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Abstract

PA, algebras are strucures of specific importance for paral-
lel processing. They are the basis for mathematcal representation
of the idea of parallel computation through the formalisms of the
process algebras.

The number of equations (axioms) that the elements of those
algebras have to satisfy increase as their signatures are getting aug-
mented in order to gain more expressive power. However, all of
them retain the three basic properties: commutativity, associativ-
ity and idempotency of their additive operation. That makes it
possible to describe and analyse them as semilattices.

This paper presents some properties of these structures that
can simplify, in the casc of finite cardinality, their antomatic gen-
eration.

1. Introduction

The process algebras are mathematical structures that can represent
the behavoir of various computational systems and describe the execution
traces of algorithms that they implement. They are being used in proving
of the correctness of network protocols, systolic arrays and several other
kinds of parallel and distributed systems. Because of that, exploration of
their properties is of interest for the theory as well as the practice. For its
simplification, the databases of process algebras might be describe as a tool
for initial testing of the hypotheses. However, generation of these databases
is problem of exponential compexity, and can, accordingly, require severe
dedication of computational resourses. In the following sections, we de-
scribe the generation of databases of PA, agebras of three, four and five
elements, together with the optimizations thal considerably shortened the
processing time.
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2. Definitions

Definition 1. A signature is said to be a finite set of functional sym-
bols (operators). Fvery symbol from the signature is characterized by its
arity - an integer that denotes the number of symbol’s arguments. Symbols
of 0 arity are called atomic actions (constants).

In the further text, letters a, b, ¢, ... will be used to represent the atomic
actions. Besides the operators from the signature, we use another kind od
symbols — variables, and we represent them with letters z,y,z, with or
without indices.

Definition 2. A term over signature ¥ (or a X—-term) is defined in
the following way:

(i) the atomic actions and the variables are terms,

(ii) if f is n—ary operator and t1,1s,...,t, are terms, then f(ty,ts,...,1,)
is also a term with ty,12,...,1, being its subterms,

(iii) every term is derived from the above rules in finitely many steps.

If f is a binary operator (operator of arity 2), then the term f(¢1,12)
will be written as (¢; fty). Very often, in the cases when the priority of the
operators is explicitly specified, the terms will be writen without unneces-
sary parentheses.

Terms that do not contain variables, but are consisted solely of non-null
operators and atomic actions, are called closed terms. If a term contains
variables as well, it is called an open term.

Definition 3. Specification is an ordered pair (X, E) where ¥ is a
signature, and E is a set of equations. Equations in E are called axioms,
and are of the form t, = t; where t; and ty are L—-terms.

Definition 4. Algera A is an ordered pair (A, F'), where A is a set,
called the carrier of A and F is a set of functions of the type f: A¥1 — A,
Functions f are called operations, while ky are their arities.

Definition 5. The algebra A is a X-algebra (for some specific signa-
ture ) if there is a bijection between the set of functions of A and the set
of operators of Y. such that every function is mapped to an operator with
the same arity. The bijection is called an interpreration of ¥ in A.

Given an algebra A every interpretation can be obviously extended so
that to each term ¢t over different variables z1,z3,...,2, (ordered as their
appear in the term) corresponds an n—ary mapping &: A™ — A. If p,,
i =1,2,...,n, are elements od A, then #(py,ps,...,pn) denotes the value
otained when every z; is replaced by corresponding p;.

Definition 6. Let A be a Y-algebra, for some signature ¥. The
element p € A is called finite if it is an interpretation of a closed term.
Otherwise, p is infinite.

Definition 7. Let ¥ be a signature, A a X-algebra, and t; and t,,
respectively, an n-ary and m-ary Y-terms. Given some interpretation of
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Y in A, the equation t; =t holds in A if:

VP17P2’~-f7Pm+n € A z1(plap2a~"7pn) = z‘l(pn—i—l»pn-}-‘la---apm)'

Then A is called a model for the equation t; = t3 and this is denoted by
AEt =t

Definition 8. Let (X, E) be a specification. The L-algebra A is called
a model for E if it is model for every equation in E. A is referred to as
algebra over (X, F), and this is denoted by A |= E.

