spokes, cannot be decomposed into
less than 4 odd subgraphs. Hence, maxG decO(G) = 4, restricting to simple graphs
G. This example can be used to construct an in�nite series of related examples,
as shown in [5]. The same paper contains the following result.

Theorem 2 (Matrai, 2006). For every simple graph G, it holds that covO(G) ≤ 3.

As a straightforward consequence of the handshake lemma, no non-empty con-
nected even graph of odd order can be covered by less than three odd subgraphs.
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Hence, the previous theorem implies that maxG covO(G) = 3, taken over the sim-
ple graphs G.

Neither of the last two results applies to the class of all graphs G. For example,
Fig. 1 depicts four graphs (of order 3) with the following property: each of their
odd subgraphs is of order 2 and size 1, i.e. a copy of K2.

Figure 1. Four graphs G having decO(G) = covO(G) equal to
4, 4, 5, and 6, respectively.

Presented in the context of edge-colorings, decO(G) naturally gives rise to the
following notion. An odd edge-coloring of a graph G is a (not necessarily proper)
edge-coloring such that each color class induces an odd subgraph of G. If it uses
at most k colors, we say it is an odd k-edge-coloring, and then G is odd k-edge-
colorable. Whenever G admits odd edge-colorings, the odd chromatic index χ′o(G)
is de�ned as the minimum integer k for which G is odd k-edge-colorable. In other
words, χ′o(G) = decO(G).

By de�nition, at a vertex v each loop colored by c contributes 2 to the count
of appearances of the color c at v (i.e. on the edges belonging to EG(v)). Thus,
it is obvious that a necessary and su�cient condition for the existence of an odd
edge-coloring of G is the absence of vertices incident only to loops. Clearly, the
same condition is necessary and su�cient for the existence of an edge cover of G
by odd subgraphs. Apart from this, the presence of loops does not in�uence the
existence nor changes the values of the indices χ′o(G) and covO(G). Therefore,
while studying these matters, it is no loss of generality to restrict to connected
loopless graphs. The rightmost graph in Fig.1 shows the existence of graphs G
with χ′o(G) = covO(G) = 6.

(1,1,1) (2,1,1) (2,2,1) (2,2,2)

Figure 2. Four Shannon triangles (the smallest one of each type).

For a loopless graph G, a bouquet is the complete set of edges between a pair
of adjacent vertices. As de�ned in [4], a Shannon triangle is a loopless graph on
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three pairwise adjacent vertices. Observe that for any Shannon triangle, the edge
set of every odd subgraph is fully contained in a single bouquet. Let p, q, r be
the parities of the sizes of its bouquets in non-increasing order, with 2 (resp. 1)
denoting an even-sized (resp. odd-sized) bouquet. Then G is a Shannon triangle of
type (p, q, r). Fig. 2 depicts the smallest Shannon triangle of each type. In regard
to the odd chromatic index of loopless graphs, the following result is proven in [4].

Theorem 3. For every connected loopless graph G, it holds that χ′o(G) ≤ 6.
Moreover, equality holds if and only if G is a Shannon triangle of type (2, 2, 2).

Figure 3. A loopless graph (left) and its reduction (right).

In [4], the reduction red(G) of a loopless graph G is de�ned to be a spanning sub-
graph obtained by the following intervention at every bouquet: remove maximum
possible even number of edges from the bouquet without altering the adjacency
relation in V (G) (see Fig. 3 for an example). Obviously, red(G) is of multiplicity
at most 2, and up to isomorphism, each loopless graph G has a unique reduction.
Observe that if G is a Shannon triangle, then red(G) is of the same type as G. We
say that a loopless graph G is reduced whenever its multiplicity is at most 2, i.e.
when G ∼= red(G). The former of the inequalities (*) was shown in [4], and the
latter can be proved in a similar fashion.

χ′o(G) ≤ χ′o(red(G)) and covO(G) ≤ covO(red(G)). (*)

Having in mind how the odd subgraphs of every Shannon triangle look like, the
following result is straightforward.

