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QUASITRIANGULARITY OF THE WEIGHTED SHIFT
OPERATORS WITH SPECIAL OPERATOR WEIGHTS

Muhib R. Lohaj

Abstract

In this paper are given necessary and sufficient conditions for
quasitriangularity of certain weighted shift operators with opera-
tor weights, in terms of the weight sequence, approximate point
spectrum, essential spectrum and Weyl’s spectrum. The main re-
sult is Theorem 2, where it is shown that if T is a unilateral weighted
shift with weights A;,7 € N such that A;/||A;| are isometry, then

T is quasitriangular if and only if 1y infl A =0
ieN

Introduction

Let H be a complex, separable Hilbert space and let L(H) denote the
algebra of all bounded, linear operators acting in H. An operator T in L(H)
is said to be quasidiagonal (quasitriangular, respectively) if there exists a
sequence (P, )neN of orthogonal projections of finite rank such that P, — 1
(strongly, n — o0) and | TP, — P,T|| = 0asn — oo(||TP, — P,TP,|| — 0
as n — 00). It is well known that every quasidiagonal operator is the sum
of a bloc-diagonal and compact operator and that every quasitriangular
operator is the sum of a triangular and compact operator. The class of
quasidiagonal operators is denoted by (QD), whereas the class of quasitri-
angular operators is denoted by (QT'). From the definition of quasidiagonal
(quasitriangular) operator, it is easy to see that every quasidiagonal oper-
ator is quasitriangular. An operator is said to be biquasitriangular (of
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(BQT)) class) if both T and T™ are quasitriangular.

Recall that an operator T € L(H) has a circular symmetry if T is
unitarily equivalent to the e®®T, 8 € R. Such example of operators are
weighted shifts with scalar weights and weighted shift operators with oper-
ator weights.

R.A.Smucker, extensively has analyzed quasidiagonal operators in [10]
and in {11] he gave a necessary and sufficient conditions for quasidiagonality
of weighted shifts

Our purpose in this note is to give some analogical results for qua-
sitriangularity of unilateral weighted shift operators with special operator
weights. Firstly, we need some consequences for approximate point spec-
trum of these operators.

1. Approximate point spectrum of weighted shift
operator with special operator weights

Let H; be Hilbert spaces and H; = X, where X is a separable Hilbert

space of finite or infinite dimension and let H = 2; H; (H = 290 Hi>.
i=1 i=—00

Let ¢ = (z;), y = (y;) € H. It is easy to see that the inner product (,) in

H is defined by the equality

(CE, y) = Z(xia yz)

Where (z;,y;) is an inner product of vectors z;,y; € H; for i € N(i € Z).
Next, let (A;);en(icz) be a uniformly bounded sequence of operators acting

from H; into H; ;. An operator T € L( g H,-) is said to be a unilateral
i=1

weighted shift operator with operator weights A; if
T(z1,22,...,Zn,...) = (0, A121, Aoxa, ..., AnZn,...)
oC
forall z = (z;) € @ H;.
i=1
An operator T € L( ZS Hi) is said to be a bilateral weighted shift
i=—0C
operator with operator weights A; if

T(...,x_9,%1,%0,T1,T2,...) =

= ( cey A_3:L‘_3, A_zl‘_z, A_lx_l, Aomo, AlzL'l, .. )
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+o00
forallz =(z;)e @ H,.

i=—oc

Lemma 1. T € L( Z.S Hi) be a unilateral weighted shift operator
=1
with operator weights A; such that

|Aizl| = [|Asll |z, =€ H;, i€N,
then

lenlf 1T ||/ = mf [ Aksn—1 .- Apr1Akl|/™.

Proof. Obviously,

inf 7"z < inf ||T7(0,...,0,2x,0,...)|?
inf TP < inf [T7(0,..,0,24,0,...)

