MartemaTuukm Bunren . ISSN 0351-336X
22 (XLVIII)
1998 (51-60)

Ckonje, Makengouuja

ILP-MODEL AND LP-MODEL
OF THE NEURAL NETWORK LEARNING PROBLEM

Gjorgji Jovancevski, Dimitra Karcicka and Stevo BozZinovski

Abstract

It has been shown that the problem of Neural Network Pat-
tern Recognition Learning can be considered as an Integer Linear
Programming (ILP) problem and as an Linear Programming (LP)
problem.

I. Introduction

-

The Neural Network Pattern Recognition Learning Problem [1], [2]
is stated as follows: It is needed to find the neural network memory

V*V: {&je R™ | j = 1,...,n}, so that it is possible to recognize all the
vectors of a given training set § = {s; € R™ | j = 1,2,...,n} of nonneg-
ative integer training patterns, linearly independent in pairs, such that for
each pattern sg, kK € N = {1,2,...,n} the inequalities
* * .

ge(we) > gr(w;)  for  j#k, (1)

ge(w;) = s w; +6;, €N (2)
are the activities of the appropriate neurons, caused by the patterns; é;,
J € N are the thresholds of the neurons; R™ is the weight space.

The network learning is carried out with a training process, in which
each pattern from the training set .S is shown and tested if the net recognizes
it or not. The training process begins with the state "tabula rasa”, when
the network doesn’t possess any knowledge about the patterns,i.e. w; =0,
JEN.

In the training process, for teaching the network to recognize the pat-
tern si, we use the teaching rule

o fw besi, for =k
w.’ = R
1 wg-r_l) , for j#k

are satisfied, where

j€N
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where ¢ is a positive constant named learning rate [5].

I1. ILP-model of the Neural Network Learning Problem

During the consideration of the neural network memory dependence
on the learning rate c, there are different memory vectors obtained for
different values c¢. For example, if § = {s1, 52,53}, where sy = [1 0 2]7,
sy = [213]%, s3 = [3 2 4] for four different values of ¢, the appropriate
memory vectors w;, ¢ = 1,2,3 are:

T T

c wi w3 w}
0.17 [3.57; 0.00; 7.14] [4.42; 2.21; 6.63] [4.59; 3.06; 6.12]
0.50 [10.50; 0.00; 21.00] [13.00; 6.50; 19.50] [13.50; 9.00; 18.00]
0.83 [17.43; 0.00; 34.86] [21.58; 10.79; 32.37] [22.41; 14.94; 29.88]
1.00 [21.00; 0.00; 42.00] [26.00; 13.00; 39.00] [27.00; 18.00; 36.00]

In the training process, for each of the above cases, it was necessary to
make 66 trials, out of which 43 were advising trials. Anyway, the same num-
ber of advising trials were made for each pattern: 21 for the first pattern,
13 for the second and 9 for the third one. Therefore we conclude that the
network memory can not be determined in a unique way, but the small-
est number of network advising trials for each pattern from the training
set is unique. So, in order to learn the network, a certain (minimal)
number of advising trials (teachings) must be done for each
pattern.

This phenomenon is well known when it concerns a man. In order to
recognize some pattern (of an object, phenomenon, notion ets.), the man
has to have seen that pattern before, at least once. How many times the
man has to see a pattern in order to remember it depends of the fact whether
that pattern is similar to some other pattern that he already knows. Also,
the phenomenon that it is more difficult to recognize two twins: they should
be seen more times to remember them who is who than if twins were not
in question.

T

%
Let p= [],;1]72 ]?'n]T be the vector of numbers of the advising tri-
als for the appropriate patterns s;, sz, ..., 8, after the training process is

ﬁnished.(;*) is a teaching vector from the n-dimensional Euclidean space;
R™ is called a teching space or teacher's space.) Then, the memory

network vectors are
*

wj:c};jsj, JEN (3)
and 1*7]2 1, j € N are positive integers.
According to (3), the conditions (1) and (2) for the vector recognition
s, can be given by the teaching vector p, as follows:
gee(p) > gij(p) forall j#k (4)
grj(p) = csis;eip+6; forall jeN (5)
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where e;, 7 € N are the unit vectors from R".
By denoting

;’;J-::[O,..O hir 0-+-0 — hy;0...0]

where hy; = s78; > 0, hix = s{sx > 0 and under the assumption that the
neurons have the same inner potential § = §;, j € N, condition (4) can be
expressed as a scalar product of hy; and p,

For each integer positive vector # = p, the scalar product hﬁja: is
integer. Then, condition hzjm > 0 means that hy,x is an integer positive
number. So, for z > e = [1...1]" and z-integer, we get hi;p > 1.

This means that the teaching vectors are elements of the set

D={zecR"|hixz>1, =>e,k,jEN, k#j x-integer}.
kj .