Proposition 4. Given a Shannon triangle G of type (p, q, r), it holds that

χ′o(G) = covO(G) = p+ q + r.

Since the inequality covO(G) ≤ χ′o(G) clearly holds in general, the last propo-
sition and Theorem 3 provide an answer to Problem 1 when H = O. The next
conjecture was proposed in [4].

Conjecture 1. Let G be a connected loopless graph which is not a Shannon tri-
angle of type (2, 2, 2) or (2, 2, 1). Then χ′o(G) ≤ 4.
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Supporting Conjecture 1, in this paper we prove the following result.

Theorem 5. Let G be a connected loopless graph which is not a Shannon triangle
of type (2, 2, 2) or (2, 2, 1). Then covO(G) ≤ 4.

To supply a proof of Theorem 5, we will use methods such as eliminating odd
forests or co-forests, conditions on connectivity etc., developed in [5, 3]. The rest
of the article is divided into three sections. In the next one several lemmas are
collected. At the beginning of Section 3, the existence of edge covers by odd
subgraphs is studied for some particular graphs. Hopefully this approach makes
the proof of Theorem 5, presented at the end of that section, more transparent.
In the �nal section, two related conjectures are stated and brie�y discussed.

2. Preliminary results

We begin by recalling the de�nition of a T -join. For a graph G, let T be an
even-sized subset of V (G). Following [1], a spanning subgraph H of G is said to be
a T -join if dH(v) is odd for all v ∈ T and even for all v ∈ V (G) \ T . For example,
if P is an xy-path in G, the spanning subgraph of G with edge set E(P ) is an
{x, y}-join. Observe that by taking the symmetric di�erence H ⊕K of a T -join H
and a spanning even subgraph K, we again obtain a T -join. In particular, removal
(resp. addition) of the edges of an edge-disjoint cycle from (resp. to) a T -join,
furnishes a T -join. Thus, whenever a T -join of G exists, there also exists such a
forest (resp. co-forest). By the handshake lemma, a necessary condition for the
existence of a T -join is that T intersects every component of G in an even number
of vertices (possibly equal to zero). The following classical result about T -joins
claims that this condition also su�ces (see [8]).

Proposition 6. Given a connected graph G and an even-sized subset T of V (G),
there exists a T -join of G.

Corollary 7. Given a connected graph G and an even-sized subset T of V (G),
there exists a T -join H of G that is a co-forest.

Corollary 8. Given a connected graph G of even order, there exists an odd co-
forest in G.

Whenever the graph G is clear from the context, the edge-complement of a
subgraph H is denoted by Ĥ, i.e. Ĥ = G − E(H). Now we state a lemma that
appears in [5]. For the sake of completeness, we provide another proof of it here.

Lemma 9. Given are a forest F , a vertex w ∈ V (F ), and a parity π which is
even if w is isolated. Then, F admits an edge-coloring with the color set {1, 2}
which satis�es the following two conditions:

(1) the subgraph F1 = F [E1] is odd;

(2) for the edge-complement F2 = F̂1 it holds that dF2(w) = π (mod 2) and
dF2(v) is odd or zero, for each v 6= w.
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Proof. We may assume F is a tree. In case dF (w) = π (mod 2), construct a 2-edge-
coloring of F as follows: color EF (w) by 2; as long as E(F ) is not fully colored,
select a non-pendant vertex v with just one incident edge colored so far, and extend
the current edge-coloring to EF (v) so that each color from {1, 2} appears odd or
zero number of times at v. Since F is connected and acyclic, by repeating this
procedure we end up with a 2-edge-coloring of F which meets the requirements of
the lemma. Consider now the case when dF (w) 6= π (mod 2), hence dF (w) > 0.
Select an e ∈ EF (w). Color EF (w)\{e} by 2 and color the edge e by 1. Extend
this edge-coloring of EF (w) to a 2-edge-coloring of F as described in the previous
case.

�

As an immediate consequence of Lemma 9, we have the following result.

Corollary 10. For every forest F , it holds that χ′o(F ) ≤ 2.