= e ” | Akt - - - Axr1Axzs]2
2y |=1

Hence, we have

0 T2 < nf ko Arss il (2)

On the other hand

o
IT 2| = [ Aktn-i - - Aps1Aezel|? =

o0
=) Aksn-1-- - Aprr APl >
k=1

S 2 2
—1321{: |Ak+n-1- - Art1 4kl kzlllfck“

Therefore

HlﬂfIHTnﬂ’lP 2 inf [|Axsn-1- o Akr1 Ak

or



70 Muhib R. Lohaj

HH”lf 1Tz > 1nf | Ak+n—1--. Ak+14x] - (3)

From inequalities (2) and (3) we obtain

inf ||77z||Y"™ = inf | Akanei ... ApsiAgl|Y™
it I I keNH k+n—1 k+1 A%

and the proof of the lemma is completed.
Further on, let o(T") denote the spectrum of the operator T, o,(T)
its approximate point spectrum, o,(T) its point spectrum and

m(T) = h llllf |ITz|| its lower bound. Let i(T") denote supm(T")l/" then

it is well known that (T) = supm(T")l/" = hm m(T")l/" and o,(T) C

{Ae C:H(T) < [N\ < r(T)}, where r(T) is the spectral radius (see [6], [8]).
According to Lemma 1 we obtain

i(T)= lim inf ||T"z|}/"= lim klnf |Aksn1-. A1 Al (4)

n—00 ||lzfl=1

It is easy to see that the spectral radius of the operator T is

n—oc

. 1/2
r(T) = lim (:gg | AktnArsn—1-- -Ak”) . (5)

The proof of the following proposition is similar to that of Theorem 1 in
(8].

Proposition 1. Let

Te L( oy H,), T(z;) = (0, Ayz1, Aoza, . .., Ann, .. .)

i=1

be a unilateral weighted shift with weights (A4;). Suppose that
|Aizi| = [|Asl| l|zs]|, ¢€N.

Thep the approximate point spectrum o,(7T) of the operator T is

0u(T) = {A € C:i(T) < || < (D)}
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Proof. If i(T) = r(T), then since the approximate point spectrum is
nonempty and has circular symmetry, we have

o.(T)={XeC:|A\|=r(T)}.

Suppose i(T) < A < r(T). Since 0,(T) is closed and has circular symmetry
it is sufficient to show that A € o,(T). Choose numbers a, b such that
i(T) <a<A<b<r(T)and let € > 0. By (5) we can choose n, k such
that (A/b)"” < ¢ and || Agsn—1 - - - Ax+14x}||*/™ > b. By (4) we can choose p
and m > n.+ k such that (a/\)? < € and | Amyp - - - Am+1]| VP < a.

Now, we will define the vector z = (z;) as follows |lzx| = 1,

Apoy . Ag

SR Tk E+1<r<m+p+1

Ty =

z, =0, r<k and r>m-+p+1.

Then
(T — )\I).’I} = (Ai-lxi—l — ’\xi)iEN,
where
A 5. A A;_1A;o.. A
Az — Az = A T:_‘l—:,;i o — AL )\i—zk Frp =0,
fork+1<i<m+ p+ 1. Therefore
Tx — Az = —)\l‘k - Am+p+1xm+p+1-

Further on, since zp and Apyp+1Tm4ps+1 are orthogonal vectors
(Amap+1Zmap+1 € Hmypiro) and since ¢(T) < A < r(T) we will have

1Tz — Azl = (Tz — Az, Tz — Az) = N¥|zic|® + | Amtpt1Zmipta]®
= Xjzk | + | Amtpri 1 Zmepal®

<NTIP(A + emepsi]?)-

Also,
oo
Iz =Y lz:ll* > l@rrnl? + [@miall®.
i=1
But,
||.’L' || — V Ak+n—1 - .Ak.’l)k “ — “AkJr’n-—l .- Ak” ”xk”
k+n l " "

-tz ()2
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and
||$m+P+1” — HAm-ﬁ-p .. .Am+1Am Ce Akxkn/)\m+p—-k+1
|Zm+1]l | A . .. Agzy||/Am—k+1
— ”Am+p .- -Am+1|| HAm v Akxk[l/)\m+p—k+1
|Am . . . Agzr ||/ Am—k+1
| Amtp - - - Amaa|| a\?P
= < bl )
x> <(3) <=
Therefore
_ 2 5
[_IT:L'_%\_mi < HT||2 1+ ||2xm+p+1” -
HLL‘H H‘T"’H—n“ + me-l,-l“
1 [Zmtp+1l?
< |T)|? max , P < elITI2.
Il (ka+n||2 | Z g1 |2 ) 1T

From the previous inequality we conclude that A € 0,(T) and since the
approximate point spectrum is closed, it follows that

ag.(T)={A € C:i(T) < |A\| < r(T)}.

