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A BOUNDARY PROBLEM OF THE THIRD AND FOURTH
ORDERS AS A PRODUCT OF BOUNDARY PROBLEMS
OF THE SECOND ORDER

Slobodanka S. Georgievska

Abstract

Conditions when a boundary problem of the third and fourth
orders has as a solution a product of the solutions of boundary
problems of the second order in the case of general homogeneous
boundary conditions have been obtainned in this paper.

1. Introduction

Formation of linear differential equations the integrals of which are
products of linear equations of the second order is presented in the paper
[6]-

The papers [2] and [7] consider the boundary problems of the fourth
i.e. third order the solution of which of which is a third or second power
of the solution of the boundary problem of the second order under special
boundary conditions.

Boundary problems, the solution of which is a product of the solutions
of boundary problems of the second order in the case of general linear
homogeneous boundary conditions, are a subject of this paper.

1. Let the solutions of the two boundary problems of the second order
be known:

u' +piu’ +qu=0 (p1, 1 — const.) (1.1)
Qg Ug + i up = — (Bigup + Biyup), (1=1,2) (1.2)

and
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v+ v+ pv=0, (p2, @2 — const.) (1.3)
@j, Vo + @y, == (Bjo vy +le v{,) , (1=1,2) ‘ (1.4)

where u, = u(c), u, = u'(¢) for ¢ = a,b and where the rank of the

matrix of the coefficients «,, and B, ie. @,, and B;w (n=1,2
v=0,1) is two.

If we take p; and ¢; (¢ =1,2) as parameters in the differential equa-
tion (1.1) and (1.3), then (1.1)~(1.2) and (1.3)—(1.4) are problems with
eigen values.

1.1. Let » and v be respective solutions of the differential equations
(1.1) and (1.3).

Theorem 1. The function
Y = uv (1.5)
is the solution of the differential equation

¥" +3(p1 +p2)y"+[2(01 +3a2) + p1 (1 + 3p2)] ¥+ (1.6)
+{a1 (1 +3p2) + 2 Bpr +p2)]y = 0 '

if 4 2 _ 2

o —@)+p;—p1=0 (1.7)

is satisfied for the coefficients of the differential equations (1.1) and (1.3).

Proof: Let the condition (1.7) be satisfied. Differentiating (1.5) twice
we obtain

v =vv+uv, y' =" v 4 2u" v +uv”. (1.8)
In accordance with (1.1) and (1.3) we obtain
¥+ o1y + (@ + @)y + (p2 — pr)ur’ = 20" (1.9)

With the differentiation of (1.9) and the use of (1.1}, (1.3), (1.8) and
(1.9), the differential expression obtains the form of:

29" +3(p1 + p2)y"+[2(q1 + 3¢2) + p1 (p1 + 3p2)] y'+
+[q1 (p1 + 3p2) + @2 3p1 + p2)] ¥+ (1.10)
+[4(q1 — @) +ps —p}jud’ =0,
while in accordance with (1.7), (1.6) is obtained.

Theorem 2. The function y = uv is a solution of the differential
equation
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vV 42(p1 + p2 )y + [2(¢1 + @) + (1 + p2)* + p1p2] ¥+
+(p1 + p2) [2(q1 + @2) + Pap2] ¥+

+ [(‘h — @) + (1 + p2) (142 +pzq1)] y=0 (1.11)

i 4g1 — 4q +p} ~ pi # 0. (1.12)
Proof: Let the condition (1.12) be satisfied. The linear homogeneous
differential equation (1.11) is obtaind by the differentiation of (1.11) and
regarding (1.3), (1.5), (1.9) and (1.10).
If the equations
P +pir+q =0,

r? 4 por+ g =0

are characteristic equations of the differential equations (1.1) and (1.3)
respectively, it follows from the the condition (1.7):

Pt —4q1 = p} — 4qs, (1.14)
i.e. discriminants of the characteristic equations (1.13) are equal.

