Abstract. In [2] are considered n-Banach spaces, and in [4] are considered bounded and continuous linear n-functionals defined on n-normed space and several theorems connected with them, are proved. Then is proved that: Linear n-functional F is continuous if and only if F is bounded (theorem 4). In this paper, a dual space X^* of space of bounded linear n-functionals is considered and it is proved that: if X is n-Banach space than $(X^*, ||.||)$ is Banach space.

1. Introduction

Definition 1. Let $X_i, i = 1, 2, \ldots, n$ be linear subspace of same vector n-normed space. Then the mapping $F : X_1 \times \ldots \times X_n \rightarrow \mathbb{R}$ is called n-functional with domain $X_1 \times X_2 \times \ldots \times X_n$.

Definition 2. Let F be n-functional with domain $X_1 \times X_2 \times \ldots \times X_n$. Then F is linear n-functional if the following conditions are satisfied:

1. $F(x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n) = \sum_{z_i \in \{x_i, y_i\}} F(z_1, z_2, \ldots, z_n)$

2. $F(\alpha_1 x_1, \alpha_2 x_2, \ldots, \alpha_n x_n) = \alpha_1 \alpha_2 \ldots \alpha_n F(x_1, x_2, \ldots, x_n)$

Definition 3. Let X be n-normed space. Let F be n-functional with domain $D(F) \subseteq X^n$ then F is bounded if there exists real number $K \geq 0$ such that $F(\alpha_1 x_1, \alpha_2 x_2, \ldots, \alpha_n x_n) = \alpha_1 \alpha_2 \ldots \alpha_n F(x_1, x_2, \ldots, x_n)$.

Let F be bounded n-functional, we define norm of F, denoted by $||F||$, with

$$||F|| = \inf \{ K \mid ||F(x_1, x_2, \ldots, x_n)|| \leq K ||x_1, x_2, \ldots, x_n||, (x_1, x_2, \ldots, x_n) \in D(F) \}$$

(1)

If F is unbounded n-functional, then we define $||F|| = +\infty$.

47
In this context for bounded linear n-functionals in [4] the following properties are proved.

Lemma 1. Let F be a bounded linear n-functional and $x_i, i = 1, \ldots, n$, are linearly dependent vectors such that $(x_1, x_2, \ldots, x_n) \in D(F)$. Then $F(x_1, x_2, \ldots, x_n) = 0$.

Theorem 1. Let F be a bounded linear n-functional on domain $D(F)$. Then

$$||F|| = \sup\{|F(x_1, x_2, \ldots, x_n)|; ||x_1, x_2, \ldots, x_n|| = 1, (x_1, x_2, \ldots, x_n) \in D(F)\}$$

Further on, continuity of linear n-functional is defined as following.

Definition 4. Let F be n-functional. Then F is continuous at the point (x_1, x_2, \ldots, x_n) if for all $\varepsilon > 0$ exist $\delta > 0$ such that

$$|F(x_1, x_2, \ldots, x_n) - F(y_1, y_2, \ldots, y_n)| < \varepsilon$$

always when

$$||z_{1j}, z_{2j}, \ldots, z_{nj}|| < \delta$$

where

$$z_{ij} = \begin{cases}
 x_i - y_i, & i = j \\
 x_i \vee y_i, & i \neq j
\end{cases}$$

for $j = 1, 2, \ldots, n$. The n-functional F is continuous if F is continuous at every point from its domain.

In [4], for continuous n-functionals are proved the following properties.

Theorem 2. If the linear n-functional F is continuous at the point $(0, 0, \ldots, 0)$, then F is continuous at every point from its domain $D(F)$.

Theorem 3. Linear n-functional F is continuous if and only if F is bounded.