Proposition 2. Let T be a unilateral weighted shift operator, with
operator weights, defined as in Lemma 1. Then the spectrum of T will be
o(T)y={reC: |\ <r(T)}.

Proof. Firstly, it is obvious that

r(T)=r(T") = lim sup 1AR AL yr - Al V7

where T is the conjugate operator of T'.
Let 0 < A < b < r(T). We will show that A € 6,(T). Given € > 0, we
choose n such that (A/b)” < & and k such that

A% .. ALyt |7 > b.

Now, we define the unit vector z = (zi);en, as follows:

Tntk € R(Ak+n_1Ak+n_2 .. .Ak) such that Hxn-i-k“ =1,

* A% *
— A‘L 41 Ak-‘rn—l
- \—i+ntk

z; Ty, if 1<i<n+k-—1,

z; =0 if i>n+k4+1.
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If1<i<n+k—1,then

* Ak * * *
Ai Ai+1 e 'Ak+n—1 /\Ai ccctk+n—-1 _

N—itntk-1 Ttk — N—itntk  Intk = U

*
Ajzip1 — Az =

Ifi=n+k-—1, then

Tn+k

Al Trik = AMptk—1 = Apykm1Tntk — My ey =0.
From the above relations we obtain
T*(z;) — M) = —AZntk
and therefore
IT*(z:) = M)l = A (6)

On the other hand,

AiAit - Akgn1 Ttk H > (b)n > 1
3

An A

ol > llaell = || >

So by (6) and (7) we have

[Tz —da| _ A,

iedl ]

therefore A € 0,(T*) C o(T™). From the circular symmetry of the spectrum
it follows that

o(T)y=0(T")={XeC:|A\| <r(T)}

2. Quasitriangular weighted shift operators

By the following theorem we will show the necessary and sufficient
conditions for quasitriangularity of the circular operators in terms of the
approximate point spectrum.

Theorem 1. Let T be an operator with the circular symmetry and
let 0p(T) Nop(T*) = 0. Then T € (QT) if and only if o(T) = oo (T).

Proof. If T is quasitriangular operator then o(T") = 0,(T) (see Theo-
rem 1 in [1]). Conversely, assume that o(T) = 0,(T) and T' ¢ (QT). Then
by [2, Corollary. 5.5] there exists a complex number A such that T — Al is
semi-Fredholm and ind(T — AI) < 0. It means that
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dim Ker(T — M) —dim Ker(T — AXI)* <0

or
dim Ker(T — M) — dim Ker(T* = X} < 0,

it implies X € 0,(T™*). Since the operator T has a circular symmetry about
the spectrum, A € g,(T™) as well. Now, since 0,(T) N o,(T*) = 0 we have
A ¢ 0p(T). On the other hand, since T' — Al is semi-Fredholm operator,
R(T — AI) = R(T — AI) and therefore ||(T — AI)z| > m||z|| for all z € H.
This implies A ¢ 0,(T) and since A € o,(T*) we have A ¢ 0,(T) and
A € o(T*) = o(T), which contradicts our assumption and the proof of the
theorem is completed.

Corollary 1. Let T be an operator with the circular symmetry and
let 0,(T) Nop(T*) = 0. Then T € (BQT) if and only if 6,(T) = 0o(T™).

Proof. Let T € (BQT). Then T € (QT) and T* € (QT). From
Theorem 1 o(T) = 0,(T) and o(T*) = 0,(T™). Therefore 0,(T) = 0,(T*).