Using this corollary, we can easily show that every connected graph of even
order is odd 3-edge-colorable.

Corollary 11. For every connected graph G of even order, it holds that χ′o(G) ≤ 3.

Proof. Let H be a V (G)-join of G which is also a co-forest. Take an odd edge-

coloring of Ĥ with the color set {1, 2} and extend it to E(G) by coloring E(H)
with 3. We thus obtain an odd 3-edge-coloring of G. �

Consider now a reduced graph G. For an arbitrary v ∈ V (G), we denote by
NG(v) the set of neighbors of v in G. Distinguish between two types of neighbors
u ∈ NG(v): those for which there is a unique uv-edge in G, and those for which
there are two uv-edges inG. We introduce notationN ′G(v) andN

′′
G(v) to denote the

respective subsets of NG(v). Often, we will use notation v ∼ u, v ≈ u, or v ↔ u,
to depict the relationship u ∈ N ′G(v), u ∈ N ′′G(v), or u ∈ NG(v), respectively.
Clearly, v is an odd vertex of G if and only if N ′G(v) is odd-sized. The next lemma
deals with a reduced graph G all of whose cycles (if any) share a vertex v.

Lemma 12. Given a reduced graph G, let v ∈ V (G) be such that G−v is a forest.
Then, G admits an edge-coloring with the color set {1, 2} so that in both G[E1]
and G[E2], each vertex distinct from v is of odd degree.

Proof. Let N ′G(v) = {u1, . . . , us} and N ′′G(v) = {w1, . . . , wt}. Consider the graph
F obtained from G − v by adding to each ui one pendant edge linking it to a
new pendant vertex u′i, and adding to each wj two pendant edges linking it to
two new pendant vertices w′j , w

′′
j . Clearly F is a forest, and we may take an odd

edge-coloring of F with the color set {1, 2}. Identify u′1, . . . , u′s, w′1, w′′1 , . . . , w′t, w′′t
into a vertex v, while keeping the colors on the edges. We have thus regained F
with a required edge-coloring. �

Regarding the previous lemma, if we additionally assume that v is an odd vertex
of G, we deduce the following corollary.
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Corollary 13. Given a reduced graph G, let v be an odd vertex of G such that
G−v is a forest. Then, G admits an edge-coloring with the color set {1, 2} so that

the subgraph F1 = G[E1] is odd, while in its edge-complement F2 = F̂1, dF2(v) is
even whereas for each vertex u 6= v, dF2(u) is odd or zero.

To prove the next lemma, we will use a previously mentioned fact that the
symmetric di�erence of a T -join and a spanning even subgraph is again a T -join
of the considered graph.

Lemma 14. In a connected reduced graph G, let v ∈ V (G) be a non-cut vertex,
u ∈ NG(v), and T ⊆ V (G) be even-sized. Then, G has a T -join C which is a
co-forest, with the following two additional properties holding for v in the edge-

complement Ĉ:

(i) If either dG(v) is odd and v ∈ T or dG(v) is even and v /∈ T , then dĈ(v) =
0.

(ii) If either dG(v) is odd and v /∈ T or dG(v) is even and v ∈ T , then dĈ(v) =
1 with NĈ(v) = {u}.

Proof. The requirement that C is a co-forest can be easily achieved once the rest
is ful�lled. Namely, suppose C is a T -join satisfying the two additional properties
for v in the edge-complement Ĉ. Then, in case C is not a co-forest, we add to
E(C) the edges of a cycle appearing in Ĉ. By doing this, both the property of
C being a T -join and the additional properties for v in the edge-complement are
preserved. Repetition of this procedure, eventually gives a co-forest which meets
all the requirements.

(i) Since T is even-sized, a T -join H of G exists. Observe that v is an even

vertex of the edge-complement Ĥ. If dĤ(v) = 0 we are done, hence assume
dĤ(v) > 0 and let S = N ′

Ĥ
(v). Since G− v is connected, it has an S-join.