Definition 5. The sequence $\{x_k\}$ from the vector n-normed space L is Cauchy sequence if there exists linear independent vectors y_1, y_2, \ldots, y_n such that

$$\lim_{k, m \to \infty} ||x_k - x_m, y_2, \ldots, y_{n-1}, y_n|| = 0$$

$$\lim_{k, m \to \infty} ||x_k - x_m, y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_n|| = 0, \quad i = 2, \ldots, n-1$$

$$\lim_{k, m \to \infty} ||x_k - x_m, y_1, \ldots, y_{n-1}|| = 0.$$
Definition 6. The sequence \(\{x_k\} \) from \(n \)-normed space \(L \) is convergent if there exist \(x \in L \) such that
\[
\lim_{k \to \infty} \|x_k - x, y_1, \ldots, y_{n-1}\| = 0, \text{ for all } y_1, y_2, \ldots, y_{n-1} \in L.
\]

For \(x \) we shall say that is limit for the sequence \(\{x_k\} \) and we’ll write \(x_k \to x, k \to \infty \).

Definition 7. For \(n \)-normed space \(L \), well say that is \(n \)-Banach space if every Cauchy sequence is convergent.

Theorem 4. Every real \(n \)-normed vector space with dimension \(n \) is \(n \)-Banach space.

2. DUAL SPACE OF THE SPACE OF BOUNDED LINEAR \(n \)-FUNCTIONALS

Definition 8. Let \(X \) be \(n \)-Banach space, \(X^* \) is a set of bounded linear \(n \)-functionals on domain \(X^n \) and let \(F, G \in X^* \). We define

a) \(F = G \) if \(F(x_1, x_2, \ldots, x_n) = G(x_1, x_2, \ldots, x_n) \), for all \((x_1, x_2, \ldots, x_n) \in X^n \),

b) \((F + G)(x_1, x_2, \ldots, x_n) = F(x_1, x_2, \ldots, x_n) + G(x_1, x_2, \ldots, x_n) \), for all \((x_1, x_2, \ldots, x_n) \in X^n \),
c) \((\alpha F)(x_1, x_2, \ldots, x_n) = \alpha F(x_1, x_2, \ldots, x_n) \), for all \(\alpha \) and all \((x_1, x_2, \ldots, x_n) \in X^n \).

Theorem 5. Let \(X \) be \(n \)-Banach space. Then \((X^*, ||.||) \) is Banach space.

Proof. Let \((x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n) \in X^n \) and \(\alpha_i \in \mathbb{R}, i = 1, 2, \ldots, n \). Then according to Definition 2. we have
\[
(F + G)(x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n) = F(x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n) + G(x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n) =
= \sum_{z_i \in \{x_i, y_i\}} F(z_1, z_2, \ldots, z_n) + \sum_{z_i \in \{x_i, y_i\}} G(z_1, z_2, \ldots, z_n) =
= \sum_{z_i \in \{x_i, y_i\}} (F + G)(z_1, z_2, \ldots, z_n)
\]
\[
(F + G)(\alpha_1 x_1, \alpha_2 x_2, \ldots, \alpha_n x_n) =
= F(\alpha_1 x_1, \alpha_2 x_2, \ldots, \alpha_n x_n) + G(\alpha_1 x_1, \alpha_2 x_2, \ldots, \alpha_n x_n) =
= \alpha_1 \alpha_2 \ldots \alpha_n F(x_1, x_2, \ldots, x_n) + \alpha_1 \alpha_2 \ldots \alpha_n G(x_1, x_2, \ldots, x_n) =
= \alpha_1 \alpha_2 \ldots \alpha_n [F(x_1, x_2, \ldots, x_n) + G(x_1, x_2, \ldots, x_n)] =
= \alpha_1 \alpha_2 \ldots \alpha_n (F + G)(x_1, x_2, \ldots, x_n).
\]
Further on, because of Definition 3 we have
\[
\| (F + G)(x_1, x_2, \ldots, x_n) \| = |F(x_1, x_2, \ldots, x_n) + G(x_1, x_2, \ldots, x_n)| \\
\leq |F(x_1, x_2, \ldots, x_n)| + |G(x_1, x_2, \ldots, x_n)| \\
\leq \| F \| \cdot \| x_1, x_2, \ldots, x_n \| + \| G \| \cdot \| x_1, x_2, \ldots, x_n \| \\
= (\| F \| + \| G \|) \cdot \| x_1, x_2, \ldots, x_n \|
\]
which means that \(F + G \in X^* \) and clearly \(\| F + G \| \leq \| F \| + \| G \| \).

