Математички Билтен 17 (XLIII) ISSN 0351-336X

17 (XLIII) 1993 (53-62) Скопје, Македонија

ON VECTOR SUBBUNDLES OF THE VECTOR BUNDLES

K. Trenčevski

Abstract. In this paper are proved some theorems which give necessary and sufficient conditions for a real vector bundle of rank k to admit vector subbundle of rank m ($m \le k$), or to admit m linearly independent vector fields. In the last section are considered complex vector bundles. Some ideas from the theory of complex commutative vector valued groups [2] are introduced in the complex vector bundles and two theorems are proved.

1. Introduction. Let $\xi=(E,\pi,B_n)$ be a real vector bundle of rank k. It can be considered as an associated bundle of the locally trivial principal GL(k;R)-bundle with a bundle R^k . Let $\{U_\alpha\}$ be a locally trivial cover of B_n and let $\phi_\alpha\colon U_\alpha \ast R^k \to E_{U_\alpha}^{}=\pi^{-1}(U_\alpha)$ be the corresponding homeomorphisms. The corresponding transition functions are

$$\begin{array}{ll} \phi_{\beta\alpha} \colon \ U_{\alpha} \cap U_{\beta} \ \rightarrow \ GL(k;R) \\ \\ \phi_{\beta\alpha} \ (b) \ = \ \phi_{\beta,b}^{-1} \cdot \phi_{\alpha,b} \colon \ R^k \ \rightarrow \ R^k \,. \end{array}$$

These functions are continuous and satisfy

$$\phi_{\beta\alpha}^{-1} = \phi_{\alpha\beta} \text{ on } U_{\alpha} \cap U_{\beta}$$

and

$$\phi_{\gamma\beta} \cdot \phi_{\beta\alpha} = \phi_{\gamma\alpha} \text{ on } U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$$

for each indices α,β,γ for which $U_{\alpha} \cap U_{\beta} \neq \emptyset$ and $U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset$ respectively.

We say that the vector bundle ξ is reducibled to the group $G \subseteq GL(k;R)$ if there exists a family of trivializing charts $\{(U_{\alpha},\phi_{\alpha})\}$ such that $\phi_{\beta\alpha}(b)\in G$, for each $b\in U_{\alpha}\cap U_{\beta}$ and arbitrary indices α and β . For example, if ξ can be reduced to the group $GL^+(k;R)$ then ξ is called orientabled vector bundle, and if ξ can be reduced to the group O(n), then ξ is called metrizabled vector bundle. Although each vector bundle ξ is always metrizabled on a paracompact manifold B_n , in general case ξ may not be orientabled vector bundle.

In section 2. we will give some necessary and sufficient conditions for the vector bundle & to admit m linearly independent vector fields. First we give some known results.

Let $k=k_1+k_2$, and let us denote by $GL(k_1,k_2;\mathbb{R})$ the following subgroup

$$GL(k_1, k_2; \mathbb{R}) = \{ \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \mid A \in GL(k_1; \mathbb{R}), B \in GL(k_2; \mathbb{R}) \}$$
 (1)

of $GL(k; \mathbb{R})$. The following theorem can be found in [1] page 122.

Theorem 1. The vector bundle ξ of rank $k=k_1+k_2$ is reducibled to the group $GL(k_1,k_2;\mathbb{R})$ iff ξ is a Whitney's sum of vector subbundles ξ_1 and ξ_2 of ranks k_1 and k_2 respectively.

Obviously, the vector bundle ξ admits a continuous vector field iff ξ can be written as a Whitney's sum of vector bundles ξ_4 and ξ_2 of ranks 1 and k-1 respectively, and ξ_4 is an orientable subbundle. According to the theorem 1 it is possible iff ξ can be reduced to the following group

$$G = \left\{ \begin{bmatrix} \frac{a}{0} & \frac{1}{2} - \frac{0}{A} \end{bmatrix} \mid a \in \mathbb{R}^+ \text{ and } A \in GL(k-1;\mathbb{R}) \right\}.$$
 (2)

By repeating this procedure m times we get the following

Theorem 2. The vector bundle ξ of rank k admits m linearly independent vector fields iff ξ can be reduced to the following subgroup

$$G = \{ \begin{bmatrix} a_1 & 0 & 0 & 0 \\ 0 & -a_m & A \end{bmatrix} | a_1, \dots, a_m > 0, A \in GL(k-m; R) \}$$
 (3)

of GL(k; R).