Therefore, there exists an S-join KS of G such that dKS
(v) = 0. Take

the symmetric di�erence of KS and the spanning subgraph of G with edge
set EĤ(v). The obtained graph K is an even spanning subgraph of G for
which EK(v) = EĤ(v). Thus, C = H ⊕ K is a T -join of G such that
dĈ(v) = 0.

(ii) For an arbitrary T -join H of G, dĤ(v) is odd, i.e. N ′
Ĥ
(v) is odd-sized. Let

e be a uv-edge in G and let S = N ′
Ĥ
(v)4{u}. Take an S-join KS of G

such that dKS
(v) = 0. Denote by K the symmetric di�erence of KS and

the spanning subgraph of G with edge set EĤ(v)4{e}. Observe that K
is an even spanning subgraph of G for which EK(v) = EĤ(v)4{e}. Thus,
C = H ⊕K is a T -join of G for which dĈ(v) = 1 and e ∈ E(Ĉ).

�

3. Proof of Theorem 4

We begin by considering several particular cases of the theorem. The next two
lemmas study a connected graph G having a speci�c end-block B.

Lemma 15. If a connected graph G has an odd end-block B, then χ′o(G) ≤ 3.
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Proof. By Corollary 11, we may assume that G is of odd order. Let s be the
only cut vertex of G belonging to V (B). Since V (B) is even-sized (by the hand-
shake lemma), the connected graph G′ = G − (V (B)\{s}) is of even order. By
Corollary 7, an odd co-forest C exists in G′. Take an edge-coloring of the edge-
complement F = G′ − E(C) as in Lemma 9 with s in the role of w and π even.
Extend this edge-coloring to E(G) by coloring E(B) with 2, and E(C) with 3. We
have thus constructed an odd 3-edge-coloring of G. �

Lemma 16. Let G be a connected graph which is not a block, and has a Shannon
triangle of type (2, 2, 2), (2, 2, 1), or (2, 1, 1) as an end-block B. Then covO(G) ≤ 4.

Proof. By the second inequality of (*) and Corollary 11, we may assume G is a
reduced graph of odd order. Hence, B is one of the graphs depicted in Fig. 2
excepting the leftmost one. Let s be the only cut vertex of G belonging to V (B).
We consider �rst the case when dB(s) ≥ 3. Denote by v, w the other two vertices
of B so that v ≈ s, and let e be an edge incident to s in G − {v, w}. Denote
by f, g the vs-edges of G, and let h be a vw-edge (h might be the unique vw-
edge of G or there might be another one, denoted by h∗). The connected graph
G′ = G − v is of even order, hence it admits an odd edge-coloring ϕ′ with the
color set {1, 2, 3}. Since dG′(w) ≤ 2, we may permute (if necessary) the colors of
ϕ′ so that 3 does not appear at w. Let H ′1, H

′
2, H

′
3 be the subgraphs induced by

the color classes E1, E2, E3, respectively. De�ne H4 = G[{e, f, g, h}]. If v ∼ w,
then set H1 = H ′1, H2 = H ′2, H3 = H ′3. Otherwise, v ≈ w and then set H1 = H ′1,
H2 = H ′2, H3 = H ′3 + h∗.

Consider now the case when dB(s) = 2. Then B must be the second (from the
left) graph of Fig. 2. Denote by v, w the other two vertices of B, and let f = sv,
g = sw, while h and h∗ are the two vw-edges. Once again, let e be an edge
incident to s in G− {v, w}. Consider an odd edge-coloring ϕ′ of G′ = G− v with
the color set {1, 2, 3}. Since dG′(w) = 1 we may permute (if necessary) the colors
of ϕ′ so that only the color 1 appears at w. Let H ′1, H

′
2, H

′
3 be the subgraphs

induced by the color classes E1, E2, E3, respectively. Set H1 = H ′1, H2 = H ′2 + h,
H3 = H ′3 + h∗, and H4 = G[{e, f, g}].

In both cases, {H1, H2, H3, H4} is an edge cover of G by odd subgraphs. �

In the next lemma, we look at a reduced connected graph G having a speci�c
vertex w.