Definition 9. Recursive specification (on the set V of variables) over
the-signature ¥ is system of equations of the form:

z = 38;(V)
where x € V and s, are Y-terms with variables from V. Usually, one
variable is distinguished and is referred to as a root variable.

Complete solution of a recursive specification in some X-algebra A is
said to be any mapping ¢:V — A for which ¢(z) = §x(<p(V)), for all
z € V. If z is the root variable of a recursive spectfication, then ¢(z) is
said to be its solution.

Definition 10. Two recursive specifications over (X, E) are equivalent
if they have equal solutions in every algebra over (X, E).

Definition 11. (BP A algebra). Let ¥gp4 be a signature with two
binary operators + and - (with - having higher priority than +), while Egp 4
is the following set of equations:

Tt+y=yt+z
(t+y)+z=c+(y+2)
TH+r=2z

(z+y)z=22+4yz
(zy)z = 2(yz).
FEuvery Ygpa-algebra, model for Egpy, is called a BP A algebra.

Definition 12. Let ¥ be a signature that contains the operators of
Yepa. We say that appearance of a variable x in a X-term t is guarded
if there is a subterm c- s in t with ¢ being an atomic action, and s being a
term that contains the mentioned appearance of z.

Definition 13. Let ¥ D Ygpy4 be a signature and E D Egpa a set of
azioms. A term t, defined over (¥, E), is said to be completely guarded if
all the appearances of all the variables in it are guarded. A term t is said to
be guarded if only completely guarded terms can be derived from t by using
the azioms from E.

Definition 14. Let (3, E) be a specification such that ¥ D Sgpy and
E D Egps. We say that a recursive specification:

z = s,(V), where v €V
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defined over (X, E) is completely guarded if every s, is guarded, and it is
guarded if it is equivalent to some completely guarded recursive specification
over (X, E).

Definition 15. Let A be a X-algebra, for some ¥ D Yppa. The
element p € A is said to be definable if it is solution of some guarded
specification.

Definition 16 (PA.—algebra). Consider a signature Xp, with set
of atomic actions C 2 {8,¢)}, unary operator /, binary operators || , ||, -

and + (operators are listed by the order of their of priority). Then, any
Y pa-algebra which is model of the following system of axioms, is said to
be a PA.-algebra:

r+y=y+z
(e+y)+tz=24+(y+2)
rT+r=2
(z+y)z=22z+yz
z(yz) = (zy)z
b+z=1x
br =96
rE=2
ET =12
zly = zlly+yllz + V() v(¥)

ele=24
celly=c(z]ly) Vee C\{e}
(z+y)llz=z]z+y|=

Vigy=¢
Vie)y=146, Vee C\ {e}
Vizt+y)=V(e)+ V()
Vizy) = V(2) V()
Clearly, ¥ppa C X p4, and it is obvious that every PA, algebra is

model for the axions of Egp4. Therefore, it can be assumed that any PA,
algebra is also a BPA algebra.

3. Some properties of PA, algebras

Let A be a PA, algebra with carrier A. In general, two or more
atomic actions might be interpreted in A with a same element of 4. These
interpretations are not of our intereset because then A can be considered as
an example of PA, algebra with fewer atomic actions. Especially, if some
atomic action ¢ has the same interpretation as ¢, i.e. € = , then for every
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p € Ait follows that p = £p = \/(F)p = /(O)p = &p = §. Consequently,
t=¢26 and A = {6}.

Further on, only algebras with different interpretation of atomic ac-
tions will be considered. Also, the symbols of the atomic actions will be
used to represent their interpretations. It will be assumed (unless otherwise
stated) that the set A is the carrier for a PA, algebra A.

