ON ESTIMATION OF FOURIER AND QUASI-MONOTONE-FOURIER COEFFICIENTS OF FUNCTIONS IN NIKOL'SKII CLASSES

SHPETIM REXHEPI, SAMET KERA, AND HALIL SNOPCE

Abstract

An equivalent form of Nikol'skii class ($H(p, k, \varphi), p \in[1, \infty])$ using a supplementary condition for function φ and best approximation is given. The estimation of Fourier coefficients of functions belonging to the class $H(p, k, \varphi), p \in[1, \infty]$, by means of best approximation and modulus of smoothness without giving supplementary conditions to the φ function is investigated. We discuss the problem for the functions with quasi-monotone Fourier coefficients as well.

1. Introduction

The main problem in the approximation theory is to determine the properties of the approximate function characteristics based on the axiomatic properties of the function, as its modulus of smoothness and the constructive characteristics of that function and as its best approximation by trigonometric polynomials and its Fourier coefficients, which is well-known relation, [3, 4, 9, 10].

In this paper we consider the problem of estimation of Fourier coefficients of functions belonging to Nikol'skii class further work of [1, 2] and especially quasi-monotone Fourier coefficients of functions belonging to Nikol'skii class as a subclass of L_{p} spaces. The estimation is based on best approximation and modulus of smoothness. Initially, we will give some concepts, definitions and notations.

We denote by L_{p} the set of 2π-periodic functions f, such that f is measurable on $[0,2 \pi]$ for $p \in[1, \infty)$ and f is continuous on $[0,2 \pi]$ for $p=\infty$

[^0]and respectively
\[

\|f\|_{L_{p}}=\left\{$$
\begin{array}{l}
\left(\int_{0}^{2 \pi}|f(x)|^{p} d x\right)^{1 / p}<\infty, \text { for } p \in[1, \infty) \\
\max _{x}|f(x)|, \text { for } p=\infty
\end{array}
$$\right.
\]

Denote by $\omega_{k}(f, t)_{p}$ the modulus of smoothness of order k of the function f belonging to metrics L_{p} and respectively

$$
\omega_{k}(f, t)_{p} \sup _{h \in[-t, t]}\left\|\triangle_{h}^{k} f(x)\right\|=\sup _{h \in[-t, t]}\left\|\sum_{m=0}^{k}(-1)^{k-m}\binom{k}{m} f(x+m h)\right\| .
$$

Denote by $E_{n}(f)_{p}$ the best approximation of the function $f \in L_{p}$ by trigonometric polynomials with degree not greater than n, where $n \in \mathbb{N}$ and define it respectively by $E_{n}(f)_{p}=\inf _{H_{n}}\left\|f-H_{n}(x)\right\|_{p}$, where $H_{n}(x)$ are trigonometric polynomials of degree n.
Definition 1.1. By $L(0,2 \pi)$ we denote the set of 2π-periodic functions summable on $(0,2 \pi)$. Let $f \in L(0,2 \pi)$ and let $a_{m}=a_{m}(f)$ and $b_{m}=b_{m}(f)$, $m=0,1,2, \ldots$ be Fourier coefficients of f, respectively, and

$$
S[f]=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left(a_{m} \cos m x+b_{m} \sin m x\right)
$$

Remark 1.1: For any $p, q, 1<p<q<\infty$ it is clear that $C \subset L_{\infty} \subset L_{q} \subset$ $L_{p} \subset L$. We will write the Fourier series of the function in it's complex form, respectively by

$$
f(x) \backsim \sum_{m=-\infty}^{\infty} C_{m} e^{i m x}
$$

where $C_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(u) e^{-i m u} d u$. By $S_{n}[f ; x]$ we will denote partial sum of the Fourier series of the function f, respectively by