Analogously we can prove that for every \(F \in X^* \), \(\alpha F \in X^* \) and \(\| \alpha F \| = |\alpha| \cdot \| F \| \) holds.

From the other hand, according to Definition 3 we have
\[
|F(x_1, x_2, \ldots, x_n)| \leq \| F \| \cdot \| x_1, x_2, \ldots, x_n \|, \quad \text{for all } (x_1, x_2, \ldots, x_n) \in X^n,
\]
so \(\| F \| = 0 \) if and only if \(F = 0 \), which means that \(X^* \) is vector space with norm defined by (1).

Let \(\{ F_k \} \) be Cauchy sequence on \(X^* \), i.e. let
\[
\lim_{m \to \infty} \| F_k - F_m \| = 0 \quad (2)
\]

Then for all \((x_1, x_2, \ldots, x_n) \in X^n \) is true that
\[
\| F_k(x_1, x_2, \ldots, x_n) - F_m(x_1, x_2, \ldots, x_n) \| \leq \| F_k - F_m \| \cdot \| x_1, x_2, \ldots, x_n \|
\]
which means that for every \((x_1, x_2, \ldots, x_n) \in X^n \) the real sequence
\(\{ F_k(x_1, x_2, \ldots, x_n) \} \) is a Cauchy sequence. On \(X^n \) let define functional \(F \) with
\[
F(x_1, x_2, \ldots, x_n) = \lim_{k \to \infty} F_k(x_1, x_2, \ldots, x_n), \quad (x_1, x_2, \ldots, x_n) \in X^n.
\]

Then, for all \((x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n) \in X^n \) and \(\alpha_i \in \mathbb{R}, i = 1, 2, \ldots, n \) we have
\[
F(x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n) = \lim_{k \to \infty} F_k(x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n)
\]
\[
= \lim_{k \to \infty} \sum_{z_i \in \{x_i, y_i\}} F_k(z_1, z_2, \ldots, z_n)
\]
\[
= \sum_{z_i \in \{x_i, y_i\}} \lim_{k \to \infty} F_k(z_1, z_2, \ldots, z_n)
\]
\[
= \sum_{z_i \in \{x_i, y_i\}} F(z_1, z_2, \ldots, z_n)
\]
and
\[
F(\alpha_1 x_1, \alpha_2 x_2, \ldots, \alpha_n x_n) = \lim_{k \to \infty} F_k(\alpha_1 x_1, \alpha_2 x_2, \ldots, \alpha_n x_n)
\]
\[
= \lim_{k \to \infty} \alpha_1 \alpha_2 \ldots \alpha_n F_k(x_1, x_2, \ldots, x_n)
\]
\[
= \alpha_1 \alpha_2 \ldots \alpha_n \lim_{k \to \infty} F(x_1, x_2, \ldots, x_n)
\]
\[
= \alpha_1 \alpha_2 \ldots \alpha_n F(x_1, x_2, \ldots, x_n).
\]
i.e. \(F \) is \(n \)-linear functional. On the other hand, for the sequence \(\{F_k\} \), \(| |F_k|| - ||F_m||| \leq ||F_k - F_m|| \) holds.

