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WAVE FRONTS OF ULTRADISTRIBUTIONS VIA FOURIER

SERIES COEFFICIENTS

DIJANA DOLI�ANIN-DJEKI�, SNJEZANA MAKSIMOVI�, AND PETAR SOKOLOSKI

Abstract. We shall use the properties of the product of periodic ultradistri-
butions and give a new description of the wave front of an ultradistribution
f ∈ D∗′(Rd) in terms of Fourier series coe�cients.

1. Introduction

We have analyzed in [14] the wave front and the Sobolev wave front for distri-
butions through the Fourier coe�cients of their appropriate localizations. In this
paper we extend the ideas of [14] to ultradistribution spaces. More precisely, we
analyze the microlocal properties of an ultradistribution f at x0 ∈ Rd which are
determined through the Fourier series expansion of periodizations of ϕf , where ϕ
is a cut-o� function near x0.

Spaces of periodic ultradistributions have been studied mostly in the last 30
years of the last century. We refer here just a few of the papers and books [5, 6,
7, 15] and also to the papers [18, 17] for the discrete wave fronts which provide
another approach to the microlocal analysis. We refer to [3, 4, 10, 11, 16] for a
new approach to the analysis of wave fronts and to [1, 2, 12, 19, 20, 22] for the
theory of periodic distributions. The main di�erence between the study of periodic
distributions and periodic ultradistributions is in the weight functions we use and
the consequences. This will be explained in this paper.

1.1. Notation. We follow our notation from [14]. For x = (x1, . . . , xd) ∈ Rd, we
write |x|= (x2

1 + . . . + x2
d)

1/2 and 〈x〉 = (1 + |x|2)1/2. Let 0 < η ≤ 1. We will use
the notation

Iη,x =

d∏
j=1

(xj − η/2, xj + η/2) and Iη := Iη,0.

We refer to [13] for the spaces of ultradi�erentiable functions and their duals,
spaces of ultradistributions. In our case, we consider spaces determined by the
Gevrey sequence of positive numbers Mp = p!s , p ∈ N0 for some s > 1. The
sequences of this type satisfy the conditions (M.1), (M.2), (M.3) of Komatsu [13].
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Recall that functions or ultradistributions on Rd are periodic of period 1 in each
variable, if f(x+ n) = f(x), for all x ∈ Rd, n ∈ Zd. We put ey for ey(x) = e2πiy·x,
y ∈ Rd. We will consider periodic extensions of localizations of ultradistributions
around a point x0 ∈ Rd, so if an ultradistribution g is supported by Iη,x0

, with
0 < η < 1, we shall write gp(x) :=

∑
n∈Zd g(x+ n) for its periodic extension.

1.2. Spaces of ultradi�erentiable functions and their duals. The space of
periodic test functions P∗ = P∗(Rd) where ∗ = (s), (respectively ∗ = {s})
(Beurling and Roumieu cases, respectively) consists of all the ultradi�erentiable
periodic functions ϕ of Beurling and Roumieu classes, respectively. It is proved
in [7] that ϕ is periodic ultradi�erentiable function of order s of Roumieu type
P{s}(Rd), (resp., Beurling type P(s)(Rd)) if and only if∑

n∈Zd
|ϕn|2 exp(2α1/s|n|1/s) <∞,

for some (resp., any) α > 0, where ϕn =
∫
I1
ϕ(x)e−2πin·xdx = 〈ϕ, e−n〉, n ∈ Zd.

The dual space of P∗, the space of periodic ultradistributions, is denoted by
(P∗)′. Recall [7]: f =

∑
n∈Zd fnen is a periodic ultradistribution of order s of

Roumieu (Beurling) type if and only if
∑
n∈Zd |fn|

2
exp(−2α1/s|n|1/s) < ∞, for

any (some) α > 0. If f =
∑
n∈Zd fnen ∈ (P∗)′ and ϕ =

∑
n∈Zd ϕnen ∈P∗, then

〈f, ϕ〉 =
∑
n∈Zd fnϕ−n.

In the sequel, we will consider only Roumieu type basic spaces and their duals.
The corresponding results for the Beurling type spaces are similar and even easier
to prove.