Lemma 17. Let G be a reduced connected graph which is not a Shannon triangle
of type (2, 2, 2) or (2, 2, 1). Let v be a non-cut vertex of G such that |NG(v)|≤ 2
and N ′′G(v) 6= ∅. Then covO(G) ≤ 4.

Proof. We may assume G is of odd order. Consider �rst the case when |NG(v)|= 1,
and let w be the only neighbor of v. Take an odd co-forest C in G − v, and let
F = G− v−E(C) be its edge-complement. There exists a 2-edge-coloring ϕ of F
as in Lemma 9 with π even. Extend ϕ to E(G) by coloring one vw-edge with 2,
E(C) with 3, and the other vw-edge with 4. This furnishes an odd 4-edge-coloring
of G.
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Next, we look at the case when |NG(v)|= 2. Let w ≈ v and u be the other
neighbor of v. If NG(w) ⊆ {u, v}, then unless G is a Shannon triangle of type
(2, 1, 1), the previous case or Lemma 16 applies. Therefore we may assume the
existence of an edge e ∈ EG(w)\(EG(u) ∪ EG(v)). First, we consider dG(v) = 3.
Denote by f, g the vw-edges and let h be the unique uv-edge. For an odd edge-
coloring of G − v with the color set {1, 2, 3}, let H1, H2, H3 be the subgraphs
induced by the respective color classes, and de�ne H4 = G[{e, f, g, h}]. Second,
we consider dG(v) = 4. Once again, let f, g be the vw-edges and h, k be the uv-
edges. There exists a edge-coloring of G− v with the color set {1, 2, 3} such that
the color classes E1 and E3 respectively induce odd subgraphs H

′
1 and H

′
3, whereas

for the subgraph H ′2 induced by E2 either u /∈ V (H ′2) and H
′
2 is odd, or u is the

only even vertex of H ′2. Set H1 = H ′1, H2 = H ′2+k, H3 = H ′3, H4 = G[{e, f, g, h}].
On both occasions, {H1, H2, H3, H4} is an edge cover of G by odd subgraphs.

�

The following lemma assumes the existence of a speci�c pair v, w of adjacent
vertices in a connected graph G.

Lemma 18. Let G be a connected graph which is not a Shannon triangle of type
(2, 2, 2) or (2, 2, 1). Let v, w ∈ V (G) be two adjacent vertices such that v is an
even non-cut vertex of G, and w is a non-cut vertex of G− v.

(i) If v ∼ w, then χ′o(G) ≤ 4. Moreover, if dG(w) is even then χ′o(G) ≤ 3.
(ii) If v ≈ w, then covO(G) ≤ 4.

Proof. By the second inequality of (*) and Corollary 11, we may assume G is a
reduced graph of odd order.

(i) Denote by e the unique vw-edge of G. Assume �rst that dG(w) is odd,
hence dG−v(w) is even. By Lemma 14, G − v contains an odd co-forest
C such that dF (w) = 1 in the edge-complement F = G − v − E(C). Let
f be the only edge in EF (w). For the graph G

′ = G− (E(C) ∪ {e, f}) it
holds that G′−v is a forest, dG′(v) is odd, and dG′(w) = 0. Take an edge-
coloring of G′ as in Corollary 13, and extend it to an odd 4-edge-coloring
of G by coloring e with 2, E(C) with 3, and f with 4.

Assume now that dG(w) is even. This time, dG−v(w) is odd, hence G−v
contains an odd co-forest C such that dF (w) = 0 in the edge-complement
F = (G − v) − E(C). Consider the graph G′ = G − (E(C) ∪ {e}) and
proceed as above to obtain an odd 3-edge-coloring of G.

(ii) It is enough to look at the case when dG(v) ≥ 4, for otherwise Lemma 17
applies. Let u be a neighbor of v di�erent from w. By Lemma 17, we may
assume there exists an s ∈ NG(w)\{v, u}, and let e be an sw-edge. Denote
by f, g the two vw-edges, and by h any uv-edge. We consider separately
the two possible parities of dG(w):
• The degree dG(w) is odd. Note that h is not a bridge of G. In the
connected graph G′ = G − {f, h} both v and w are even vertices,
with v ∼ w. By part (i), G′ admits an odd 3-edge-coloring. Let
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H1, H2, H3 be the subgraphs induced by the color classes, and de�ne
H4 = G[{e, f, g, h}].