Proposition 1. The groupoid (A, +) is semi-lattice, with the relation
< defined by:

pLgeptag=gq

being on ordering on A. In this ordering, for every p,q € A, sup{p,q}
ezists and is equal to p + q. g

With respect to the ordering defined in the proposition 1, every finite
PA, algebra has the largest element, and it is simply the sum of all the
elements of A.

Proposition 2. If A is finite PA, algebra, then (A, <) is lattice.

Proof. Let M be a nonempty subset of A, and M, be the set of
minorants for M in A. M, is finite and nonempty (6 € M,). Then m =

Z q is in M, because, for every p € M, the following equation holds:

e ptm=p+ Y q¢=) (p+9)= ) p=p.

qEM., q€ M. gEM.
g
It should be noticed that the proposition 2 may not hold in the case
of infinite PA,. algebras.

Proposition 3. Ifp and ¢ are elements of A ande < p, then ¢ < p-q.
FEspecially, if q is the largest element in the algebra, then p- ¢ = q.

Proof. If ¢ < p then p+¢ = p. Thus, p- q+q =p-q+e-q=(pt+e)q=
p-gie ¢<p-q .

Example 1. If ¢ is the largerst element in the nontrivial PA, algebra
A, but € £ p, the equation p-¢ = ¢ does not have to hold. For example, if
p=©6theneLbdand 6-¢ =06 #q.

Proposition 4. The atomic action § is the smallest element of A. O

Proposition 5. For every finite element p € A, the following equations

hold: e if e<y
1) v(p) ={ (i) p=pll e+ v(p) n]

6, otherwise
The proof of the proposition 5 requires more elaborate considerations
that are not going to be given in this paper. These, as well as several other
properties considering the operators of the PA, algebras, can be found in
[1], pages 76 — 77.
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Proposition 6. If p € A\ {6,c} and p < ¢, then p is infinite element.
Proof. Let p be a finite element of A\ {6,¢} and p < e. Then p # ¢
and, according to the proposition 5(¢), there must be v/(p) = 6. But then,
from 5(i¢), it can be inferred that p = p|l e++/(p) = plle+6 = plle+e|le =
(p+e)le=celle=4. - O

Proposition 7. For every element p of the non-trivial PA. algebra
A, ife <p, then \/(p) # 6.

Proof. ¢ <p=pte=p= V(p)+vle) = V(D) > V(p) e =
Vi(p) = V(p) # 6. O

Proposition 8. Ifp € A\ {§,¢} is interpretation of atomic action,
then p is not comparable to «.

Proof. From the conditions of the proposition, p is finite element and
V/(p) = 6. Now, the conclusion follows from the propositions 6 and 7. O

Proposition 9. The set of finite elements of A forms a subalgebra of
A. O

Proposition 10. There is no nontrivial PA. algebra, other then
{é,¢}, whose every element is interpretation of atomic action.

Proof. Let A be a nontrivial PA, algebra, different from {6,¢}, with
all of its elements being interpretations of atomic actions. If p € A\ {6,¢},
then p and ¢ = p + € are both images of atomic actions and, moreover,
g+¢ = qi.e. ¢ < q. Thus, g is comparable to ¢, so according to proposition
8, it must be ¢ = § or ¢ = €. In the first case, ¢ < § and consequently
¢ = 6, a contradiction to the assumed non-triviality of A. In the second
case, p+ ¢ = ¢, and this is incompatible with the proposition 8. O

Proposition 11. If p # ¢ € A are finite and /(p) = /(q), then
pre#qte.
Proof. It follows from p + ¢ = ¢ 4+ ¢ and the proposition 5(¢%), that

g= plle+v(p)=(p+e)lle+v(p) = (a+e)le+vI(e)=dale+(9) =q

Proposition 12. Suppose that Ay and Ay are two isomorphic PA,
algebras and (: Ay — A, is isomorphism. If €1 and €5 are interpretations
of the atomic action € in both of the algebras, then ((e;) = e3.