The choice of the learning rule guarantees the existence of a final teach-

ing vector p (with final positive integer components) for recognizing each
pattern from §.

Let p = [p;]nz1 be a known (in some way) teaching vector i.e. p € D.
Then, further network training is not necessary, because the neural network
memory W, which recognizes each pattern from S, is defined. But, such
vectors are yp for each integer A > 0. Therefore, a most rational choice of

*
the teaching vector will be p= [P)nr1, which is got with the smallest number
of network teachings for the patterns from the training set 5. This means

that sum of the components of 1’;,

,;:;91 44 I*Jn has to be minimal.

So,
z=e"p<eTp for VpeD.

Then, Z=eT z*) is the minimal value of the linear funcional z = eTz on
D.

So, we get the formulation of the neural network learning problem as
solvable integer Linear Programming Problem (ILPNN-problem):

min{z = e"z | hi;&e > 1, k,jEN, k#j, x>e, x-integer} (7)

This problem can be written in the following compact form

e

min{z = e"z | [‘f}] z > [f] , @« — integer}
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where I is the identity matrix of the n-th or'der; e is the n-vector with
components all equal to 1; f is the n(n — 1)-vector with components
all equal to 1, and A is (n — 1)nzn matrix of the following structure:

A=1[Ay Ay.. . Ap... A
[ —hi 0 0 Rk
0  —hg - 0 Pk
Acr=1| 0 0 oo —hpk-1 hrk
0 0 0 hik
.0 0 0 Rk

I11. LP-model of the Neural Network Learning Problem

0

_hkn J

0

n]T. The block Ay = [agf)](n_l)m has the shape

For an optimal program @ = [2;] and the optimal value 2 = e”& of
(7), the following conditions are satisfied:

1 1 1
e’ [—w] =1 and — > ——, for each program =z.
z z " etz
1 z;
Let yny1 = 2,95 = A,J_l n,and y = [y,
Then dlrectly from ILPNN problem we obtain LP-problem [3].
Maximize W= Ypt1
subject to  — A;y + Yn41 h;e(" D) < o(n-1) ,
~y + ynrre™ <ol
(e("))Ty =1
y>ol™, yu12>0.
where,
f—a;p 0 - 0 1 0 0 1
0 (VI St (7 S B+ 1 0 0
Aiz 0 0 - 0 1 —(li+1,i A 0
0 0 0 1 0 —Qp;
L J

S Yn)T

i=1,..

SN
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e(®) is the s-vector with components all equal to 1; o(*) denotes the zero
vector of size $; Y = [yj]ns1 is the vector of unknowns as y,4;.

We notice that y;, 7=1,...,n can be interpreted as frequencies of
the optimal pattern appearances in the learning process, (0 < y; < 1 and
(el™)Ty = 1). '

We observe that the number of constraints in LP is much larger than
the number of variables. Therefore, it is useful to state and to consider the
dual to LP i.e. DP:

Minimize (=t
k13

subject to Z(—Ai)Tui — v+ tel® > o™

i=1
n
Z hi(e™ Ty, 4 (el™)Tp = 1
=1
v 20(”), w; >o" Y i=1,...n;

there is no restriction on the sign of the dual variable ¢.

Let ¢ be substituted by two nonnegative variables ¥ = max{0,t}, and
t~ = max{0,—t},t = t+ —t~, and let ¢ be the slack vector, the components
of which express inequality constraints in DP,

q= Z(—Ai)Tui —v+tte™ — el (> o),

=1

Then, DP becomes an LP-problem in standard form, with equality con-
straints and extended matrix

(A, di= —AT C —AZ I e(m) _em) _f(n)  5(n)

’ hi(em=T .o . b (e(rmINT (e(M)T @ 0 (o™)T 1
where I(™ deno:ues the identity nzn matrix; for ¢ = 1,...,n, the blocks in
i-th column of A, —AT and h;(e(®~1))7 represent the submatrix

a; 0 - - - 0 0 0 - -- 0
0 0 - - - a1 0 o - 0
-1 =1 -« .« . =1 -1 -1 ... -
o o - - 0 aij-1; 0 - - - 0
o 0o - - 0 0 0 - - - an
hi hi - - - hi  hi - - - By

The known methods seem to be inefficient when applied to (ILPNN),
(LP), (DP), since the good properties, especially the matrix sparsity, will
be destroyed.



56 Gjorgji Jovancevski, Dimitra Karcicka and Stevo Bozinovski

The application of the known ILP algorithms for solving the ILPNN-
problem is associated with the difficulties which result out from the lim-
itation of the computer’s memory. For example, we can apply Gomory’s
Discrete Algorithm, but this algorithm may be efficient for a small number
of patterns n, only.

