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WAVE FRONTS OF ULTRADISTRIBUTIONS VIA FOURIER
SERIES COEFFICIENTS

DIJANA DOLICANIN-DJEKIC, SNJEZANA MAKSIMOVIC, AND PETAR SOKOLOSKI

Abstract. We shall use the properties of the product of periodic ultradistri-
butions and give a new description of the wave front of an ultradistribution
f € 2*'(R?) in terms of Fourier series coefficients.

1. INTRODUCTION

We have analyzed in [14] the wave front and the Sobolev wave front for distri-
butions through the Fourier coefficients of their appropriate localizations. In this
paper we extend the ideas of [14] to ultradistribution spaces. More precisely, we
analyze the microlocal properties of an ultradistribution f at zq € R% which are
determined through the Fourier series expansion of periodizations of ¢ f, where ¢
is a cut-off function near z.

Spaces of periodic ultradistributions have been studied mostly in the last 30
years of the last century. We refer here just a few of the papers and books [5, 6,
7, 15] and also to the papers [18, 17] for the discrete wave fronts which provide
another approach to the microlocal analysis. We refer to [3, 4, 10, 11, 16] for a
new approach to the analysis of wave fronts and to [1, 2, 12, 19, 20, 22] for the
theory of periodic distributions. The main difference between the study of periodic
distributions and periodic ultradistributions is in the weight functions we use and
the consequences. This will be explained in this paper.

1.1. Notation. We follow our notation from [14]. For # = (z1,...,z4) € R, we
write |z|= (2?2 + ...+ 22)Y/2 and (z) = (1 + |2]?)Y/2. Let 0 < < 1. We will use

the notation .

In,x = H(x] - 77/2,1']‘ + 77/2) and I77 = 1n,0-
j=1
We refer to [13] for the spaces of ultradifferentiable functions and their duals,
spaces of ultradistributions. In our case, we consider spaces determined by the
Gevrey sequence of positive numbers M, = p!*,p € Ny for some s > 1. The
sequences of this type satisfy the conditions (M.1), (M.2), (M.3) of Komatsu [13].
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Recall that functions or ultradistributions on R¢ are periodic of period 1 in each
variable, if f(z +n) = f(z), for all x € R, n € Z. We put e, for e, (z) = e>™¥®,
y € R? We will consider periodic extensions of localizations of ultradistributions
around a point zo € R?, so if an ultradistribution g is supported by Iy 2y, With
0 <7 < 1, we shall write g,(x) := >, 1 g(x +n) for its periodic extension.

1.2. Spaces of ultradifferentiable functions and their duals. The space of
periodic test functions 2* = 2*(R%) where * = (s), (respectively * = {s})
(Beurling and Roumieu cases, respectively) consists of all the ultradifferentiable
periodic functions ¢ of Beurling and Roumieu classes, respectively. It is proved
in [7] that ¢ is periodic ultradifferentiable function of order s of Roumieu type
P21sHRD), (resp., Beurling type 2(9)(R?)) if and only if

> lonl* exp(2a'/*|n|'/*) < o0,
nezl

for some (resp., any) a > 0, where ¢, = fh p(x)e~ ™ edy = (p,e_p,),n € Z4.
The dual space of &*, the space of periodic ultradistributions, is denoted by
(2*)". Recall [7]: f = 3 cya fnen is a periodic ultradistribution of order s of
Roumieu (Beurling) type if and only if ) ;. | ful” exp(—2a/5|n|1/5) < oo, for
any (some) a > 0. If f=3" /4 fnen € (%) and p =} ,apne, € P*, then
<f7 <)0> = ZnEZd fn%o—n-

In the sequel, we will consider only Roumieu type basic spaces and their duals.
The corresponding results for the Beurling type spaces are similar and even easier
to prove.