Proof. Let ¢3 = ((p) for some p € A;. Then ((e1) = ((e1) - &2 =
C(e1) - ¢(p) = Cer - p) = ((p) = &2. a

Proposition 13. Let { be an automorphism on a finite PA, algebra
A. If p # q are comparable elements of A, then ((p) # q.

Proof. Let p # ¢ € A and ((p) = ¢g. Since ( does not affect the
ordering of 4, the sequence p,((p),(*(p),...,("(p),...is strictly ascending
or descending, depending whether p < ¢ or ¢ < p. Anyway, A would have
to have infinitely many elements. O
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4. Finite PA, algebras and their generation

According to the PA, axioms, the interpretation of every term con-
sisted only of atomic actions § and ¢, must be either § or €. Therefore,
a PA, algebra that has only these two constants in its signature, can not
have other finite elements. As a consequence, the following propositions
‘can be derived.

Proposition 14. There is no three-element PA, algebra whose all the
elements are finite.
Proof. The finiteness of the third element (the one different from §

‘and ¢) implies that it must be an atomic action. But that is opposed to
the proposition 10. a

Proposition 15. For each integer n > 3, there is no n-element PA,
algebra with n — 3 infinite elements.

Proof. If there is an n-element PA, algebra with n — 3 infinite el-
ements, there would exist a three-element PA, algebra whose all the ele-
ments are finite. But, this is inconsistent with the proposition 14. a

4.1. Three-elements algebras
Here, PA. algebras with only three elements will be considered.

Proposition 16. FEvery three-element PA. algebra is isomorphic to
some algebra defined over some of the lattices from figure 1. The algebras
over these lattices are pairwise nonisomorphic.

Proof. For every non-trivial PA, algebra, there must be § < ¢. The
only three-element lattices that satisfy this condition are depicted on figure
1. It follows directly from the propositions 12 and 13 that they are not

isomorphic. _ O
2 €
La Lsa
€ 2
§ &

F1g 1. Two lattices over A = {6 €,2}

The database of all the PA, algebras that can be constructed over the
lattices from figure 1, is generated with a computer program that utilizes
already devised properties. The results are summarized in the following
assertion.

Proposition 17. There are 86 nonisomorphic three-element PA, al-
gebras with one infinite element. Qut of that, 81 are generated over the
lattice L3y, and b are generated over the lattice L3y O
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Example 2. : | 5 . 9
6 ] 6 0 )
e | 6 . 2
2 | 6 2 2

The above table presents the diagram of the operation - of one three-
element PA, algebra over the lattice L3;. Its other operations are defined
as: pllg =6, (p) =p, pllg = pllL g+ gl p + V(p) V(9), for every p,q € A.
The element 2 is infinite. It should be noticed that in this example p- ¢ =

inf{p, ¢}. O

4.2. Four-element algebras

As stated by proposition 15, a four-element PA, algebra may have two
infinite elements, or may have no infinite elements at all. In the later case,
according to proposition 10, three of the elements must be atomic actions,
while the fourth is interpretation of a finite term.

Figure 2 depicts several four-element lattices that may represent the
+ operation of a PA, algebra. Simple examination of all the four-element
lattices, proves the following statement.

Proposition 18. Fvery for element PA, algebra is isomorphic to

same algebra defined over some of the lattices from figure 2. a
3 .
La: Lq¢a: A Las: 3 L«.;;‘ 3 Les: ¢
P . ‘ 3
. 2 32 3 T
e 13 - 2
é 8 é é é

Fig. 2. Lattices over A = {6,¢,2,3}

Proposition 19. The lattice Ly is (up to isomorhism) the only four-
element lattice over which a PA, algebra with no infinite elements might
be generated.