$$
S_{n}[f ; x]=\sum_{m=-n}^{n} C_{m} e^{i m x}
$$

Definition 1.2. 2π-periodic function $f(x)$ belongs to the class $H(p, k, \varphi)$, $p \in[1, \infty]$ if $f(x) \in L_{p}, \omega_{k}(f, \theta)_{p}<A \varphi(\theta)$ and the function $\varphi(\theta)$ has the following properties:
i) $\varphi(\theta)$ is a non-negative and continuous function on $[0,1]$ and $\varphi(\theta) \neq 0$,
ii) $\varphi(\theta) \leq A_{1} \varphi\left(\theta_{2}\right)$ for $0 \leq \theta_{1} \leq \theta_{2} \leq 1$,
iii) $\varphi(2 \theta) \leq A_{2} \varphi(\theta)$ for $0 \leq \theta \leq \frac{1}{2}$,
where A, A_{1} and A_{2} are constants not dependent on θ, θ_{1} and θ_{2}.

ESTIMATION OF FOURIER AND QUASI-MONOTONE-FOURIER COEFFICIENTS 81
Definition 1.3. ([8]) The sequence of positive numbers $\left\{a_{n}\right\}, n \in \mathbb{N}$ is called quasi-monotone if

$$
\begin{equation*}
\frac{a_{n}}{n^{-\tau}} \downarrow 0 \tag{1.1}
\end{equation*}
$$

for any $\tau>0$. The sequence of inequalities $\left(a_{1} \geq \ldots \geq a_{n} \geq a_{n+1} \geq \ldots \geq\right.$ 0) is denoted by $a_{n} \downarrow 0$.

2. Auxiliary Facts

In this section we present some additional results used in our main results.
Proposition 2.1. ([5, 9]) Let $f(x) \in L_{p}$. Than the following inclusions are valid:

$$
\omega_{k}(f, t)_{p} \in\left\{\begin{array}{l}
\left(0, \frac{A_{1}}{n^{k}} \sqrt[p]{\sum_{m=1}^{n} m^{m p-1} E_{m}^{p}(f)_{p}}\right], p \in(1,2] \tag{2.1}\\
{\left[\frac{A_{1}}{n^{k}} \sqrt[p]{\sum_{m=1}^{n} m^{m p-1} E_{m}^{p}(f)_{p}, \infty}\right], p \in[2, \infty)}
\end{array}\right.
$$

where A_{1} and A_{2} are constants not dependent on $f(x)$ and n.
Proposition 2.2. ([6]) Let $f(x) \in L_{p}$ than the following inclusions are valid:
i) For $p=1$,
$A_{1}\left|C_{n}\right| \leq \omega_{k}(f, t)_{p} \leq A_{2}\left\{\frac{\sqrt{\sum_{|m|=1}^{n}|m|^{2 k}\left|C_{m}\right|^{2}}}{n^{k}}+\sqrt{\sum_{|m|=n+1}^{\infty}\left|C_{m}\right|^{2}}\right\}$
ii) For $p \in(1,2]$,

$$
\begin{aligned}
& A_{1}\left\{\frac{\sqrt[p]{\sum_{|m|=1}^{n}|m|^{p(k+1)-2\left|C_{m}\right|^{p}}}}{n^{k}}+\sum_{|m|=n+1}^{\infty}|m|^{p-2}\left|C_{m}\right|^{p}\right\} \leq \\
& \leq \omega_{k}(f, t)_{p} \leq A_{2}\left\{\frac{\sqrt{|m|=1}|m|^{2 k}\left|C_{m}\right|^{2}}{n^{k}}+\sqrt{\sum_{|m|=n+1}^{\infty}\left|C_{m}\right|^{2}}\right\}
\end{aligned}
$$

iii) For $p \in[2, \infty)$,

$$
\begin{aligned}
& A_{1}\left\{\frac{\sqrt{\sum_{|m|=1}^{n}|m|^{2 k}\left|C_{m}\right|^{2}}}{n^{k}}+\sqrt{\sum_{|m|=n+1}^{\infty}\left|C_{m}\right|^{2}}\right\} \leq \omega_{k}(f, t)_{p} \leq \\
& \leq A_{2}\left\{\frac{\sqrt[p]{\sum_{|m|=1}^{n}|m|^{p(k+1)-2}\left|C_{m}\right|^{p}}}{n^{k}}+\sum_{|m|=n+1}^{\infty}|m|^{p-2}\left|C_{m}\right|^{p}\right\}
\end{aligned}
$$