Conversely. Let 0,(T) = 0,(T*) and suppose that T ¢ (BQT). It
means that T ¢ (QT) or T ¢ (QT). If T ¢ (QT) then o(T) # o.(T).
Therefore there exists A € o0.(T) \ 04(T), where o.(T) is the residual
spectrum of the operator 7. Hence A € 0,(T™) C 04(T*). Therefore
04(T) # 0,(T*) and this contradicts the assumption. In case T* ¢ (QT)
the contradiction will be obtained analogically.

Corollary 2. Let T € L( g H1> be a unilateral weighted shift
i=1
operator with weighted sequence {A;};en and let A; be invertible oper-
ators. Then T € (QT) if and only if o(T) = 0,(T).

Proof. Since A; are invertible operators, it follows that o,(T) = 0.
Hence o,(T) N 0p(T*) = 0. Now, the result immediately follows from
Theorem 1.

Example 1. Let T € L( g HI) be given by

i=1
T(z:)ien = (Ui—1%i-1)ien, UoZo = 0, (8)
where U; are unitary operators. We will show that
op(T*)={A€C:0< |\ <1} and T ¢ (QT).
Using relation (8) we have T*(2;)ien = (UfZit1)ien. Let A € o, (T™).

o0
Then there exists a vector z = (z;)ien € @ Hi, such that Tz = Az.

i=1
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Further,

(U7 Tit1)ien = A(&i)ieN
or

U*Ilfi_;_l = Mz;, t€N.
Consequently,

T = )\Ula?]_,

rg = )\U2$2 = )\2U2U11171,

In = )\nUn_l PN U2U1£U1
Therefore

oo 00
lel2 = 3 laall® = f22® + 3 N UncUnoz ... Urza |2
n=1

n=2

o
=Y el
n=0

e for 0 < A < 1,0,(T*)—{A € C:0 < |A]| £ 1}. Since r(T) =r(T*) =1,
the spectrum of the operator T is o(T) = {A € C:0 < |A\| < 1}. On the
other hand, from Proposition 1 the approximate point spectrum of the
operator T is 0,(T) = {A € C:|A\| = 1} ( because i(T) = r(T} = 1). Thus,
04(T) # o(T) and using Corollary 2 we obtain T ¢ (QT).

oC oC
Lemma 2. Let T € L( o Hz) (T € L( e H,)) be a unilateral
i=1 i=—o0
(bilateral) weighted shift, with the weighted sequence {A;}, and let A; be
invertible operators.
i) f dimH; =n, I € N (i € Z) then dim Ker(T — AI) < dim H; = n.
ii) dim Ker(T — AI) = dim Ker(T — XI_Z,
dim Ker(T* — A\I) = dim Ker(T* — A\I), for each A € C.
iii) If || Asz|| = || As|| |z]| for all i € Z and x € H;, then o,(T)No,(T*) = 0.
Proof. i) Let T be a bilateral weighted shift and let A € 0,(T"). Then,
there exists a vector ¢ = (x;) € L( 5 HZ) such that Tz = Az. It follows

i=—00
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that (A;—1zi-1) = (Az;) and calculations show that the vector z is of the
form:

1

1
z= ( .+, NPAZ3 AT w0, AMAZ 0, w0, 5 Ao, 5

3 Alexo,...) (9)

where zo € Hy. Further, let x(l),x%, ..., x} linearly independent p-vectors
in Hy that occur on the 0-position of eigenvectors. Now, the corresponding
eigenvectors will be

1
A

1

2 41 4-1_: -1 T
z; = ( L AZATLATYZ AATLZ o 3

A0$6, AIAOxBa s )’

oC
i=1,2,...,p.. Every other eigenvector y = (y;) € @ H; is of the form

i=—00

1

1
/\Aoyo, X§A1A0yo, . )

y = ( -, A2 AZ53 A 1y0, M Z 1yo, Yo,
Since yo € Hp, there exists complex numbers a;,aq,...0p so that
Yo = 01T} + a2xd + - - + apxh. Therefore, y = o171 + @aza + - -+ + apT,.
This implies that dim Ker(T — AI) < dim Hy = n.
ii) If = is eigenvector corresponding to the eigenvalue A, then it is
expressed by formula (9). Then the vector T defined by the formula