(1.13)

Consequance 1. A differential equation, having as solution a prod-
uct of the solutions of the differential equations (1.1) and (1.3), is of the
third order, if the discriminants of the characteristic equations (1.13) are
equal to each other. The differential equation is of the fourth order, if the
discriminants of the characteristic equations (1.3) differ from each other.

1.2. Let uy, u; and vy, vy be linearly independent particular inte-
grals corresponding to the differential equations (1.1) and (1.3).

Theorem 3. The functions
= U, Y2 = U1 vy, Y3 = uz v, Y4 = U V2 (1-15)

are linearly independent praticular integrals of the differential equation
(1.11) if the (1.12) is satisfied.

Proof: Let Wy = W(uy, u) and Wy = W(vy, v;) be Wronskian
determinants for the particular integrals wu;, up and v, v; respektively.
The Wronskian determinant for the system of functions (1.15), having been
figured and (1.12) having been taken into account, is different from zero,

ie.
W =W{ W3 [4(g2 — ¢1) + p} ~pl #0,
which means that the functions (1.15) are linearly independent, i.e.

Y1, Y2, Y3 and y, are linearly independent particular integrals of the linear
homogeneous differential equations (1.11).
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Consequence 1. If

e —q)+pl-pi=0 (1.7)
then the functions y;, y2, y3 and y, are linearly independent.
Consequence 2. Three functions among the functions (1.15) are always
linearly independent.
Truly, let us suppose that every triple of the functions (1.15) are lin-

early independent i.e. the minors of the third order which correspond to
the elements of the fourth order of the Wronskian determinant

U1 Uy Vg U1 Uz V2
(mm)" (wv2)' (wevr) (uave)

W(y1, Y2, y3, ya) = (wor)  (uv2)”  (ugo)"  (uavy)” (1.16)
(urv0)"  (wgwve)tmr (wgvi )t (ugwe )
all of them equal zero, i.e.
WiWa [(p1 = p2)uzvz + 2(uy v2 — upj)] =0,
WiWs|(p1 — p2)uavr + 2(uy v1 — ugw )
[(pr = p2) (ug ) (1.17)

WiW, [(p1 — p2)u1vz + 2(uj v2 — uqv})]
WiWs [(p1 — p2)urvr + 2(uf v1 — uqvy)]

It is obtained from the first two equations of the system of equations
(1.17)

=0
=0
=0,
=0.

— === i.e W(vl,v2)=0

which is contrary to the supposition that W (v, v2) # 0.

By analogy, from the two last equations of the system of equations
(1.17), we come to the conclusion that W(u;, uz, ) = 0, which is contrary
to the supposition that W(uy, us) # 0.

Thus, we have proved that at least one minor of the third order is
different from zero i.e. three of the particular integrals y; (i = 1, 4) are
always linearly independent.

2. Let us determine the boundary conditions.

2.1 We will obtain the boundary conditions according to y if we from
following products from the boundary conditions (1.2) and (1.4)

(aioua + ailu;) (Ejova +aj, vzlx) =

e (2.1)
= (5ioub+ﬂi1“§>) (ﬂjovb"}'ﬂjlvlla) (7'7.7 =1, 2)'
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Regarding (1.5), (1.6), (1.8) and (1.9) they are of the type
TeoYa + Ykr¥a + VhoYa + VhsYa =
= 6koyb + 5k1 y{, + 6’62 y{), + 6k3yll>” ’ (k = 07 3)
where
he =2[4(q1 — ¢2) + P — P2 i, T+
+ 2[2(‘1% - ‘1%) — (p2 —m)(q2 + p2Ql)]ai1 aj +
+2[p1(q1 +3¢) + p2(Bq1 + @) (i, @5, — @iy @y )
i =2[P1(3¢1 + 42) — pa(@r +3@2) + pipa(p1 — po)] e, iy +
+2[2(3q1 + ¢2) + p2(3p1 + p2)] i, Tjo— (2.3)
—2[2(g1 + 3¢2) + p1(p1 + 3p2)] i, @,
Te, =2[2(q1 — @2) + P} — P3) o, @, +
+ 6(1’1 + p2) (aix Gy — Qi aﬁ) ’
Vhs =4 (i1 Qj, — Qi ajl) +2(p1 — p2)evi, ajy

while 6y, (I = 0, 3) are obtained if oy, and @j in the coefficients v, are
replaced by f;, and le respectively, supposing that (1.12) is satisfied.