iv) For $p=\infty$,

$$
\begin{aligned}
& A_{1}\left\{\frac{\sqrt{\sum_{|m|=1}^{n}|m|^{2 k}\left|C_{m}\right|^{2}}}{n^{k}}+\sqrt{\sum_{|m|=n+1}^{\infty}\left|C_{m}\right|^{2}}\right\} \leq \\
& \leq \omega_{k}(f, t)_{p} \leq A_{2}\left\{\frac{\sqrt{\sum_{|m|=1}^{n}|m|^{k}\left|C_{m}\right|}}{n^{k}}+\sqrt{\sum_{|m|=n+1}^{\infty}\left|C_{m}\right|}\right\}
\end{aligned}
$$

where A_{1} and A_{2} are constants not dependent on $f(x)$ and n.
Proposition 2.3. ([9) If $f(x) \in L_{p}, p \in(1, \infty)$, then for every natural number n the following inequality holds:

$$
\begin{equation*}
\omega_{k}\left(f, \frac{1}{2^{n}}\right)_{p} \leq 2^{-n k} A\left(E_{0}(f)_{p}+\sum_{m=0}^{n} 2^{m k} E_{2^{m}}(f)_{p}\right) \tag{2.2}
\end{equation*}
$$

Proposition 2.4. ([7]) Let $\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos m x+b_{m}+\sin m x$ be Fourier series of a function $f(x) \in L_{p}, p \geq 1$. Then

$$
\begin{equation*}
\left|\sum_{m=n+1}^{2 n}\left(a_{m}+b_{m}\right)\right| \leq A \cdot \sqrt[p]{n} E_{n}(f)_{p} \tag{2.3}
\end{equation*}
$$

where A is a constant not dependent on $f(x)$ and n.

ESTIMATION OF FOURIER AND QUASI-MONOTONE-FOURIER COEFFICIENTS 83

3. Main results

Theorem 1. Let the function $\varphi(\theta)$ satisfy this supplementary condition:

$$
\int_{\theta}^{1} \frac{\varphi(v)}{v^{k+1}} d v \leq C \frac{\varphi(\theta)}{\theta^{k}}
$$

The function $f(x) \backsim \sum_{m=-\infty}^{\infty} C_{m} e^{i m x}$ belongs to the class $H(p, k, \varphi), p \in$ $[1, \infty]$ if and only if

$$
E_{n}(f)_{p} \leq A(n+1)^{k} \frac{\varphi^{2}\left(\frac{1}{n+1}\right)}{\int_{\frac{1}{n+1}}^{1} \frac{\varphi(v)}{v^{k+1}} d v}
$$

where constants C and A are not dependent on θ.
Proof. Necessity condition. According to the the Jackson's theorem, properties of the modulus of smoothness, the inequality $n+1<2 n$ and the definition of the class $H(p, k, \varphi), p \in[1, \infty]$ we have:

$$
\begin{aligned}
& E_{n}(f)_{p} \leq A_{1} \omega_{k}\left(f, \frac{1}{n}\right)_{p} \leq A_{1} \omega_{k}\left(f, \frac{2}{n+1}\right)_{p} \leq \\
& \leq A_{2} \omega_{k}\left(f, \frac{1}{n+1}\right)_{p} \leq A_{2} A_{3} \varphi\left(\frac{1}{n+1}\right)=A_{4} \varphi\left(\frac{1}{n+1}\right)
\end{aligned}
$$

where $A_{2} \geq 2^{k} A_{1}$. From the other side, for $\theta=\left(\frac{1}{n+1}\right)$ we have

$$
\varphi\left(\frac{1}{n+1}\right) \geq \frac{\int_{\frac{1}{n}}^{1} \frac{\varphi(v)}{v^{k+1}} d v}{C(n+1)^{k}}
$$