- 1 1 :
T = ( e ,PA:%A:}.’E(), )\A:i.’l,‘o, zg, iAo.’L’o, Ai1Apxg, .. .),

X2
is an eigenvector corresponding to the eigenvalue X and conversely. By

the definition of the vector T it is obvious that T € ?.S H; and there-
i=—00

fore A € 0,(T). Since the map z — T _is one to one and onto, it follows

that dim Ker(T — AI) = dim Ker(T — AI). Analogously, it can be shown

that dim Ker(T* — AI) = dim Ker(T™* — M), A € C. From the equation

T*y = Ay, we obtain that the vector y = (y;) € Z.S H; is of the form:

i=—00

1 * * 1 * * — * — —
y= (s T A AT 0, TA%180, 0, A4S T 00, A241 T A5 e, ).

A2 A
(10)
Then the vector

— 1 * * 1 * N A*— * * —
7= (-0 3aAte A 100, 24" 100, 30, 345 "0, X247 A5 M, )
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is eigenvector corresponding to the eigenvalue X (because T*F = \y).
Also, the correspondence y — 7 is one to one and onto. Hence
dim Ker(T* — M) = dim Ker(T* — XI).

iii) Let 0,(T) # @ and 0, (T*) # 0. Assume that o,(T) Nop(T*) # 0

and let A € 0,(T)Nop(T*). Then there exists vectors z,y € ?.S H; such
1=—00

that Tz = Axr and Ty = Ay. Further on, the vector z is expressed by

formula (9) and the vector y by formula (10). So

el = (- INZATBATE I+ AT+ 14 5ol 4+ ) ol < oo

Then ] 1
x( . NAT}ATIe i, e, 5 Aoe, 55 ArAve, - ) (11)
is eigenvector of the operator T' (i.e. Tz’ = Az’ and ||z'|| = ||zl|/||zo]| < o)

for every basic vector e in Hy. Analogously, we conclude that
1 1
J = ( AT AT 16 T AT e e M5 e XA T A e ) (12)

is eigenvector of the operator T* corresponding to the eigenvalue A\. There-
fore,
(T, T*y') = (\z', ) = M2 (', o).

On the other hand
(T, T*z') = (T?2',y') = N3(z', ).
From the last equality, it follows that |A|?(z’,y') = A%(z’,3'). This is
possible if and only if (2/,y’) = 0. Now, by (11) and (12) we obtain
(@) = (e0) 4 () 4 -+ (04 - = 0.

Hence (e, ) = ||e]|? = 0 and this is impossible since e is a unit vector. The
proof of the Lemma 2 in case T is a unilateral weighted shift is trivial and
we omit it.

Remark 1. From Lemma 2 if X is replaced with e A(0 < 6 < 2r)
then the corresponding eigenvectors have the following form:

i —1 4— i — 1 1
y:( N (6 9/\)2A__%A_}$0, (6 GA)A_i.T(), o, 'e—i—e—xA()CL'(), (—e—wAlexo, .. )

It means that dim Ker(T—AI) =const. for Ae®. Analogously, we conclude
that dim Ker(T* — AI) =const. for A = Ae¥.
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Remark 2. Because the Weyl’s spectrum W (T') of the operator T,
contains all points of the spectrum o(T) except eigenvalues of finite multi-
plicity, W(T + K) has a circular symmetry for every compact operator K.
The essential spectrum o (I(T)) = W(T)\{A € C:\XI -T ¢ Fy(H)} has a
circular symmetry also, where Fy(H) is the set of Fredholm operators with
index equal to zero.

oo oo .
Theorem 2. Let T € L(ﬁ;1 Hi) (T € L(i_gioo H,)) be a unilateral

(bilateral) weighted shift with tﬁe weighted sequ;nce {Ai}ien({Ai}iez)-

i) If A;,i € N(i € Z) are invertible operators and dim H; = n then
T € (QT) if and only if o (TII(T)) = W(T).