Further in section 3. we will consider a special structures on complex vector bundles which are induced by the com(m+k,m)-groups on ([2].

2. Some results about subbundles of vector bundles. First we will generalize the theorem 2 by the following

Theorem 3. Let B_n be a paracompact manifold. The vector bundle $\xi=(E,\pi,B_n)$ of rank k admits m linearly independent vector fields iff ξ can be reduced to the following subgroup

$$G = \left\{ \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ 0 & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{mm} \\ \hline & & & & & & & \\ \end{bmatrix} \middle| a_{11} > 0 \text{ for } 1 \le i \le m,$$

 $a_{ij} \in \mathbb{R} \text{ for } 1 \leq i < j \leq m, \ C \in GL(k-m;\mathbb{R}), \ B \in M(m,k-m;\mathbb{R}) \}$ (4) of $GL(k;\mathbb{R})$.

<u>Proof.</u> Let us suppose that the vector bundle ξ reduces to the group G. Since B_n is a paracompact manifold, there exists locally finite open cover with trivializing coordinate neighborhoods $\{U_{\alpha}\}$, and let $\{f_{\alpha}\}$ be the decomposition of the unit with respect to the cover $\{U_{\alpha}\}$. Using the local coordinates, in each neighborhood U_{α} we define m vector fields as follows

$$x_{(1)}^{\alpha} = (1,0,...,0) \in \mathbb{R}^{k}$$

$$x_{(2)}^{\alpha} = (0,1,0,...,0) \in \mathbb{R}^{k}$$

$$...$$

$$x_{(m)}^{\alpha} = (0,...,0,1,0,...,0) \in \mathbb{R}^{k}.$$
(5)

Further we define m global vector fields on & as follows

$$X_{(r)} = \sum_{\alpha} X_{(r)}^{\alpha} f_{\alpha}, \quad i \leq r \leq m.$$
 (6)

In order to prove that these vectors are linearly independent, it is sufficient to verify it in an arbitrary coordinate neighborhood \mathbf{U}_{α} . Using (4) and (5) we obtain

$$X_{(r)}^{\beta} = (b_{1r}^{\beta}, \dots, b_{rr}^{\beta}, 0, \dots, 0), \quad 1 \le r \le m$$

with respect to the coordinate neighborhood U_{β} , where $b_{rr}^{\beta} > 0$. Using that $f_{\beta} \geq 0$ and $\sum_{\beta=1}^{r} f_{\beta} = 1$, it follows that the vector fields $X_{(1)}, \ldots, X_{(m)}$ are linearly independent in U_{β} and hence in B_{n} .

Conversely, let the vector bundle ξ admits m linearly independent vector fields. Then ξ can be reduced to the group G given by (3), and hence can be reduced to the group given by (4).

Theorem 4. Let B_n be a paracompact differentiable manifold.

a) The vector bundle $\xi = (E, \pi, B_n)$ admits a vector subbundle of rank m iff ξ can be reduced to the following subgroup

$$G = \left\{ \begin{bmatrix} A & B \\ 0 & C \end{bmatrix} \mid A \in GL(m; \mathbb{R}), C \in GL(k-m; \mathbb{R}), B \in M(m, k-m; \mathbb{R}) \right\}$$
of $GL(k; \mathbb{R})$. (7)

b) The vector bundle $\xi=(E,\pi,B_n)$ admits an orientabled vector subbundle with rank m iff ξ can be reduced to the following subgroup

$$G = \left\{ \begin{bmatrix} A & B \\ 0 & C \end{bmatrix} \mid A \in GL^{+}(m; R), C \in GL(k-m; R), B \in M(m, k-m; R) \right\}$$
of $GL(k; R)$.