Applying arithmetic mean inequality we obtain

$$
\varphi\left(\frac{1}{n+1}\right) \geq \frac{1}{2}\left(\frac{\int_{\frac{1}{n+1}}^{1} \frac{\varphi(v)}{v^{k+1}} d v}{C(n+1)^{k}}+\frac{E_{n(f)_{p}}}{A_{4}}\right) \geq \sqrt{\frac{E_{n(f)_{p}}}{A(n+1)^{k}} \int_{\frac{1}{n+1}}^{1} \frac{\varphi(v)}{v^{k+1}} d v}
$$

and respectively, $E_{n}(f)_{p} \leq A(n+1)^{k} \frac{\varphi^{2}\left(\frac{1}{n+1}\right)}{1}$, where $A=C A_{4}$.

$$
\int_{\frac{1}{n+1}}^{1} \frac{\varphi(v)}{v^{k+1}} d v
$$

Sufficiency condition. From the relations

$$
E_{n}(f)_{p} \leq A(n+1)^{k} \frac{\varphi^{2}\left(\frac{1}{n+1}\right)}{\int_{\frac{1}{n+1}}^{1} \frac{\varphi(v)}{v^{k+1}} d v}
$$

and

$$
\varphi\left(\frac{1}{n+1}\right) \geq \frac{\int_{\frac{1}{n+1}}^{1} \frac{\varphi(v)}{v^{k+1}} d v}{C(n+1)^{k}}
$$

we have that $\frac{A}{C} \varphi\left(\frac{1}{n+1}\right)=A_{5} \varphi\left(\frac{1}{n+1}\right) \geq E_{n}(f)_{p}$. Since the function φ is continuous and uniformly bounded on the segment $[0,1]$, for a fixed $n \in \mathbb{N}$, we take the trigonometric polynomial of the best approximation. Since $H_{n} f \in L_{\infty}$, and respectively $H_{n} f \in L_{p}$, using the triangle inequality we obtain:

$$
\begin{aligned}
& \|f\|_{p}=\left\|f+H_{n} f-H_{n} f\right\|_{p} \leq\left\|f-H_{n} f\right\|_{p}+\left\|H_{n} f\right\|_{p}=E_{n}(f)_{p}+\left\|H_{n} f\right\|_{p} \leq \\
& \leq A_{6} \varphi\left(\frac{1}{n+1}\right)+\left\|H_{n} f\right\|_{p} \leq \max _{0 \leq \theta \leq 1}\left\{A_{6} \varphi(\theta)+\left\|H_{n} f\right\|\right\}=A_{7} .
\end{aligned}
$$

So, $f(x) \in L_{p}$. For this reason, since $f(x) \in L_{p}$ from the relation (2.2) and the properties of the function φ, the following relations hold:

$$
\begin{aligned}
& \omega_{k}\left(f, \frac{1}{2^{n}}\right) \leq 2^{-n k} A_{8}\left(E_{0}(f)_{p}+\sum_{m=0}^{n} 2^{m k} E_{2^{m}}(f)_{p}\right) \leq \\
& \leq 2^{-n k} A_{8}\left(A_{9}\left(\varphi(1)+\sum_{m=0}^{n} 2^{m k} \varphi\left(\frac{1}{2^{m}+1}\right)\right)\right) \leq \\
& \leq 2^{-n k} A_{10}\left(\varphi(1)+\varphi\left(\frac{1}{2}\right)+\sum_{m=1}^{n} 2^{m k} \varphi\left(\frac{1}{2^{m}+1}\right)\right) \leq \\
& \leq 2^{-n k} A_{10}\left(\varphi(1)+A_{11} \varphi(1)+\left(1+A_{11}\right) \sum_{m=1}^{n} 2^{m k} \varphi\left(\frac{1}{2^{m}+1}\right)\right) \leq \\
& \leq 2^{-n k} A_{10}\left(1+A_{11}\right) \sum_{m=1}^{n} 2^{m k} \varphi\left(\frac{1}{2^{m}+1}\right)=2^{-n k} A_{12} \sum_{m=0}^{n} 2^{m k} \varphi\left(\frac{1}{2^{m}+1}\right) \leq
\end{aligned}
$$

