2000 (57-60)

Скопје, Македонија

SOME INEQUALITIES WITH FACTORIALS REVISITED

Walther Janous

Abstract

In this note some inequalities for finite sums and products with factorials are (im-) proved.

In [1] Z. F. Starc proved several inequalities for sums and products with factorials.

His method mainly relies on the following idea:

If a_1, a_2, \ldots, a_n are positive numbers satisfying $a_1 + a_2 + \cdots + a_n = b$ then there holds

$$b \ge n + \ln(a_1 \cdot a_2 \cdot \ldots \cdot a_n)$$
, i.e. $a_1 \cdot a_2 \cdot \ldots \cdot a_n \le e^{b-n}$.

We now show that these inequalities are weaker than the classical arithmetic – geometric means – inequality, saying

$$a_1 \cdot a_2 \cdot \ldots \cdot a_n \le \left(\frac{b}{n}\right)^n,$$
 (1)

with equality iff all the $a_i's$ are equal.

In order to verify this claim we have to prove the inequality

$$\left(\frac{b}{n}\right)^n \le e^{b-n} \,. \tag{2}$$

Let us put $w := \frac{b}{n}$.

Then (2) reads $w \le e^{w-1}$ where w > 0.

Upon taking logarithm we note that this inequality is equivalent to the known one $1 + \ln w \le w$ where w > 0.

As a first remark we note that the following result of J. E. Pečarić [3] and used for the proof of [1, Theorem 1] is *incorrect*. It says

$$\Gamma(x_1)\cdot\ldots\cdot\Gamma(x_n)=\sqrt{\left(\Gamma(x_1)\cdot\Gamma(x_n)\right)^n}$$
 (3)

whenever x_1, x_2, \ldots, x_n is a positive increasing arithmetic sequence. For let as an example n=3 and put $x_k=k$, k=1,2,3. Then LHS(3) = $0! \cdot 1! \cdot 2! = 2$, whereas RHS(3) = $\sqrt{(0! \cdot 2!)^3} = 2\sqrt{2}$. Hence Theorem 1 and its Corollary have to be revised. We now state

Theorem 1'. Let m, n and p be entire numbers such that $m \ge 1$, $n \ge 2$ and $p \ge -m$.

Then for all increasing convex functions $f:[1,\infty)\to R$ it holds

$$f((m+p)!)+f((2m+p)!)+\cdots+f((mn+p)!) > nf(n(\frac{n+1}{2}m+p)!).$$
 (4)

Proof. Using the log-convexity of $\Gamma(z)$ (see e.g. [2, item 3.6.48]) we infer via the geometric – arithmetic means – inequality

$$(m+p)! + (2m+p)! + \dots + (nm+p)! >$$

> $n[(m+p)! \cdot (2m+p)! \cdot \dots \cdot (nm+p)!]^{1/n} > n(\frac{n+1}{2}m+p)!$.

Hence the requirements on f yield the claimed inequality.

Using [2, item 3.6.55], i.e. the inequality

$$\Gamma(z) > z^{z-1/2} e^{-z} \sqrt{2\pi}$$

we get

Corollary 1.1'. With the same conditions as for Theorem 1' it holds

$$f((m+p)!) + f((2m+p)!) + \dots + f((mn+p)!) > n \cdot f(n \cdot w^{w-1/2} e^{-w} \sqrt{2\pi})$$
 (5)

where $w = w(m, n, p) = \frac{n+1}{2} m + p + 1$.

Applications. By putting in (5)

$$p = 0$$
 and $m \in (1, 2)$ or

$$p = -1$$
 and $m = 2$

we get more general inequalities than the ones given in [1, Corollary 1.1]. So, for instance p = 0 and m = 2 yield via $f(x) \equiv x$:

$$2! + 4! + \dots + (2n)! > n^2 \left(\frac{n+2}{e}\right)^{n+2} \sqrt{\frac{2\pi}{n+2}}.$$
 (6)

Remark. Similar to Theorem 1' there also holds the following

Theorem 1". Let $f:[1,\infty)\to R$ be a concave and decreasing function. Then

$$f((m+p)!)+f((2m+p)!)+\cdots+f((mn+p)!)< n f(n(\frac{n+1}{2}m+p)!).$$
 (7)

As an improvement of [1, Theorem 2] we state

Theorem 2'. With the same conditions as for Theorem 1' it holds

$$(m+p)!^{(m+p)!} (2m+p)!^{(2m+p)!} \cdot \dots \cdot (mn+p)!^{(mn+p)!} > g\left(n\left(\frac{n+1}{2}m+p\right)!\right)^n$$
 where $g(x) \equiv x^x$ (8)

Proof. This result follows from Theorem 1' and its Corollary upon putting $f(x) = x \ln x$. (Because of $f'(x) = 1 + \ln x$ and $f''(x) = \frac{1}{x}$ the requirements of Theorem 1' are satisfied.)

Theorem 2' enables us to improve Corollary 1.2 of [1].

Thus for instance

$$2!^{2!} \cdot 4!^{4!} \cdot \ldots \cdot (2n)!^{(2n)!} > \left[n (n+1)! \right]^{n^2(n+1)!}. \tag{9}$$

Finally we prove as a compagnion of [1, Theorem 3] the following

Theorem 3'. For $n \geq 2$ it holds

$$\prod_{k=1}^{n} \left[k! \binom{n}{k} \right]^{k/n^k} \le \left[\frac{n^n (n-1)^2}{n^n - n} \right]^{(n-n^{2-n})/(n-1)^2} . \tag{10}$$

Proof. Starting from

$$\frac{1}{n} \cdot 1! \binom{n}{1} + \frac{2}{n^2} \cdot 2! \cdot \binom{n}{2} + \dots + \frac{n}{n^n} \cdot n! \cdot \binom{n}{n} = n$$

we get via the weighted geometric - arithmetic means - inequality and using

$$\frac{1}{n} + \frac{2}{n^2} + \dots + \frac{n}{n^n} = \frac{n - n^{2-n}}{(n-1)^2} =: s(n).$$

LHS(10) $\leq [n/s(n)]^{s(n)} = \text{RHS}(10)$, and we are done. \square

As a final remark we note $\lim_{n\to\infty} [n/s(n)]^{s(n)} = 1$.

References

- [1] Starc, Z. F.: On Some Inequalities with Factorials. Math. Moravica 1, 101-194 (1997).
- [2] Mitrinović, D. S.: Analytic Inequalities, Springer, Berlin (1970).
- [3] Pečarić, J.: On some Inequalities for Convex Functions and some Related Applications, Mat. Bilten (Skopje), 5-6, 29-36 (1981/1982).

НЕКОИ НЕРАВЕНСТВА СО ФАКТОРИЕЛИ

Walther Janous

Резиме

Во оваа работа се докажани некои неравенства за конечни суми и производи со факториели.

School: Ursulinengymnasium Fuerstenweg 86 A-6020 Innsbruck AUSTRIA

Private: Schneeburggasse 169 A-6020 Innsbruck AUSTRIA