Let w, v be positive functions over Z%. We call the function v submultiplicative

if
v(m4n) <v(im)v(n), Ym,n € Z% (1.1)
The function w is a v-moderate weight if there is a constant C' such that
w(m+n) < Cw(m)v(n), Ym,n e Z%. (1.2)

For a fixed submultiplicative function v, the set of all v-moderate weights is .Z,,.
Following [11], for s > 1,

My (Z0) = {w € M, - (3C > 0)(3hk > 0)(vn € Z) (v(n) < CeHI")}.
For w e //{s}(Zd), we define
Pl ={f € (21) : {fuw(n)}peze €19, whete f = (f,e-n)}

supplied by the norm || f{| gja = [[{ faw(n)}|/1a. We consider from now on only values
q > 1. Clearly, I} C 2122, if q1 < q2 and wy < Cw;. We will also consider
the local space 21% ,  consisting of distributions f € (2{*})(R?) such that the

w,loc
periodic extensions (pf), € 219, for all o € R% and ¢ € 2{}(I; ,,). Tts topology
is defined via the family of seminorms || f||zo,o= [(¢.f)pl 2212, Where zo € R? and
Y € .@{S}(Il,mo). For the sake of completeness, we give the following elementary

proposition (its proof also shows that the definition of 221 ,  is consistent).
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Proposition 1.1. 2[4 c 2]!

w,loc”

Proof. Let f € 219 and ¢ € 9{3}(11@0), then (of), = ppf. Write f =3 fnen
and @, = >, pnen, € 21H By (1.2) and the generalized Minkowski inequality,
we have

a\ /g

lepfllos < C 1D leslv()] fajlwln = 5)
J

n

< Cllepll il fll g < oo
O

For fixed s > 1, set w(n) = ekIn’* k€ R. For convenience, we write 2l =
218, and BZZZJOC =21 We clearly have

wp wp,loct
P =N2i= [\ 2
k>0 WEM sy (ZY)
and
(tly=Joii= | o.
£<0 weM sy (Z4)
Moreover,
sleh = ﬂ '@lk Jloc — ﬂ '@lw Jloc
k>0 weM () (Z4)
and
@{} Uglklm: U ‘@lwl()(”
k<0 weM () (Z4)

where &1} is the space of all ultradifferentiable functions of order s of Roumieu
type and (@{3})1p is the space of ultradistributions of finite order of Roumieu type
on RY, that is g € (21}, if for some ultradifferential operator P of class {s} and
some G, continuous on R?, there holds g = P(D)G,[13].

1.3. Multiplication within periodic test spaces. We fix two weight functions
w € My v € M (Z) (cf. (1.2)). Let fi = 3, cz0 finen € PI and fo =
Y nezd f2nen € 2132, Then we define their product as f := fif2 := >, cpa fuen,
where
In = Z fin—jfoj, nez.
JEZ?

This definition allows us to introduce multiplication in the local versions of these
spaces. Let fi € 211!, and fo € 2177 .. Then the product f := fifs is defined

w,loc

as follows. Let z € Rd, 0<n<1landlet ¢p € 28}(I,,,) be such that ¢(z) =

for z € I, ,,. We define f;, € (211 (I,).2,) as the restriction of (¢f1),(¢f2)p
to I, z,. Note that different choices of ¢ lead to different Fourier coefficients but,
by Proposition 1.1, we have f;, = fln/,z/ on Iy o N Ly 4. Thus, by {fr, . } we

have a distribution f € 21, as the product of f;fo := f.

w,loc
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Proposition 1.2. Let q,q1,q2 € [1,00] are such that q% + q% = % + 1. Then the
mappings

4@13} X ngg2 B (fl,fQ) — fife € 3213) (13)
and
,@lgl,loc X ‘@lg?loc > (fl,fg) — fifs € ‘@lg,loc (14)

are continuous.

Proof. The continuity of (1.4) follows from (1.3), while (1.3), Young’s inequality
and (1.2) imply
1f1f2ll 212 < Cllfill gz M| foll iz -

As a corollary, we have:

Corollary 0.1. Let k, k1, ks € R,
k’l + k’g Z O, k S min{kl, kg} (15)

Then, the mappings PU: x PU% > (f1,f2) = fife € P and I . x
LU 3 (fi,fo)— fif2 € QZZJOC are continuous.

ko ,loc
Proof. Assume k; > 0 and k = ko (it is not a restriction). Clearly k; > |k2| has to
hold in order to have k1 + k2 > 0. The continuity then follows from Proposition
1.2 with w(n) = k2" and v(n) = ek1I"""* because (1.2) holds in this case. [