• The degree dG(w) is even. Let G
′ = G−{e, f, h}. Since dG−v(w) ≥ 2

and w is a non-cut vertex of G−v, the edge e is not a bridge of G−v.
Therefore, G′ is connected, and dG′(w) is even, hence part (i) applies.
Let H1, H2, H3 be the subgraphs induced by the color classes of an
odd 3-edge-coloring of G′, and de�ne H4 = G[{e, f, g, h}].

On both occasions, {H1, H2, H3, H4} is an edge cover of G by odd sub-
graphs.

�

We are now ready for the proof of Theorem 5.

Proof. By the second inequality of (*) and Corollary 11, it su�ces to consider
reduced graphs of odd order. We prove the theorem by induction on n(G). If
n(G) = 3, the statement follows from m(G) ≤ 4. Let n be an odd integer greater
than 3. Assume the theorem holds for reduced graphs of order less than n, and
let G be a reduced connected graph of order n which is not a Shannon triangle
of type (2, 2, 2) or (2, 2, 1). We consider �rst the case when G is a block. By the
handshake lemma, there exists an even vertex v of G. If G − v is also a block,
then for an arbitrary neighbor w of v Lemma 18 applies. Assume G − v is not a
block, and look at an arbitrary end-block B of G − v. Denote by s the only cut
vertex of G belonging to V (B). As remarked at the end of Subsection 1.1, the set
V (B)\{s} contains a neighbor w of v, and therefore Lemma 18 applies.

Consider now the case when G is not a block, and denote by B an end-block
of G. Let s be the only cut vertex of G belonging to V (B). We distinguish two
possibilities for the internal vertices of B.

(a) Every internal vertex of B is odd. We may assume that dB(s) is even,
for otherwise Lemma 15 implies the inequality χ′o(G) ≤ 3. Consider the
graph G′ = G − (V (B)\{s}). By Lemma 16, we may assume that G′ is
not a Shannon triangle of type (2, 2, 2) or (2, 2, 1). Hence, the induction
hypothesis implies the existence of an edge cover {H ′1, H ′2, H ′3, H ′4} of G′
by odd subgraphs. Moreover, by permuting indices if necessary, we may
assume that dH′

1
(s) > 0. De�ne H1 = H ′1 ∪ B, H2 = H ′2, H3 = H ′3,

H4 = H ′4. These four odd subgraphs constitute an edge cover of G.
(b) At least one internal vertex v of B is even. Hence, v is an even non-cut

vertex of G. Assume �rst that B − v is a block. Then NG(v) 6= {s}, and
B−v is an end-block of G−v. Take a neighbor w of v among the internal
vertices of B − v and apply Lemma 18.

Assume now that B − v is not a block. In every end-block of B − v,
an internal vertex is adjacent to v. There exists an end-block B′ of B − v
which does not contain s as an internal vertex. Thus B′ is an end-block
of G − v as well. Take an internal vertex w of B′ which is adjacent to v.
Then w is a non-cut vertex of G− v and Lemma 18 once again applies.

This completes the proof of Theorem 5. �
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4. Concluding remarks and further work

The �rst two of the four graphs depicted in Fig. 1 assure that the inequality of
Theorem 5 is sharp. As already mentioned in the Introduction, one improvement
of our main result would be to prove Conjecture 1. Another possible improvement,
which would also generalize Theorem 2, is the following.

Conjecture 2. Let G be a connected loopless graph such that red(G) is none of
the four graphs of Fig. 1. Then covO(G) ≤ 3.

The �rst inequality of (*) can be strict in general. We believe this is not the
case for the second one.

Conjecture 3. For every loopless graph G, it holds that covO(G) = covO(red(G)).

Acknowledgements. I thank J.-S. Sereni for pointing out to me an example
when the �rst inequality of (*) is strict.
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