ESTIMATION OF FOURIER AND QUASI-MONOTONE-FOURIER COEFFICIENTS 85
$\leq 2^{-n k} A_{12} A_{13} \sum_{m=0}^{n} 2^{m k} \varphi\left(\frac{1}{2^{m}}\right)=2^{-n k} A_{14} \sum_{m=0}^{n} 2^{m k} \varphi\left(\frac{1}{2^{m}}\right)$.
Since $2^{m k} \leq \int_{m}^{m+1} 2^{t k} d t$ for $t \in(m, m+1)$ the following relation holds: $\frac{1}{2^{m+1}}<\frac{1}{2^{t}}<\frac{1}{2^{m}}$. For $t=-\log _{2} \theta$ and according to the properties of φ $\varphi\left(\frac{1}{2^{m}}\right)=\varphi\left(\frac{1}{2^{m+1}}\right) \leq A_{15} \varphi\left(\frac{1}{2^{m+1}}\right) \leq A_{15} A_{16} \varphi\left(\frac{1}{2^{t}}\right)=A_{17} \varphi\left(\frac{1}{2^{t}}\right)$,
we have:
$\omega_{k}\left(f, \frac{1}{2^{n}}\right) \leq 2^{-n k} A_{14} \sum_{m=0}^{n} 2^{m k} \varphi\left(\frac{1}{2^{m}}\right) \leq$
$\leq 2^{-n k} A_{14} A_{17} \sum_{m=0}^{n} \int_{m}^{m+1} 2^{m t} \varphi\left(\frac{1}{2 t}\right) d t=2^{-n k} A_{18} \int_{0}^{n+1} 2^{m t} \varphi\left(\frac{1}{2^{t}}\right) d t=$
$=2^{-n k} \frac{A_{18}}{\ln 2} \int_{\frac{1}{2^{n+1}}}^{1} \frac{\varphi(\theta)}{\theta^{k+1}} d \theta=2^{-(n+1) k} A_{19} 2^{k} \int_{\frac{1}{2^{n+1}}}^{1} \frac{\varphi(\theta)}{\theta^{k+1}} d \theta=$
$=2^{-(n+1) k} A_{20} \int_{\frac{1}{2^{n+1}}}^{1} \frac{\varphi(\theta)}{\theta^{k+1}} d \theta \leq A_{20} A_{21} \varphi\left(\frac{1}{2^{n+1}}\right) \leq A_{20} A_{21} A_{23} \varphi\left(\frac{1}{2^{n}}\right)=$
$=A_{24} \varphi\left(\frac{1}{2^{n}}\right)$.
Since for every $a \in(0,1)$ there exists a natural number n such that $\frac{1}{2^{n}} \leq$ $a \leq \frac{2}{2^{n}}$, we have that

$$
\begin{aligned}
& \omega_{k}(f, a)_{p} \leq \omega_{k}\left(f, \frac{1}{2^{n-1}}\right)_{p} \leq 2^{k} \omega_{k}\left(f, \frac{1}{2^{n}}\right)_{p} \leq 2^{k} A_{24} \varphi\left(\frac{1}{2^{n}}\right) \leq \\
\leq & 2^{k} A_{24} A_{25} \varphi(\alpha)=A_{26} \varphi(\alpha)
\end{aligned}
$$

respectively $f \in H(p, k, \varphi), p \in[1, \infty]$, where $A_{i}, i=1,2, \ldots ., 26$ are constants not dependent on θ.