2. WAVE FRONT

As in the case of distributions, our aim is to describe the wave front of an
f € (2%} (R?) via the Fourier series coefficients of the periodic extension of an
appropriate localization of f around o € R%. Recall that (zo,&) ¢ WF(f) if
there exist 1 € (21%})'(RY) with ¢ = 1 in a neighborhood of 2y and an open cone
I' € R\ {0} containing & such that

(AN > 0)(3Cy > 0))(Y€ €T) [F(€)|< Cye N (2.1)
Theorem 1. Let f € (211 (RY) and (z9,&) € RY x (R?\ {0}). The following

conditions are equivalent:
(i) There exist ¢ € 21H(1. 4,), with ¢ € (0,1) and ¢ = 1 in a neighborhood
of xg, and an open cone I' containing &, such that
(3N € N)(3Cx > 0)(¥n € TN ZY) [ (n)|< Cye N (2.2)
(ii) (zo,80) € WE(f).

Proof. The proof is similar to the one given in [14] for distributions, but for the
sake of completeness we give all the details. By shrinking the conic neighborhood
of &, we can choose 1 in (2.1) with arbitrarily small support around zg. With
this (¢¢) implies (¢). So, now it is enough to show that (i) implies (i¢). Assume
(7). We will prove that there are ¢’ and an open cone &, € I'; such that

(VB bounded set in 2} (I, ,,))(¥YN > 0)(3C% > 0)
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(Vn e Ty NZY) sggkﬁ(nﬂg CJ’Ve_N‘"P/S. (2.3)
»

Let ¢’ be such that ¢(xz) = 1 for every x € I ,,. Let I'y be an open cone
with & € Ty and T'; € TU{0}. Let 0 < ¢ < 1 be a constant smaller than
the distance between OI' and the intersection of I'; with the unit sphere. Then
{yeR: (3 el)(|E—y|<cl])} CT. Let B C 2141 ,,) be a bounded set.
Since ¢ = ¢, Vo € B we have that fg\o(n) are the Fourier coefficients of the
periodic distribution (¢f),(¢),. Thus, for ¢ € B and n € Ty N Z4,

o)) = | X2 oFm—i)2) < ( X0 + D Nefn— el
jezd lil<eln|  |j|>cln]|
2 I1(n) + Iz(n)

Now we estimate I;(n):

Ln)y= Y 1efM)llgn—3)I<C sup |6f(),

In—3l<eln] In—3|<eln]

where C only depends on B. Since |n — j|< ¢|n| implies |j|> (1 — ¢)|n|, we have

sup e N L (n) < 0 sup VT sup(9F ()
@pEB, nel nely In—j|<c|n|

<C sup (1—¢) Ve NI 157(j) = C(1 - )" NC.
J€Tle,

(2.4)

Next we estimate Io. For this we use that |n — j|< (14 c¢71)|j] if [j|> c|n|. By the
Paley-Wiener theorem, there are M > 0, D > 0 such that
[6f(n = )| De= M= g, e 7,
The boundedness of B ¢ 215} (R9), implies
/8|
sup Z (M+N)jI! 1(j)|=: Ky < oo.
PE€B jega
Moreover, we have
sup e NI Iy (n) < D sup e NN Ml 5
el et 3 >elnl (2.5)
<DC N1+ cHYMKy, VpeB.
By (2.4) and (2.5), we obtain (2.3).
Now we show that (xo,&) ¢ WF(f) by (2.3). Let ¢ € 2{3}(I./ ,,) be equal

to 1 in a neighborhood of zg. Then, the set B = {¢; := ve_; : t € [0,1)4} is a
bounded subset of 21} (I ). This implies

— — '
sup [ f(n+t)|= sup |of(n)|< WA‘Z/M vn el NZY,
telo,1)d tel0,1)d €
sup  [eNETGF(O)< (14 4d)N2CY (2.6)

£e(T1NZ4)4[0,1)4
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Let I's be an open conic neighborhood of &y such that Ty CcTi U {0} and let ¢’ be
such that {y € RY: (3¢ € T9)(|¢ —y|< [€))} C T Then Ty N{€ € R : ¢l >
1} ¢ (Ty N Z%) +[0,1)4. Thus

gulp eN|§|1/5|7Z}(§)\§ max{C%, (1 +4d)N2C\} = Cn < o0,
el’s

e~ )
where C{; = supecr, . jej<1/e €€ [0 f(€)]. This shows that (zo,&) & WF(f).
The assertion is proved. (|
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