Note: In the coefficients v, and &g,

when t=35=1 we take k=0;
when i=2, j=1 we take k=1,
when t1=1, j=2 we take k=2;
when 1=j=2 we take k=3.

2.2. If the boundary conditions (1.2) and (1.4) are Sturm’s i.e. of the

type
Q10 Ug + @11 up =0,

, , (2.4)
B0 up + P21 uy =0,
and
@10 Vo + @11 v =0,
320 vp + Z'x_zl ”{; =0,

then it is easy to provide the boundary conditions for the fourth order
problem in the point of z = a, while namely

(2.5)
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! 1
011 Yy + Q10 Ya — Q11 Ug v, =0,

o1 Yy + proan Yo + (@1 + @2)agg yot

+[2a10 + (p2 — P1)oa1]ug vl =0 (2.6)
T10Ya + T11 Ug V), =0 '

@y + (1 + @10) Y, + (@1 + ¢2)81 Yot
+[(p2 — p1)an1 — o) ug v} =0

where u,v} is replased by (1.10). Accordingly, the boundary conditions
concerning the problem in the point of = b are obtained.
Eight boundary conditions are obtained, four in each point. These

quadruples of boundary conditions are dependent, but three for each
point are linearly independet. These six conditions determine (Z) quadru-
ples of boundary conditions, which with the equation (1.11) determine
(2) =15 the fourth order boundary problems, the solution of which is a
product of the solutions of the problems (1.1)-(2.4) and (1.3)—(2.5).

Note: Boundary conditions which are not grouped two in each point
will emerge among the quadruple boundary conditions, but there are also
such boundary conditions, in which one boundary condition is at one end
(a or b), while the remaining three are at the other end of the interval (b or
a), and it is not common conditions not in equal numbers at the two ends
of the interval in case of the problems with eigen values with a differential
equation of an even order to be considered.

3 Let us see the manifestation of the results obtained,.

The differential equation (1.1) is reduced to the differential equation
of G. Cimmino [1]

gV A+ Dmiy" +dmty =0 (m+0) (3.1)
if

m+p=0 (3.2)

20+ @)+ (1 4+ p2)’ + 1o = (A+ 1)m?, (3.3)

(P14 p2)[2(q1 + @2) + p1p2] = O (3.4)

(1 — )% + (7 + p2) (P12 + P2qi) = Am?. (3.5)




59

L

1 follows from the conditions (3.4) and (3.2) that also the expression

2(q1 + ¢2) + P12
can be zero, but it does not have to.

1°. Let
2+ @) +p1p2 = 0. (3.6)
With regard (3.4), the expression (3.6) is

2(q1 + ¢2) = pi
and then it follows from (3.3) that

A+1)m? =0
from where A = —1 and the differential equation (3.1) obtains a from of
gV —miy =0. (3.7)

The condition (3.5) points out that A = —1 is not possible, since if
A = —1, then it follows from (3.5) that

(‘]1 - II2)2 =-m*.

Accordingly, in the case of the condition (3.6) the differential equation
(3.1) has no solution of the from we are searching for.

2°. Let
g1+ ¢2) +pip2a # 0. (3.8)
Then the conditions from (3.2) to (3.5) are reduced to the conditions
p1+p2=0

2(q1 + @2) + pip2 = (A + 1)m?