Let ω, ν be positive functions over Zd. We call the function ν submultiplicative

if

ν(m+ n) ≤ ν(m)ν(n), ∀m,n ∈ Zd. (1.1)

The function ω is a ν-moderate weight if there is a constant C such that

ω(m+ n) ≤ Cω(m)ν(n), ∀m,n ∈ Zd. (1.2)

For a �xed submultiplicative function ν, the set of all ν-moderate weights is Mν .
Following [11], for s > 1,

M{s}(Zd) = {ω ∈Mν : (∃C > 0)(∃k > 0)(∀n ∈ Zd)(ν(n) ≤ Cek|n|
1/s

)}.

For ω ∈M{s}(Zd), we de�ne

Plqω = {f ∈ (P{s})′ : {fnω(n)}n∈Zd ∈ lq, where fn = 〈f, e−n〉}

supplied by the norm ‖f‖Plqω= ‖{fnω(n)}‖lq .We consider from now on only values
q ≥ 1. Clearly, Plq1ω1

⊆ Plq2ω2
, if q1 ≤ q2 and ω2 ≤ Cω1. We will also consider

the local space Plqω,loc consisting of distributions f ∈ (D{s})′(Rd) such that the

periodic extensions (ϕf)p ∈Plqω, for all x0 ∈ Rd and ϕ ∈ D{s}(I1,x0
). Its topology

is de�ned via the family of seminorms ‖f‖x0,ϕ= ‖(ϕf)p‖Plqω , where x0 ∈ Rd and

ϕ ∈ D{s}(I1,x0). For the sake of completeness, we give the following elementary
proposition (its proof also shows that the de�nition of Plqω,loc is consistent).
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Proposition 1.1. Plqω ⊂Plqω,loc.

Proof. Let f ∈Plqω and ϕ ∈ D{s}(I1,x0
), then (ϕf)p = ϕpf . Write f =

∑
n fnen

and ϕp =
∑
n ϕnen ∈ P{s}. By (1.2) and the generalized Minkowski inequality,

we have

‖ϕpf‖Plqω ≤ C

∑
n

∑
j

|ϕj |ν(j)|fn−j |ω(n− j)

q1/q

≤ C‖ϕp‖Pl1ν
‖f‖Plqω<∞.

�

For �xed s > 1, set ωk(n) = ek|n|
1/s

, k ∈ R. For convenience, we write Plqk :=
Plqωk and Plqk,loc := Plqωk,loc. We clearly have

P{s} =
⋂
k≥0

Plqk =
⋂

ω∈M{s}(Zd)

Plqω

and

(P{s})′ =
⋃
k≤0

Plqk =
⋃

ω∈M{s}(Zd)

Plqω .

Moreover,

E {s} =
⋂
k≥0

Plqk,loc =
⋂

ω∈M{s}(Zd)

Plqω,loc

and

(D{s})′F =
⋃
k≤0

Plqk,loc =
⋃

ω∈M{s}(Zd)

Plqω,loc ,

where E {s} is the space of all ultradi�erentiable functions of order s of Roumieu
type and (D{s})′F is the space of ultradistributions of �nite order of Roumieu type

on Rd, that is g ∈ (D{s})′F if for some ultradi�erential operator P of class {s} and
some G, continuous on Rd, there holds g = P (D)G,[13].

1.3. Multiplication within periodic test spaces. We �x two weight functions
ω ∈ Mν , ν ∈ M{s}(Zd) (cf. (1.2)). Let f1 =

∑
n∈Zd f1,nen ∈ Plq1ω and f2 =∑

n∈Zd f2,nen ∈Plq2ν . Then we de�ne their product as f := f1f2 :=
∑
n∈Zd fnen,

where

fn =
∑
j∈Zd

f1,n−jf2,j , n ∈ Zd.