IV. Ilustration

Let n = 4 and the training set S consist of the following patterns
s; € RS, j=1,2,3,4: -

81 = [000000001111100100000010000001000000100000010000001000000000000) ”
82 = [000100001111100100000010000001000000100000010000001000000000000) "
3 = [000000001111100100000010000001111100100000010000001111100000000]
84 = [000000001111100100010010001001000100100010010001001000100000000} ™

After 15 iterations, an optimal program ;*): [13 12 8 9] was obtained,
with optimal value of the objective function z = 42. The strategy of search-
ing the optimal program is:

2 .
oy

g T3 T4 2
1 2=[ 0 0 0 0]'= 0
2 z=[ 0 0 0 1)]7= 1
3 z=[ 0 0 1 1|7= 2
4 z=[ 0 1 1 1= 3
5 ¢=[ 2 1 1 1]°= 5
6 z=[ 2 1 1 2]°= 6
7T x={2 1 2 2]7=7
8 z=[3 1 2 2]7= 8
9 z=[3 3 2 2]7=10
10 e=[ 4 3 2 2|"=11
11 z=[ 4 3 2 3]=12
12 z={ 4 3 3 3]"=13
13 =13 12 3 3]" =31
14 z=[13 12 3 9|"=37
15 p=[13 12 8 9]7=42

The simplicity of the essential constraints of the ILPNN-problem stim-
ulated us to search for a new ILP algorithm. We investigate a new algo-
rithm, which is not affected by the limited computer’s performances. It is
confirmed that finding the optimal solution is very fast.
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OBJECT PATTERNS - LETTERS FROM THE ALPHABET IN A BINARY FORM

A [000000000010000010100010001001000100111110010001001000100000000]T
B [000000001111000100010010001001111000100010010001001111000000000]T
c [000000000111000100010010000001000000100000010001000111000000000]T
D [000000001111000100010010001001000100100010010001001111000000000]T
E [000000001111100100000010000001111100100000010000001111100000000]T
F [000000001111100100000010000001111100100000010000001000000000000]T
G [000000000111000100010010000001011100100010010001000111000000000]T
-H [00000000100010010001001000100111l100100010010001001000100000000]T
I [000000000111000001000000100000010000001000000100000111000000000]T
J [000000000000100000010000001000000100000010010001000111000000000]T
K [000000001000100100100010100001100000101000010010001000100000000]T
L [000000001000000100000010000001000000100000010000001111100000000]T
M [000000010000011100011101010110010011000001100000110000010000000]T
N [000000001000100100010011001001010100100110010001001000100000000]T
o [000000000111000100010010001001000100100010010001000111000000000]T
P [000000001111000100010010001001111000100000010000001000000000000]T
Q [000000000111000100010010001001000100100010010011000111100000001]T
R [000000001111000100010010001001111000101000010010001000100000000]T
5 [000000000111000100010010000000111000000010010001000111000000000]T
T [0000000011{1100001000000100000010000001000000100000010000000000]T
U [000000001000100100010010001001000100100010010001000111000000000]T
v [000000001000100100010010001001000100100010001010000010000000000]T
w [000000010000011000001100000110000011000001100100101101100000000]T
X [000000001000100100010001010000010000010100010001001000100000000]T
Y [000000001000100100010001010000010000001000000100000010000000000]T

z [000000001111100000010000010000010000010000010000001111100000000]T
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I/IJ'IH—MO‘I[EJI n JIII-MOOEJI HA ITPOBJIEMOT
HA OBYYYBAILE HEBPOHCKA MPEKA

I'opru JoBamueBckm, Jumutpa Kapuunka n Crepo BoxunoBcku

Pezunme

IIpu obyuyBame Ha HEBPOHCKa MpeXa 3a Npelo3HaBalke Ha
JMKOBM € KOHCTATUPAHO JeKa 3a eNHO OOYydyBauko MHOMKeCTBO
S ={s; | j=1,...,n} e norpeber ompener (MuEMMaJeH) Gpoj Ha
obyuyBama (yuyema) p; OOMAM 3a CEKOj JIWK S;. .3a Haolame Ha TaKOB

* %k *
BEKTOp Ha ydeme p= [P1P; ... DP,]T MOxke ma ce meduEMpa UJIIN-3a0a9a
min{z = e"z | hj;z > 1, k,jEN, k#j, =>e, x—integer}

JIll-3anaya u JIl-3anava. Penasamero Ha WUJIII-3amagyaTa co INCKpeT-
HWOT aJropuraM Ha Gomory naBa noGpu pe3yJ1TaTi4 caMoO 3a MalJo
MHOXeCTBO JMKOBH, ¥ 3aToa e pa3BueH WUJIII anropuraMm Koj € MHOT'Y
noepUKaceH.
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