Theorem 2. The function $f(x) \backsim \sum_{m=-\infty}^{\infty} C_{m} e^{i m x}$ belongs to the class $H(p, k, \varphi)$, $p \in[1, \infty]$ if for its Fourier coefficients the following conditions are satisfied:
i) $\frac{\sqrt[4]{\sum_{|m|=1}^{n}|m|^{4 k} \sum_{|m|=1}^{n}\left|C_{m}\right|^{4}}}{n^{k}} \leq A_{1} \varphi\left(\frac{1}{n+1}\right)$ and

$$
\sqrt{\sum_{|m|=n+1}^{\infty}\left|C_{m}\right|^{2}} \leq A_{2} \varphi\left(\frac{1}{n+1}\right), \text { for } p \in[1,2] .
$$

ii) $\sqrt[2 p]{\sum_{|m|=1}^{n}|m|^{2 p(k+1)-4} \sum_{|m|=1}^{n}\left|C_{m}\right|^{2 p}} \leq A_{1} \varphi\left(\frac{1}{n+1}\right)$ and

$$
\sqrt[p]{\sum_{|m|=n+1}^{\infty}|m|^{p-2}\left|C_{m}\right|^{p}} \leq A_{2} \varphi\left(\frac{1}{n+1}\right), \text { for } p \in[2, \infty)
$$

iii) $\sqrt{\sum_{|m|=1}^{n}|m|^{2 k} \sum_{|m|=1}^{n}\left|C_{m}\right|^{2}} \leq A_{1} \varphi\left(\frac{1}{n+1}\right)$ and

$$
\sum_{|m|=n+1}^{\infty}\left|C_{m}\right| \leq A_{2} \varphi\left(\frac{1}{n+1}\right) \text {, for } p=\infty
$$

Proof. i) According to Prop. 2.2, using Cauchy-Bunjakowsky-Schwarz inequality and definition of the class $H(p, k, \varphi)$ for $p \in[1,2]$, we have:

$$
\begin{aligned}
& \omega_{k}\left(f, \frac{1}{n}\right) \leq A\left\{\frac{\left.\sqrt{|m|=1}\right|^{n}|m|^{2 k}\left|C_{m}\right|^{2}}{n^{k}}+\sqrt{\sum_{|m|=n+1}^{\infty}\left|C_{m}\right|^{2}}\right\} \leq \\
& \leq A\left\{\frac{\sqrt[4]{|m|=1}|m|^{4 k} \sum_{|m|=1}^{n}\left|C_{m}\right|^{4}}{n^{k}}+\sqrt{\left.\sum_{|m|=n+1}^{\infty}\left|C_{m}\right|^{2}\right\}}\right\} \leq \\
& \leq A\left\{A_{1} \varphi\left(\frac{1}{n+1}\right)+A_{2} \varphi\left(\frac{1}{n+1}\right)\right\} \leq \\
& \leq A\left(A_{1}+A_{2}\right) \varphi\left(\frac{1}{n+1}\right)=A_{3} \varphi\left(\frac{1}{n+1}\right) \Rightarrow f(x) \in H(p, k, \varphi), p \in[1,2]
\end{aligned}
$$

where A, A_{1}, A_{2}, A_{3} are constants not dependent on $f(x)$ and n. Conditions $i i)$ and $i i i)$ can be proved analogously.

Theorem 3. Let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$, be Fourier coefficients of a function $f(x) \in L_{p}, p \geq 1$. If the function $f(x)$ belongs to the class $H(p, k, \varphi), p \in$ $[1, \infty]$, then for its Fourier coefficients the following condition is satisfied:

$$
\frac{\sum_{m=n+1}^{2 n}\left(a_{m}+b_{m}\right)}{\sqrt[p]{n}} \leq A \varphi\left(\frac{1}{n+1}\right)
$$