<u>Proof.</u> a) Let us suppose that ξ can be reduced to the group G given by (7). Then we define vector subbundle on $\xi \mid_{U_{\alpha}}$ which is generated by

$$x_{(1)} = (1,0,...,0) \in \mathbb{R}^{k}$$
 $x_{(2)} = (0,1,0,...,0) \in \mathbb{R}^{k}$
 $x_{(m)} = \underbrace{(0,...,0,1,0,...,0) \in \mathbb{R}^{k}}_{m-1}$

in each trivializing coordinate neighborhood U_{α} . It is easy to verify that this subbundle does not depend on the neighborhood U_{α} , because the subspace of \mathbb{R}^k which is generated by $X_{(1)}, \ldots, X_{(m)}$ is invariant under the matrices of G which are defined by (7). Thus, we have defined a global vector subbundle of ξ with rank m.

The converse is a consequence from the Theorem 1.

b) This is a consequence of a). •

Further we will prove two theorems where the transition functions $(\phi_{\alpha\beta})$ belong only to a set of matrices G which is not a group. For example G can be the set of positive definite kxk matrices.

Theorem 5. Let B_n be a paracompact manifold. The vector bundle $\xi=(E,\pi,B_n)$ of rank k admits m linearly independent vector fields iff there exists a system of trivializing charts $\{(U_\alpha,\phi_\alpha)\}$ such that the matrices $\phi_{\alpha\beta}(b)$ belong to the set

$$G = \left\{ \begin{bmatrix} A & B \\ C & D \end{bmatrix} \mid \det \begin{bmatrix} A & B \\ C & D \end{bmatrix} \neq 0, A \text{ is positive} \quad \text{definite mxm} \right\}$$

matrix,
$$B \in M(m,k-m;R)$$
, $C \in M(k-m,m;R)$, $D \in M(k-m,k-m;R)$ (9)

for each indices α and β such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, and each $b \in U_{\alpha} \cap U_{\beta}$.

<u>Proof.</u> Let us suppose that there exists a system of trivializing charts $\{(U_{\alpha},\phi_{\alpha})\}$ such that $\phi_{\alpha\beta}(b)\in G$. Let $\{f_{\alpha}\}$ be a decomposition of the unit, which corresponds to a locally finite subcover $\{U'_{\alpha}\}$. In each trivializing coordinate neighborhood U'_{α} we define m vector fields by

$$x_{(1)}^{\alpha} = (1,0,...,0) \in \mathbb{R}^{k}$$
 $x_{(2)}^{\alpha} = (0,1,0,...,0) \in \mathbb{R}^{k}$
 $x_{(m)}^{\alpha} = (0,...,0,1,0,...,0) \in \mathbb{R}^{k}$

Now we define m global vector fields

$$X_{(r)} = \sum_{\alpha} f_{\alpha} X_{(r)}^{\alpha}, \quad 1 \leq r \leq m.$$

We choose an arbitrary chart $(U_{\beta}',\phi_{\beta}')$, and we will prove that $X_{(1)},\ldots,X_{(m)}$ are linearly independent vector fields with respect to that coordinate system. Indeed, in that coordinate system it is

$$x_{(1)}^{\beta} = (A_{11}^{\beta}, A_{21}^{\beta}, \dots, A_{k1}^{\beta})$$

 $x_{(m)}^{\beta} = (A_{1m}^{\beta}, A_{2m}^{\beta}, \dots, A_{km}^{\beta})$

where

$$\mathbf{A}^{\beta} = \begin{bmatrix} \mathbf{A}_{11}^{\beta} & \dots & \mathbf{A}_{1m}^{\beta} \\ \dots & \dots & \dots \\ \mathbf{A}_{m1}^{\beta} & \dots & \mathbf{A}_{mm}^{\beta} \end{bmatrix}$$