Now from (2) we get that \(\{||F_k||\} \) is real Cauchy sequence, which means that there exist \(K \in \mathbb{R} \) such that \(||F_k|| \leq K \), for all \(k \in \mathbb{N} \), from where we get

\[
|F(x_1, x_2, \ldots, x_n)| = \limsup_{k \to \infty} F_k(x_1, x_2, \ldots, x_n)
\]

\[
= \limsup_{k \to \infty} |F_k(x_1, x_2, \ldots, x_n)|
\]

\[
\leq \limsup_{k \to \infty} ||F_k|| \cdot ||x_1, x_2, \ldots, x_n||
\]

\[
\leq K||x_1, x_2, \ldots, x_n||,
\]

i.e. \(F \in X^* \).

We’ll prove that \(\{F_k\} \) converges to \(F \). Let \(||x_1, x_2, \ldots, x_n|| \neq 0 \). If \(\varepsilon > 0 \) is chosen, then from (2) we have that there exist \(n_0 \in \mathbb{N} \) such that \(||F_m - F_k|| < \varepsilon \) when \(m, k > n_0 \), so by Definition 3 we have

\[
|F_m(x_1, x_2, \ldots, x_n) - F_k(x_1, x_2, \ldots, x_n)| \leq ||F_m - F_k|| \cdot ||x_1, x_2, \ldots, x_n||
\]

\[
\leq \varepsilon ||x_1, x_2, \ldots, x_n||,
\]

for all \(m, k \geq n_0 \). On the other hand, because of

\[
F(x_1, x_2, \ldots, x_n) = \lim_{k \to \infty} F_k(x_1, x_2, \ldots, x_n)
\]

there exist \(M = M(x_1, x_2, \ldots, x_n) > n_0 \) such that

\[
|F_M(x_1, x_2, \ldots, x_n) - F(x_1, x_2, \ldots, x_n)| < \varepsilon ||x_1, x_2, \ldots, x_n||.
\]

So we have

\[
|F_k(x_1, x_2, \ldots, x_n) - F(x_1, x_2, \ldots, x_n)| \leq
\]

\[
\leq |F_k(x_1, x_2, \ldots, x_n) - F_M(x_1, x_2, \ldots, x_n)| +
\]

\[
+ |F_M(x_1, x_2, \ldots, x_n) - F(x_1, x_2, \ldots, x_n)|
\]

\[
\leq \varepsilon ||x_1, x_2, \ldots, x_n|| + \varepsilon ||x_1, x_2, \ldots, x_n|| = 2 \cdot \varepsilon ||x_1, x_2, \ldots, x_n||
\]

for \(k > n_0 \). If \(||x_1, x_2, \ldots, x_n|| = 0 \), then the vectors \(x_1, x_2, \ldots, x_n \) are linearly dependent, and according to Lemma 1 it follows that

\[
F_k(x_1, x_2, \ldots, x_n) = 0 = F(x_1, x_2, \ldots, x_n)
\]

which means \(|F_k(x_1, x_2, \ldots, x_n) - F(x_1, x_2, \ldots, x_n)| \leq 2 \cdot \varepsilon ||x_1, x_2, \ldots, x_n|| \), for all \(k > n_0 \). Hence, for all \((x_1, x_2, \ldots, x_n) \in X^n \) the following holds

\[
|F_k(x_1, x_2, \ldots, x_n) - F(x_1, x_2, \ldots, x_n)| \leq 2 \cdot \varepsilon ||x_1, x_2, \ldots, x_n||,
\]

for all \(k > n_0 \). i.e. accordingly to Definition 3 we get \(||F_k - F|| \leq 2\varepsilon \), for \(k > n_0 \), i.e. \(\{F_k\} \) converge to \(F \).

Finally from the arbitrariness of the Cauchy sequence \(\{F_k\} \) we have that \((X^*, ||.||) \) is Banach space.

\(\square \)
REFERENCES
Резиме

Faculty for informatics, FON University, Skopje, Macedonia
E-mail address: risto.malceski@gmail.com

Faculty for informatics, European University, Skopje, Macedonia
E-mail address: zdrcvet@yahoo.com