where A is a constant not dependent on $f(x)$ and n.
Proof. Since $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ are Fourier coefficients of a function $f(x) \in L_{p}, p \geq 1, f(x)$ belongs to the class $H(p, k, \varphi), p \in[1, \infty]$ and according to relation 2.3 we have:
$\frac{\left|\sum_{m=n+1}^{2 n}\left(a_{m}+b_{m}\right)\right|}{\sqrt[p]{n}} \leq A_{1} E_{n}(f)_{p} \leq A_{1} A_{2} \omega_{k}\left(f, \frac{1}{n}\right)_{p} \leq$
$\leq A_{1} A_{2} \omega_{k}\left(f, \frac{2}{n+1}\right)_{p} \leq A_{1} A_{2} 2^{k} \omega_{k}\left(f, \frac{1}{n+1}\right)_{p}=A_{3} \omega_{k}\left(f, \frac{1}{n+1}\right)_{p} \leq$
$\leq A_{3} A_{4} \varphi\left(\frac{1}{n+1}\right)=A_{5} \varphi\left(\frac{1}{n+1}\right) \Rightarrow \frac{\left|\sum_{m=n+1}^{2 n}\left(a_{m}+b_{m}\right)\right|}{\sqrt[p]{n}} \leq A_{5} \varphi\left(\frac{1}{n+1}\right)$,
where $A_{i}, i=1,2, \ldots, 5$ are constants not dependent on $f(x)$ and n.
Theorem 4. Let the quasi-monotone sequences $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ be Fourier coefficients of a function $f(x) \in L_{p}, p \geq 1$. If the function $f(x)$ belongs to the class $H(p, k, \varphi), p \in[1, \infty]$, then for its Fourier coefficients the following condition is satisfied:

$$
\sqrt[p]{n^{p-1}}\left(a_{2 n}+b_{2 n}\right) \leq A \varphi\left(\frac{1}{n+1}\right)
$$

where A is constant dependent on $\tau>0$ defined in the relation (1.1.
Proof. Since the Fourier coefficients of the function $f(x) \in L_{p}, p \geq 1,\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are quasi-monotone, then for $m<2 n$ there exists constant A_{1} such that:

$$
(2 n)^{-\tau} a_{2 n} \leq A_{1} m^{-\tau} a_{m} \text { and }(2 n)^{\tau} b_{2 n} \leq A_{1} m^{-\tau} b_{m}
$$

Adding these inequalities we have:

$$
\begin{aligned}
& (2 n)^{-\tau}\left(a_{2 n}+b_{2 n}\right) \leq A_{1} m^{-\tau}\left(a_{m}+b_{m}\right) \\
& \Rightarrow m^{-\tau}\left(a_{m}+b_{m}\right) \geq \frac{1}{A_{1}}(2 n)^{-\tau}\left(a_{2 n}+b_{2 n)}\right. \\
& \Rightarrow a_{m}+b_{m} \geq A_{2}(2 n)^{-\tau}\left(a_{2 n}+b_{2 n}\right) m^{\tau},
\end{aligned}
$$

considering that $0<A_{2}<1$. From the system of inequalities

$$
\begin{aligned}
& a_{n+1}+b_{n+1} \geq A_{2}(2 n)^{-\tau}\left(a_{2 n}+b_{2 n}\right)(n+1)^{\tau} \geq A_{2}(2 n)^{-\tau}\left(a_{2 n}+b_{2 n}\right) n^{\tau} \\
& a_{n+2}+b_{n+2} \geq A_{2}(2 n)^{-\tau}\left(a_{2 n}+b_{2 n}\right)(n+2)^{\tau} \geq A_{2}(2 n)^{-\tau}\left(a_{2 n}+b_{2 n}\right) n^{\tau} \\
& a_{2 n}+b_{2 n} \geq A_{2}(2 n)^{-\tau}\left(a_{2 n}+b_{2 n}\right)(2 n)^{\tau} \geq A_{2}(2 n)^{-\tau}\left(a_{2 n}+b_{2 n}\right) n^{\tau}
\end{aligned}
$$

we get that

$$
\begin{aligned}
& \sum_{m=n+1}^{2 n}\left(a_{m}+b_{m}\right) \geq n A_{2}(2 n)^{-\tau}\left(a_{2 n}+b_{2 n}\right) n^{\tau}= \\
& A_{2} 2^{-\tau} n\left(a_{2 n}+b_{2 n}\right)=A_{3} n\left(a_{2 n}+b_{2 n}\right)
\end{aligned}
$$

and respectively, $a_{2 n}+b_{2 n} \leq \frac{\sum_{m=n+1}^{2 n}\left(a_{m}+b_{m}\right)}{A_{3} n}$. Now using the last inequality, since $f(x)$ belongs to the class $H(p, k, \varphi), p \in[1, \infty]$ and according to the relation (2.3) we have:

$$
\begin{aligned}
& a_{2 n}+b_{2 n} \leq \frac{\sum_{m=n+1}^{2 n}\left(a_{m}+b_{m}\right)}{A_{3} n} \leq \frac{A_{4} \sqrt[p]{n}}{A_{3} n} E_{n}(f)_{p}=\frac{A_{5}}{\sqrt[p]{n^{p-1}}} E_{n}(f)_{p} \\
\Rightarrow & \sqrt[p]{n^{p-1}}\left(a_{2 n}+b_{2 n}\right) \leq A_{5} E_{n}(f)_{p} \leq A_{6} \omega_{k}\left(f, \frac{1}{n}\right)_{p} \leq \\
& \leq A_{6} A_{7} \omega_{k}\left(f, \frac{2}{n+1}\right)_{p} \leq A_{7} 2^{k} \omega_{k}\left(f, \frac{1}{n+1}\right)_{p} \leq A_{8} \omega_{k}\left(f, \frac{1}{n+1}\right)_{p} \leq \\
& \leq A_{8} A_{9} \varphi\left(\frac{1}{n+1}\right)=A_{10} \varphi\left(\frac{1}{n+1}\right) \\
\Rightarrow & \sqrt[p]{n^{p-1}}\left(a_{2 n}+b_{2 n}\right) \leq A_{10} \varphi\left(\frac{1}{n+1}\right)
\end{aligned}
$$

where $A_{i}, i=1,2, \ldots, 10$, are constants dependent on τ, which is defined in the relation 1.1).

References

[1] М. Ч. Бериша, О коэффициетах Фурье периодических функиий, принадлежащих классам Николького, Publ. Inst. Math. (Beograd) (N.S.), 32(46) (1982), 1725.
[2] M. Q. Berisha, Procena pomoću modula glatkosti Fourier-ovih koeficjenata funkcije klase $H(p, k, \varphi)$, Mat. vesn. 6(19)(34) (1982), 231-236.
[3] А. Конюшков, Наилучшие приближения тригонометрическими полиномами и коэффициенть Фурье, Матем. сб., 1958, 44(86), 1, 53-84.
[4] J. Кореваар, Fourier analysis and related topics, Амстердам, Спринг, 2011.
[5] М. К. Потапов, Теоремь Харди-Литтьлвуда, Маркинецевича ЛиттьлвудаПәли, приближение "углом" и вложение некаторых классов функиий, Mathematica, 14(37), 2, 1972, 339-369.
[6] M. K. Potapov, M. Q. Berisha, Moduli of smoothness and the Fourier coefficients of periodic functions of one variable, Publ. Inst. Math. (Beograd) (N.S.), 26(40) (1979), 215-228.
[7] Е.С. Смаилов, Тригонометрические ряди Фурье с квазимонотонными коәффициентами, Деп. в. Винити АН СССР, 1988.
[8] S. M. Shah, Trigonometric series with quasi-monotone coefficients, Proc. Amer. Math. Soc. 13 (1962), 226-273.
[9] A. F. Timan, Theory of approximation of functions of a real variable, (translated by J. Berry), Oxford, England, Pergammon Press, 1963.
[10] A. Zygmund, Trigonometric Series, vol. 1 and 2, Third edition Cambridge University Press, Cambridge, UK, 2002.

Shpetim Rexhepi, Samet Kera
Mother Teresa University,
Faculty of Technical Sciences,
1000 Skopje, North Macedonia,
E-mail address: shpetim.rexhepi@unt.edu.mk
E-mail address: samet.kera@unt.edu.mk

Halil Snopce
Southeast European University,
Faculty of Computer Sciences,
Ilindenska 335, 1200 Tetovo, North Macedonia
E-mail address: halil.snopce@seeu.edu.mk

[^0]: 2010 Mathematics Subject Classification. Primary: 42A16.
 Key words and phrases. Nikol'skii class, quasi-monotone coefficient, best approximation, modulus of smoothness.