This de�nition allows us to introduce multiplication in the local versions of these
spaces. Let f1 ∈Plq1ω,loc and f2 ∈Plq2ν,loc. Then the product f := f1f2 is de�ned

as follows. Let x0 ∈ Rd, 0 < η < 1 and let φ ∈ D{s}(I1,x0
) be such that φ(x) = 1

for x ∈ Iη,x0
. We de�ne fIη,x0 ∈ (D{s})′(Iη,x0

) as the restriction of (φf1)p(φf2)p
to Iη,x0 . Note that di�erent choices of φ lead to di�erent Fourier coe�cients but,
by Proposition 1.1, we have fIη,x0 = fIη′,x′0

on Iη,x0 ∩ Iη′,x′
0
. Thus, by {fIη,x0} we

have a distribution f ∈Plqω,loc as the product of f1f2 := f .
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Proposition 1.2. Let q, q1, q2 ∈ [1,∞] are such that 1
q1

+ 1
q2

= 1
q + 1. Then the

mappings

Plq1ω ×Plq2ν 3 (f1, f2) 7→ f1f2 ∈Plqω (1.3)

and

Plq1ω,loc ×Plq2ν,loc 3 (f1, f2) 7→ f1f2 ∈Plqω,loc (1.4)

are continuous.

Proof. The continuity of (1.4) follows from (1.3), while (1.3), Young's inequality
and (1.2) imply

‖f1f2‖Plqω≤ C‖f1‖Pl
q1
ω
‖f2‖Pl

q2
ν
.

�

As a corollary, we have:

Corollary 0.1. Let k, k1, k2 ∈ R,

k1 + k2 ≥ 0, k ≤ min{k1, k2}. (1.5)

Then, the mappings Plq1k1 × Plq2k2 3 (f1, f2) 7→ f1f2 ∈ Plqk and Plq1k1,loc ×
Plq2k2,loc 3 (f1, f2) 7→ f1f2 ∈Plqk,loc are continuous.

Proof. Assume k1 ≥ 0 and k = k2 (it is not a restriction). Clearly k1 ≥ |k2| has to
hold in order to have k1 + k2 ≥ 0. The continuity then follows from Proposition

1.2 with ω(n) = ek2|n|
1/s

and ν(n) = ek1|n|
1/s

because (1.2) holds in this case. �

2. Wave Front

As in the case of distributions, our aim is to describe the wave front of an
f ∈ (D{s})′(Rd) via the Fourier series coe�cients of the periodic extension of an
appropriate localization of f around x0 ∈ Rd. Recall that (x0, ξ0) /∈ WF (f) if
there exist ψ ∈ (D{s})′(Rd) with ψ ≡ 1 in a neighborhood of x0 and an open cone
Γ ⊂ Rd \ {0} containing ξ0 such that

(∃N > 0)(∃CN > 0))(∀ξ ∈ Γ) |ψ̂f(ξ)|≤ CNe−N |ξ|
1/s

. (2.1)

Theorem 1. Let f ∈ (D{s})′(Rd) and (x0, ξ0) ∈ Rd × (Rd \ {0}). The following

conditions are equivalent:

(i) There exist φ ∈ D{s}(Iε,x0), with ε ∈ (0, 1) and φ ≡ 1 in a neighborhood

of x0, and an open cone Γ containing ξ0 such that

(∃N ∈ N)(∃CN > 0)(∀n ∈ Γ ∩ Zd) |ψ̂f(n)|≤ CNe−N |n|
1/s

. (2.2)

(ii) (x0, ξ0) /∈WF (f).

Proof. The proof is similar to the one given in [14] for distributions, but for the
sake of completeness we give all the details. By shrinking the conic neighborhood
of ξ0, we can choose ψ in (2.1) with arbitrarily small support around x0. With
this (ii) implies (i). So, now it is enough to show that (i) implies (ii). Assume
(i). We will prove that there are ε′ and an open cone ξ0 ∈ Γ1 such that

(∀B bounded set in D{s}(Iε′,x0
))(∀N > 0)(∃C ′N > 0)
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(∀n ∈ Γ1 ∩ Zd) sup
ϕ∈B
|ϕ̂f(n)|≤ C ′Ne−N |n|

1/s

. (2.3)

Let ε′ be such that φ(x) = 1 for every x ∈ Iε′,x0
. Let Γ1 be an open cone

with ξ0 ∈ Γ1 and Γ1 ⊂ Γ ∪ {0}. Let 0 < c < 1 be a constant smaller than
the distance between ∂Γ and the intersection of Γ1 with the unit sphere. Then{
y ∈ Rd : (∃ξ ∈ Γ1)(|ξ − y|≤ c|ξ|)

}
⊂ Γ. Let B ⊂ D{s}(Iε′,x0

) be a bounded set.