Proof. In all the lattices from the figure 2, except the lattice L4, the
element ¢ is comparable to every other element. Thence, by the proposition
8, no element in these lattices, other then § and ¢, can be interpretations
of atomic actions. But then, the only finite elements that the algebra may
have, are § and ¢. O

From the proposition 12, it is obvious that the algebras generated over
lattices L4, and L4z, can not be isomorphic. Namely, ¢ is the largest element
in the second lattice, but not in the first. The same may be concluded for
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the algebras over L4s, L44 and L,s. Besides, according to proposition 13,
no two algebras over the lattice L4; are isomorphic since the only two
incomparable elements in that lattice are £ and 2, and by proposition 12,
they can not be mapped one into another. The same holds for the algebras
over the lattices L3, as well.

Hawever, these propositions are not applicable to the lattice L4y. For
this lattice, there is an automorphism that interchanges the incomparable
elements 2 and 3. Therefore, after the generation of PA, algebras over this
lattice, it is necessary to additionally discard the isomorphic ones.

The results of the computer-based generation of the four-element PA,
algebras are presented in the following propositions.

Proposition 20. There exist 201829 nonisomorphic four-element
PA, algebras with two infinite elements. Out of that, 5376 are generated
over the lattice Lyy, 8 over the lattice L4z, 190000 over the lattice Lys, 6400
over Ly, and 45 over the lattice Lys.

Examle 3. There is an algebra over the lattice Lys, constructed in
similar manner as the algebra in example 2. Its operations are defined as
p-q = inf{p,q}, pllg = 6, V(p) = p, pllg = plla + qllp + V(p) V(g), for
every p,q € A. The elements 2 and 3 are infinite.

It can be easily shown that a PA, algebras of any finite cardinality
can be constructed in this way. It suffices to choose a lattice in which 6 is
the smallest, ¢ is the largest, and all the other elements are pairwise incom-
parable and infinite. Other operations are defined as in this example.

0

Proposition 21. There are 3 nonisomorphic four-element PA, alge-
bras with no infinite elements. All of them are generated over the lattice
L1, with atomic actions 8, ¢ and 2. The diagrams of their operations are:

1.

. ]6 e 2 3 L (6 ¢ 2 3 v
5 |6 & o6 6 6 |6 &6 & 6 & |6
€ 6 ¢ 2 3 € 6 & & & € €
2 6 2 & 2 2 6 2 & 2 2 6
3 6 3 2 3 3 6 2 & 2 3 €
2.
. § ¢ 2 3 Il 6 ¢ 2 3 Vv
o6 |6 & 6 & o |6 & & & o |6
€ 6 & 2 3 € 6 & & & € £
2 6 2 2 2 2 & 2 2 2 2 6
3 |6 3 2 3 3 16 2 2 2 3 |
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3. ‘
. |6 e 2 3 L |6 ¢ 2 3 | v
é | 6 & & & 6 |6 6 6 6 6 |6
e |6 ¢ 2 3 e |6 6 6 6 e e
2 |2 2 2 2 2 |2 2 2 2 2 |6
3 |2 3 2 3 3 |2 2 2 2 3 |e
The operation || can be derived from the other operatzons of the algebra.
Note the noncommutativity of the operation - in 3. a

4.3. Five-element algebras

Using the previous propositions, it is easy to determine all noniso-
morphic five-element lattice that are appropriate for generation of PA,
algebras. In this paper, only five-element algebras with at least one atomic
action, aside from the necessary é and ¢, are considered.

4

. 4 4
Lgy: Lga: Lss: Lps: A
€ s . a 3
2 ] € €
3 € 3 2
§ § o i

&

4 - 4 :
Lass: . Lse: Ls7: .
[ 1 2 3 :
€ 3
3 4 2

Fig. 3. Lattices over A = {6,¢,2,3,4}, suitable to PA, algebras with atomic action 2.

Proposition 22. FEvery five-element PA, algebra with at least one
atomic action different from § and ¢, is isomorphic to some algebra defined
over some of the lattices from figure 3. (In the depicted lattices, that atomic
action is the element 2.) The algebras are pairwise nonisomorphic.