(g1 — Glz)2 = Am*
from where it follows that A > 0.
Let A = k%, then from p; = —p, = p it follows that
2q + q2) — p* = (K* + 1)m?
(1 — @) = k*m?
ie. 1
nte=; [p* +m* (1 +#*)]
¢ — g2 = £k*m?.
a) If ¢1 — ¢z = k?m?, then
1

a=gFmt @], w=g et (-7
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b) If ¢; — g2 = —k*m?, then

Q= i[p2+7n2(k2—-ﬂ2], quzi[p2+7n2(k2+1)q )

i.e. we have obtained the pairs of differential equations, respectively

u +pu' + i [p2 +m? (K + 1)2] u=0 (3.9)

X ey
' = pv'+ g [p2 +m? (k* - 1)2] v=0 (3.10)

i.e. .
o+ pu! 1[ 2 2 (1.2 _ 1\2| ., _

pu't Pt m (¥ -1)"|u=0, (3.11)

(1D
v"—pv'+i [;1)2+m2 (k2+1)2] v=20. (3.12)

The discriminants of each of the characteristic equations of the differ-
ential equations (I) and (II) respectively are:

I -m?(k? + 1) = -D?,
I -m?(k? - 1) = - D%,
II, -m?(k* - 1) = -D?,
11, -m?(k* + 1) = -D?.

They differ from each other. Consequently, the differential equation (3.1)
has a solution which is a product of the differential equations (3.9) and
(3.10) i.e. (3.11) and (3.12).

The particular integrals correspondings to the pairs of differential equa-
tions (I) and (II) are:

uy = e P*/? cos(Dy/2), uy = e7P/% sin(D12/2);
vy = eP?/? cos(Djyz/2), vy = eP%/? sin(Dyz/2);
uy = e P2 cos(Dyz/2), uy = e P2 sin(Dyz/2);

v, = eP/? cos(Dyz/2), vy = eP?/? sin(D1z/2).
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The particular integrals of the differential equation (3.1) are:
Y1 = v = Uy 71 = cos(Dyz/2) cos(Dsyz/2), -
Y2 = uv2 = U 71 = cos(Dyz/2) sin(D,z/2),
Y3 = Uy = Uy Uy = sin(D1z/2) cos(D,yz/2),
Ya = UpVy = Uy U = sin(D1z/2) sin(Dyz/2).

It is easy to check that each of them is a linear combination of the
functions:

cos mklz , cos M sin mk*z, sin mz
which are linearly and they are the particular integrals obtained in {3], with
the difference that k2 here, is k in [3].

To the problem with eigen values with a differential equation (3.1) and
boundary conditions

27 27
— o = _ = ! —_— = .
10 =r0=y(2)=v (%) =0 (313)
the problems with eigen values of the second order with a differential equa-
tion (3.9) and boundary conditions

u(0) = o' (%) =0 (3.14)

and problem with a differential equation (3.10) and boundary conditions

0(0) = o' (%”) ~0, (3.15)

are related. :
It follows from the coeflicients in the case of boundary conditions (3.14)
and (3.15) that '

A=B=A=B=0

and
Aw=A4m=1, An=An=0, A=A, =0, An=A451=0

i.e. both the boundary problems of the second order have the same tran-
scendent equation for obtaining eigen values, [4],

m(k? 4+ 1) 27

sin
2 m

=0, sin(k’+1)r=0. (3.16)
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The eigen values are

Ac1 =kt =(n—-1)? ie. A, =n?, n€N, (3.17) .
whole the expressions of the eigen values, [4], are correspondingly
2
un = e_pz/z . 2szn T_(ﬁ%l_).x
2 _
Uy = epz/2 .2sin_'ni(k___]2z.

The expression of the eigen values for the problem with eigen values
(3.1)-(3.13) is: |
Yn = UnUp = 4sin %l— (k* 4+ 1)z - sin %(k2 -1z
i.e.
Yn = 2(cos mz — cos mk?z) = 2(cos mz — cos mnz). (3.18)

The transcendent equation (3.16) for obtaining the eigen values (3.17)
are obtained in (3, 1].