is a positive ~ definite mxm matrix. Using that $f_{\beta} \geq 0$ and $\Sigma f_{\beta} \! = \! 1$, we obtain

$$X_{(1)} = (A_{11}, A_{21}, \dots, A_{k1})$$
...
 $X_{(m)} = (A_{1m}, A_{2m}, \dots, A_{km})$

according to the chosen coordinate system, where

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1m} \\ \cdots & \cdots & \cdots \\ \mathbf{A}_{m1} & \cdots & \mathbf{A}_{mm} \end{bmatrix}$$

is a positive definite matrix. Hence $\det A \neq 0$, and the vectors $X_{(1)}, \ldots, X_{(m)}$ are linearly independent.

Conversely, let us suppose that the vector bundle ξ admits m linearly independent vector fields. Theorem 3 implies that ξ can be reduced to the group G which is given by (4). But that group is a subset of the set G which is given by (9).

We notice that in the Theorem 5, C way be a zero-matrix, and that special case can be compared with the Theorem 4.

Theorem 6. Let B_n be a paracompact manifold. The vector bundle $\xi=(E,\pi,B_n)$ of rank k admits a non-zero vector field iff there exists a system of trivializing charts $\{(U_\alpha,\phi_\alpha)\}$ such that the matrices $\phi_{\alpha\beta}(b)$ belong to the set

$$G = \{ [A]_{kxk} \mid detA \neq 0, \sum_{i,j=1}^{k} A_{ij} > 0 \}$$
 (10)

for each indices α and β such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$ and each $b \in U_{\alpha} \cap U_{\beta}$.

<u>Proof.</u> Let ξ admits a vector field X which is non-zero at each point. In a neighborhood of each point, the coordinate system can be chosen such that X has coordinates $(1,1,\ldots,1)\in\mathbb{R}^k$. Now we will prove that the transition matrices are such that

Conversely, let us suppose that there exist trivializing charts $\{(U_{\alpha},\phi_{\alpha})\}$ such that $\phi_{\alpha\beta}(b)$ belongs to the set G given by (10), for each indices α and β such that $U_{\alpha}\cap U_{\beta}\neq \emptyset$ and each $b\in U_{\alpha}\cap U_{\beta}$. Since B_{n} is a paracompact manifold, we can suppose that $\{U_{\alpha}\}$ is a locally finite subcover, and let $\{f_{\alpha}\}$ be the corresponding decomposition of the unit. In each chart $\{(U_{\alpha},\phi_{\alpha})\}$ we define a vector field X^{α} with local coordinates

$$x^{\alpha} = (1,1,\ldots,1) \in \mathbb{R}^k$$
.

Now we define a global vector field by

$$X = \sum_{\alpha} f_{\alpha} X^{\alpha}$$

We only have to prove that X \neq 0 at each point. It is sufficient to choose an arbitrary chart (U_β,ϕ_β) and to prove that X≠0 according to it. Indeed, if $U_\alpha \cap U_\beta \neq \emptyset$, then X^α has local coordinates

$$X^{\alpha} = (p_1^{\alpha}, \dots, p_k^{\alpha})$$

such that $\sum_{i=1}^{k} p_i^{\alpha} > 0$. Hence it follows that according to that coordinate system, X has coordinates

$$X = \sum_{\alpha} f_{\alpha} X^{\alpha} = (p_1, \dots, p_k)$$

3. One structure on complex vector bundle. The idea of this section is inspired from the theory of commutative vector valued groups [2]. First we give some facts from that theory, which will need us further.

Let $Q^{(m)}$ be the m-th permutation product of Q, i.e. $Q^{(m)}=Q^m/\approx$ where make is the equivalence on om which is defined by

 $x_1^m \approx y_1^m \leftrightarrow x_1, x_2, \dots, x_m$ is a permutation of y_1, \dots, y_m where we use the notation $t=z_1^m$ instead of (z_1,\ldots,z_m) .