Proof. Asstated in proposition 4, § must be the smallst element of the
lattice. From proposition 8, ¢ and the atomic action 2 are incomparable.
Hence, none of them can be the largest element of the lattice. To avoid
the isomorphness, the element 4 may be chosen to be the largest element.
Only the lattices from figure 3 comply with this framework.

It remains to be shown that among the obtained algebras, there won’t
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be isomorphic ones. From the propositions 12 and 13, it follows directly
that between any two algebras over the latices Lsy, Lsa, Lss, Lsq, Lss and
Lsg there is no isomorphism. Neither could an algebra over the lattice Ls7
be isomorphic to an algebra over some other lattice. Besides, according to
the proposition 13, the only mapping that could be automorphism on the
lattice Ls7, is the permutation (2 3). But,

V) =vB)+6=vBH/(2)=V(3+2) =Vl =(e42) =eti = £ §=/(2),

so this mapping is not sound with the operation /. Therefore, every two
algebras over the lattice Ls7 are also nonisomorphic. a

Proposition 23. There is no five-element PA. algebra with two
atomic actions different from 6 and ¢.

Proof. If there is a five-element PA, algebra with two atomic actions
besides é and ¢, then it must be constructed over a lattice that is isomorphic
with some of the lattices from figure 3. Without loss of generality, it can be
assumed that this algebra is constructed precisely over some lattice from
the figure 3, and that the element 2 is one of its atomic actions. According
to what is stated in proposition 8, the element 4 can not be another atomic
action, because it is comparable with ¢. The same argument holds for the
element 3 in the lattice L5y, Lsy and Lss. In the other lattices, 3 is not
comparable with €, but 3 + ¢ = 2 4+ ¢. If the assumption that 3 is the
second atomic action is correct, then the equation /(3) = é = /(2) must
also hold. However, this is in contradiction with the proposition 11. 0

The results of the computer-based generation of the five-element PA,
algebras, are presented in the following proposition.

Proposition 24. There are 2607 nonisomorphic five-element PA,
algebras with three atomic actions (8, ¢ and 2). Out of that, 6 are generated
over the lattice Ls1, 144 are generated over Lsy, 13 over Lsz, 20 over Ls,,
16 over Lys, 2403 over Lsg, and 5 over Lgy. |

Example 4 Figure 4 depicts one of the five-element algebras over the
lattice Ls7. The algebra is represented with the diagrams of its operations.
It has three atomic actions: 6, ¢ and 2. The element 4 is finite, since

4 = 2 4 ¢, while the element 3 is infinite. m]
§ ¢ 2 34 L (6 ¢ 2 34 Vv
§ |6 &6 & & 6 6 6 6 6 & 6 ) 6
3 6 ¢ 2 3 4 € 6 6 6 & ¢ € €
2 |2 2 2 22 2 12 2 2 22 2 )
3 2 3 2 4 4 3 2 2 2 22 3 €
4 2 4 2 4 4 4 2 2 2 22 4 £

Fig. 4. Diagrams of the operations of PA. algebra over
the lattice Ls7, with atomic action 2



80 Aleksandar Nanevski

The obtained database of five-element algebras can help answering
some questions about the characteristics of PA, algebras. So, for instance,
the following proposition holds:

Proposition 25. There exists a five-element PA, algebra with an
infinite, definable element. O

The proof of the proposition 25 will result from the subsequent con-
siderations. From the definition 15, it is clear that infinite, but definable
elements may exist only in algebras with other atomic actions, besides §
and ¢. Therefore, the example that proves the proposition 25, must be
sought for among five-element algebras having three atomic actions (4, ¢
and 2). To check over the definability of the elements of these algebras, the
following proposition may be used.

Proposition 26. In a five-element PA, algebra A with atomic action
2, an infinite element is definable if and only if it is a solution of the
recursive specification r = 2 - .