The boundary conditions (3.14) and (3.15) regarding (2.6) determine
the conditions
"

Yo=Yo=Ya =W =yp=yy =0. (3.19)

The problems with eigen values with a differential equation (3.1) and
a quadruple of boundary conditions of the conditions (3.19) have the same

solution an same eigen values as the problem with eigen values (3.1)-(3.13).

They are (2) = 15 problems with eigen values which have been solved in

this way. Their boundary conditions are:

1°. (0,1;0,1) ie. y0)=9'(0)=y(E)=y' (&) =0
2°. (0,1;0,3) 3°. (0,3;0,1)

4°. (0,1;1,3) 5°. (1,3;0,1)

6°. (0,3;0,3)

7°. (0,3;1,3) 8°. (1,3;0,3)

9°. (1,3;1,3)
10°. (0;0,1,3) 11°. (0,1, 3;0)
12°. (1;0,1,3)  13°.  (0,1,3; 1)
14°. (3;0,1, 3) 15°. (0,1,3;3).
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The boundary conditions of 1° come from the problem with which we

begin;

~ The problems with boundary condituons from 1° to 9° are solved in
[3] and they are each with two boundary conditions at each of bouth the
end points of the interval.

The results in the case of the boundary problems of 3°, 5° and 8° are
obtained from the results obtained in the case of the boundary conditions
of 2°, 4° and 7°, if the left and of the interval is replaced by the right one
and vieeversa.

The problems with eigen values of 10° to 15° are with one boundary
condition at one end of the interval and three boundary conditions at the
other end of the interval, which is of interest, since the number of the
conditions is not the same at the two ends at the interval.
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KOHTYPEH ITPOBJIEM O TPETU U UETBPTHU PE /I
KAKO ITPOM3BOJ HA KOHTYPHU IIPOB.IEMU
Ol BTOP PE

Cno6onanka C. [eopruescka
Pezume

Bo Ttpynor e nobueno neka JMHeapeR XOMOTeH KOHTYPeH npob-
JeM O TpeTu peX co JupepeHurjaiia paseHka (1.10) umva pemenne
IPOU3BOJ O pellleHMjaTa Ha JMHeapHUTe XOMOIeHU KOHTVDHH HOpob-
nemu ox Brop pen (1.1)-(1.2) u (1.3)-(1.4) axo Bawxu (1.7), a kom-
TypeH OpobJiieM OJ1 YeTBPTU pell cO nnu(epeniunjaiia pPaBeHKA (1.11)
Y KOHTYDPHU YCJIOBH (2.2) Ma pellieHKMe IIPOU3BOL OJ HABEICHUTE KOH-
TypHU IpobiieMu o/ BTOp pen ako Baxu (1.12), T.e. micKpuMUHaHTHTE
Ha KapaKTepucTU4YHUTe paBeHky (1.13) Ha mudepennmjaianTe paBeHKn
(1.1) m (1.3) ce emsaxBu Mel'y cebe OMHOCHO ce PasiudIHH Mely cebe.

AKO KOHTYPHMTe ycJOBU 3a npobiemure ox BTop pex ce IlTyp-
MOBHM TOTalll COOBETHUTE KOHTYPHM YCJIOBM 33 IPOGIEMOT O YeTBPTHU
pel ce miecT, cO WTO ce AOOMBa enHa Kjlaca OX KOHTYpPHM HpobieMu
(meTHaeceT) WTO MMaaT MCTO pelienue, ¥ KOHTYpPHATE IENOBU Ce CO
IO /1Ba BO CEeKOja KpajHa TOYKa MJIM CO pasiiuen 6poj Ha KOHTYPHHU
YCJIOBH BO KPajJHUTE TOYKU. }

TepaemaTa ce NeMOHCTpUpaHM Ha elleH IpUMeED.
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