Definition 1. A map $f: Q^{(n)} \rightarrow Q^{(m)}$, $(n-m=k\geq 1)$ is called a com(n,m)-group if the following two axioms are satisfied

(i) (associativity)

For each $1 \le i \le k$ and each $x_1^{n+k} \in Q^{(n+k)}$

$$f(x_{i+1}^{i}f(x_{i+1}^{i+n})x_{i+n+1}^{n+k}) = f(f(x_{i}^{n})x_{n+1}^{n+k}),$$
 (11)

(ii) (solvability)

For each $a \in Q^{(k)}$ and $b \in Q^{(m)}$ the equation

$$f(ax) = b (12)$$

has solution $x \in O^{(k)}$.

One of the most researched class of such structures is the class of affine com(m+k,m)-groups, and moreover each locally euclidean and connected topological com(m+k,m)-group which is known until now is isomorphic to an affine com(m+k,m)-group. They are defined on Q=(\setminus {a₁,...,a_t} (0 \le t \le m), where a₁,...,a_t are distinct complex numbers. In that case Q^(m) is homeomorphic to

$$(((0))^{t_x} (^{m-t}.$$
 (13)

It is interesting to mention here that if (M,f) is a locally euclidean topological com(m+k,m)-group, then dimM=2. We also mention that each com(m+k,m)-group induces a usual commutative group $(M^{(m)},*)$. For a given commutative group $(M^{(m)},*)$ we want to obtain a com(m+k,m)-group. It can be done as follows.

We say that the commutative group $(M^{(m)}, \star)$ has the property P if there exists a subset $S\subseteq M^{(m)}$ such that for each $y\in M^{(m)}$, there exists unique $x_1^m\in S^{(m)}$ such that

$$y = x_1 * \dots * x_m$$

Now it is easy to verify that if $(M^{(m)}, *)$ has the property P, then it defines a com(m+k,m)-group (S,f), where

$$f(x_1^{m+k}) = y_1^m \text{ iff } x_1 * \dots * x_{m+k} = y_1 * \dots * y_m.$$
 (14)

Specially, if M=(), then $M^{(m)}=()^m$ and * is the addition. The affine com(m+k,m)-groups are determined by the following smooth surfaces S:

$$S = \tau(\lambda + S_0) \tag{15}$$

where $S_o = \{(z, z^2, \dots, z^m) \mid z \in \mathbb{C}\}$, $\lambda \in \mathbb{C}^m$ and τ is an automorphism of $(\mathbb{C}^m, +)$. We mention that until now we do not know any other smooth surface $S \subseteq \mathbb{C}^{(m)} = \mathbb{C}^m$, except those described by (15).

Now we return to the vector bundles. Having all that in mind, we give the following two definitions.

<u>Definition 2.</u> Let $\xi = (E, \pi, B_n)$ be a complex vector bundle with complex dimension m. We say that the vector bundle has the property P, if for each point $p \in B_n$, $\pi^{-1}(p)$ as a complex vector bundle admits a smooth subset $S(p) \subseteq \pi^{-1}(p)$ such that

i) For each $X \in \pi^{-1}(p)$ there exists unique $X_1^m \in S(p)^{(m)}$ such that

$$x = x_1 + \ldots + x_m$$

ii) The distribution S(p) depends continuously on p.

<u>Definition 3</u>. Let $\xi = (E, \pi, B_n)$ be a complex vector bundle with complex dimension m, and let the vector bundle has the property P. If the corresponding subsets $\{S(p)\}$ have the following form

$$S(p) = \tau_{p}(\lambda_{p} + S_{o})$$
 (16)

with respect to a chosen coordinate system, where $S_o = \{(z, z^2, \dots, z^m) \mid z \in C\}, \ \lambda_p \in C^m \text{ and } \tau_p \text{ is an automorphism on } C^m, \text{ then we say that the vector bundle has the affine property AP.}$

If the vector bundle ξ has the property P, then it admits a continuous family of com(m+k,m)-groups (S(p),f_p) for pEB_n, and if the vector bundle ξ has the affine property AP, then it admits a continuous family of affine com(m+k,m)-groups (S(p),f_p) for pEB_n.