WIT e L(g H) and |Aiz| = [|Ai|lllzll, # € Hi, i € N then
i=1
T € (QT) if and only if lim inf || 4i]| = 0.
€N
Proof. i) Let T € (QT). Since for the weighted shifts is always
T* € (QT), it follows that T € (BQT) which implies o (II(T)) = W(T)
(see [7]).

Conversely, assume that
o(INT)) =W(T) and T ¢ (QT).

Then, by Theorem 1 in [2] there exists A € C such that T — Al is
semi-Fredholm with ind(T — AI') < 0. It means that

R(T — M) = R(T - Al

and
dim Ker(T — M) < oo or dimKer(T* — ) < 0.

Now, from Lemma 2 we have
(T—A)e F(H) and ind(T-A)<0.

Therefore,
AeW(T) and M ¢ O'(H(T)) .

Hence,
o(I(T)) # W(T),

which contradicts assumption.
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ii) If T is a unilateral weighted shift operator, then by Corollary 2

T € (QT) if and only if 6(T") = 0,(T). Now, by Proposition 1 and Proposi-

tion 2 o(T) =04(T) if and only if #(T) =limir)§f | Akini ... Ars1Ag|M/=0
n

and this is possible if and only if lim inf ||4:]| = 0.
ieEN

References

[1] J. A. Deddens: A necessary condition for quasitriangularity, Proc.
Amer. Math. Soc. 32 (1972}, 630-631.

[2] C. Apostol, C. Foias and D. Voiculescu: Some results on non-quasi-
triangular operators, IV, Rev. Roumaine Math. Pures Appl. 18(1973),
486-514.

[3] P. R. Halmos: Quasitriangular operators, Acta Sci. Math. (Szeged)
29(1968), 283-293.

[4] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc.
76(1970), 877-933.

[5] D. A. Herrero: On quasidiagonal weighted shifts and approzimation of
operators, Indiana Univ. Math.J.33(1984) 549-571.

[6] Carl M. Pearcy: Topics in operator theory, Mathematical Surveys
N.13, Published by AMS, 1974.

[7] Carl M. Pearcy: Some recent developments in operator theory, Con-
ference Board of the Mathematical Science No. 36(1977).

[8] W. C. Ridge: Approzimate point spectrum of a weighted shift, Trans.
Amer. Math. Soc. 147(1970), 349-356

[9] P. A. Fillmore, J. G. Stampfli, J. P.Williams: On the essential numer-
ical range, the essential spectrum, and a problem of Halmos, Acta Sci.
Math. (Szeged) 33(1972) 179-192.

[10] R. A. Smucker: Quasidiagonal and quasitriangular operators, Diserta-
tion, Indiana Univ. 1973.

[11] R. A. Smucker: Quasidiagonal weighted shifts, Pacific. J. Math.
98(1982), 173-182.



80 Muhib R. Lohaj

KBA3UTPUAHIYJIAPHOCT HA TEXNHCKN
IIIN&$T OITIEPATOPH CO CIIEIIMNJAJIHN
OIIEPATOPCEKM TEXNHU

Muhib R. Lohaj

Pezuwme

Bo oBaa paforta ce namesy noTpeOHM M QOBOJIHM YCJIOBM 34 KBa-
3UTPHUAHTYIADHOCT HA HEKOM TEKWHCKA MU(T OIEPATOPH CO OIEpa-
TOPCKA TEXUHA, M3pa3eHa BO GOpMa Ha TEXUHCKA HU33, AlPOKCUMA-
TUBEH TOUKECT CIEKTap, CYMTHHCKY CIEKTAp ¥ CHeKTapoT Ha Weyl
I'nasumot pesyarat e Teopema 2, Kage e ZOKaXaHO Heka ako I e yHU-
natepasieH TexuHCKM mudT co Texxmun A; 1 € N Taka mro A;/||A;|| e
nsoMeTpuja, Toram 1 € KBa3sMTPUAHIYJIapeH aKO M CaMO aKo

lim inf || 4Z]] = 0.
iEN
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