Proof. If p € A satisfies the equation p = 2 - p then by definition, p
is definable. Contrary, let p be infinite and definable element. In a five-
element PA, algebra, there can not be two infinite elements (according to
the proposition 15), so p must be the only one. Furthermore, p is definable,
so it must be a solution of some guarded recursive specification. Every
quarded recursive specification in algebra with atomic actions 8, ¢ and 2 is
equivalent to some of the specifications:

Ty =32 25 x1=3X2-2;+¢
or
T; =1, z, €V z; =1t;, z; €V

where t; are guarded terms, and z; is the root variable (vatiable that corre-
sponds to p). Now, all the ﬁmte elements from the sums ¥2-2; and ¥2-z;+¢
may be discarded. Namely, the remaining of the sums will still be infinite
element, and p is the only alike. Therefore, the above specifications have

the same solution as:
2122 x;
T; =i, T; € V!

where V' contains only those variables from V that, in the complete so-
lutions of the above specifications, corresponds to the infinite elements.
Again, p is the only infinite element, so the pI‘eVlOllS specification has the
same solution as the specification:

x=X2-2.
But, + is idempotent, so this is equivalent to:
r=2-zx.
Therefore, p = 2 - p. » O
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. |6 e 2 3 4 L |6 ¢ 2 34 v
5§ |6 & & 6 6 6 |6 6 & 6 & § |6
e 16 € 2 3 4 e |6 6 & 6 6 e |e
2 |6 2 2 32 2 {6 2 2 22 2 |6
3 |6 3 6 6 6 3 |6 2 2 22 3 |6
4 |6 4 2 3 4 4 1§ 2 2 22 4 |e

Fig. 5.

Diagrams of the operations of PA, algebra over the lattice Lsg,
with atomic action 2 and infinite, definable element 3

Example 5. Diagrams from figure 5 depict the operations -, || and

/ of an algebra with carrier A = {4,¢,2,3,4}, constructed over the lattice
Ls3. This algebra has an infinite and definable element 3. The diagram of
| is derived from the other operations. : a

- Computer-based examination of all five-element PA. algebras with
atomic action 2, proves the validity of the following statement.

Proposition 27. There are 14 five-element P A, algebras with infinite,
definable element. Qut of that, 6 are generated over the lattice Ls3, 2 are
generated over Lsy and 6 are generated over the lattice Lss.

All of them have 8, ¢ and 2 as atomic actions, while the infinite and
definable element is 3. a

5. Conclusion

This paper presents some basic characteristics of PA, algebras. These
characteristics are then used in derivation of several propositions of three,
four and five-element PA,. algebras that, applied in a computer program,
greatly simplified the generation of databases of these algebras.
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KOHEYHU IIPOIIECHM AJITEBPU

Anexcanmap HameBcku

Pezuwme

IIponecuute anrebpu PA, ce cTPpYKTYpPH O MoceBHA BaKHOCT IIPHU
TEOPETCKUTE Da3riefyBamha Ha NapaljielHUTe IPOLIECH, KaKO MaTeM-
aTWYKa OCHOBa 3a NedrHUpame Ha NapatenuuTe npouecu. Co men 3a
nobamKyBame [0 PealHATe NPOLecH, OBUe anrebpu BoobWUaeHO ce
36oraTyBaaT cO moBeke omepamuu. Taka, MOKPaj OCHOBHUTE OMEpaUN
3a omnyuyBame (+) M mpocienyBame (-) ce JoJaBaaT oNepaluy 3a
NeBa TapalieHOCT, NapaJefHOCT, CUTYPHO TeMIuparme, KOPCOKaK U
ap. Ceto oBa ro 3roneMyBa M 6pOjOT Ha aKCHOMHUTE, Taka IITO Ce
mocTaByBa mpo6ieM 3a Haolame Ha IOTOIHU KOHEYHU MOZENN 3a HUB.
Bo tpymor, 3a mpomecuu anrebpu co -3, 4 u 5 enemenTn, e JaleH
HUBHUOT KOMIIJIETEH OIIKC.
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