We mention that the group of automorphisms of C^m is isomorphic to GL(2m; R) but not to GL(m; C). Further we will prove two theorems about the vector bundles with the affine property AP.

Theorem 7. If the complex vector bundle ξ with a complex dimension m can be written as a Whitney's sum of m complex 1-dimensional vector bundles ξ_1, \ldots, ξ_m , i.e.

$$\xi = \xi_1 \oplus \xi_2 \oplus \dots \oplus \xi_m, \tag{17}$$

then ξ has the affine property AP.

<u>Proof.</u> Let us suppose that (17) holds. We choose the coordinate system in $\pi^{-1}(p)$ such that

$$\xi_1 = \{(z,0,...,0) \mid z \in \mathbb{C}\}\$$
 $\xi_2 = \{(0,z,0,...,0) \mid z \in \mathbb{C}\}\$
 $\xi_m = \{(0,...,0,z) \mid z \in \mathbb{C}\}.$

Then we define

$$S(p) = \{(z, z^2, ..., z^m) \mid z \in C\}$$

with respect to that coordinate system. Thus ξ has the affine property AP. \square

Theorem 8. If ξ is a vector bundle with the affine property AP, then there exist m real 2-dimensional vector bundles ξ_i^R $(1 \le i \le m)$, such that

$$\xi^{R} = \xi^{R}_{1} \bullet \dots \bullet \xi^{R}_{m} \tag{18}$$

where ξ^{R} is considered as a real 2m-dimensional vector bundle.

<u>Proof.</u> Let $\{S(p)\subseteq \pi^{-1}(p)\}$ be the family of subsets of $\pi^{-1}(p)$. For each p, there exist λ_p and τ_p such that $S(p)=\tau_p(\lambda_p+S_0)$ where $S_0=\{(z,z^2,\ldots,z_m)\mid z\in C\}$. Since $\tau_p\in GL(2m;R)$, we define

$$\xi_{\mathbf{z}}^{R} = \tau_{\mathbf{p}}(\{(\mathbf{z}, 0, ..., 0) \mid \mathbf{z} \in C\})$$

$$\xi_{\mathbf{z}}^{R} = \tau_{\mathbf{p}}(\{(0, \mathbf{z}, 0, ..., 0) \mid \mathbf{z} \in C\})$$

$$\xi_{\mathbf{m}}^{R} = \tau_{\mathbf{p}}(\{(0, ..., 0, \mathbf{z}) \mid \mathbf{z} \in C\}).$$

Then ξ_1^R, \ldots, ξ_m^R do not depend on the coordinate system, and $\xi^R = \xi_1^R \bullet \ldots \bullet \xi_m^R$.

REFERENCES

- [1] Постников, М.М.: Диференциальная геометрия, Лекции по геометрии, Наука, Москва, 1988
- [2] Trenčevski, K., Dimovski, D.: Complex commutative vector valued groups, MANU, Skopje, 1992

ЗА ВЕКТОРСКИ ПОДРАСЛОЈУВАЊА ОД ВЕКТОРСКИ РАСЛОЈУВАЊА

К. Тренчевски

Резиме

Во овој труд се докажани неколку теореми кои даваат потребен и доволен услов за да едно реално векторско раслојување од ранг k допушта векторско подраслојување со ранг m (m ≤ k), односно да допушта m линеарно независни векторски полиња. Во последниот параграф се разгледуваат комплексни векторски раслојувања. Се дефинира кога едно комплексно векторско раслојување има особина P, односно афина особина AP, а потоа се докажани две теореми во врска со раслојувањата со афина особина AP. Резултатите од овој параграф се инспирирани од теоријата на комутативните векторско вредносни групи [2].

Prirodno-matematički fakultet Institut za matematika p.f. 162 91000 Skopje, Macedonia