Since φϕ = ϕ, ∀ϕ ∈ B we have that f̂ϕ(n) are the Fourier coe�cients of the
periodic distribution (φf)p(ϕ)p. Thus, for ϕ ∈ B and n ∈ Γ1 ∩ Zd,∣∣∣ϕ̂f(n)

∣∣∣ =

∣∣∣∣∣∣
∑
j∈Zd

φ̂f(n− j)ϕ̂(j)

∣∣∣∣∣∣ ≤ (
∑
|j|≤c|n|

+
∑
|j|>c|n|

)|φ̂f(n− j)ϕ̂(j)|

=: I1(n) + I2(n)

Now we estimate I1(n):

I1(n) =
∑

|n−j|≤c|n|

|φ̂f(j)||ϕ̂(n− j)|≤ C sup
|n−j|≤c|n|

|φ̂f(j)|,

where C only depends on B. Since |n− j|≤ c|n| implies |j|≥ (1− c)|n|, we have

sup
ϕ∈B, n∈Γ1

e−N |n|
1/s

I1(n) ≤ C sup
n∈Γ1

e−N |n|
1/s

sup
|n−j|≤c|n|

|φ̂f(j)|

≤ C sup
j∈Γξ0

(1− c)−Ne−N |j|
1/s

|φ̂f(j)| = C(1− c)−NCN .
(2.4)

Next we estimate I2. For this we use that |n− j|≤ (1 + c−1)|j| if |j|≥ c|n|. By the
Paley-Wiener theorem, there are M > 0, D > 0 such that

|φ̂f(n− j)|≤ De−M |n−j|
1/s

, n, j ∈ Zd.

The boundedness of B ⊂ D{s}(Rd), implies

sup
ϕ∈B

∑
j∈Zd

e(M+N)|j|1/s |ϕ̂(j)|=: KN <∞.

Moreover, we have

sup
n∈Γ1

e−N |n|
1/s

I2(n) ≤ D sup
n∈Γ1

e−N |n|
1/s ∑
|j|≥c|n|

eM |n−j|
1/s

|ϕ̂(j)|

≤ DC−N (1 + c−1)MKN , ∀ϕ ∈ B.
(2.5)

By (2.4) and (2.5), we obtain (2.3).
Now we show that (x0, ξ0) /∈ WF (f) by (2.3). Let ψ ∈ D{s}(Iε′,x0

) be equal
to 1 in a neighborhood of x0. Then, the set B = {ϕt := ψe−t : t ∈ [0, 1)d} is a
bounded subset of D{s}(Iε′,x0

). This implies

sup
t∈[0,1)d

|ψ̂f(n+ t)|= sup
t∈[0,1)d

|ϕ̂tf(n)|≤ C ′N
eN |n|1/s

, ∀n ∈ Γ1 ∩ Zd,

sup
ξ∈(Γ1∩Zd)+[0,1)d

|eN |ξ|
1/s

ψ̂f(ξ)|≤ (1 + 4d)N/2C ′N . (2.6)
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Let Γ2 be an open conic neighborhood of ξ0 such that Γ2 ⊂ Γ1 ∪ {0} and let c′ be
such that

{
y ∈ Rd : (∃ξ ∈ Γ2)(|ξ − y|≤ c′|ξ|)

}
⊂ Γ1. Then Γ2 ∩ {ξ ∈ Rd : |ξ|c′ ≥

1} ⊂ (Γ1 ∩ Zd) + [0, 1)d. Thus

sup
ξ∈Γ2

eN |ξ|
1/s

|ψ̂f(ξ)|≤ max{C ′′N , (1 + 4d)N/2C ′N} = CN <∞,

where C ′′N = supξ∈Γ2, |ξ|<1/c′ e
N |ξ|1/s |ψ̂f(ξ)|. This shows that (x0, ξ0) /∈ WF (f).

The assertion is proved. �
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